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Abstract

The concept of penalizing jobs both for being tardy and for being early has proven
one of most important and fertile research topics in Operations Research. In this survey,
we consider just-in-time mixed-model, multi-level supply chains. Obtaining an optimal
sequence in a multi-level chain is a challenging nonlinear integer programming problem.
Problems for two or more levels are strongly NP-hard. The problem of minimizing de-
viations between actual and desired production for single-level can be solved efficiently.
Also the multi-level problems with pegging assumption are solvable by reducing them to
the single-level. Cyclic schedules are optimal for single-level problem. We present vari-
ous ways of dealing with these problems such as the elegant concept of balanced words
and different optimization techniques. We provide a short review of different mathemat-
ical models, discuss their complexity and compare them. The research results obtained
in past several years are presented along with open problems and possible extensions.

Keywords: nonlinear integer programming, scheduling theory, just-in-time systems, bal-
anced (level) schedules, balanced words, computational complexity, polynomial algorithms.

1 Introduction

The central goal of mixed-model or flexible assembly processes is to increase profit by
reducing costs. The just-in-time (JIT) production systems, which require producing only
the necessary product in the necessary quantities at the necessary time, have been used
for controlling such flexible assembly systems. The intention of these methods is to satisfy
the customer demands for a variety of models without holding large inventories or incurring
large shortages of the products. We assume a flow line manufacturing, called flexible transfer
lines, where negligible switch over costs from one model to another allow for diversified

∗Supported by NSERC (The Natural Sciences and Engineering Research Council of Canada) research
grant number 200306.

†On leave from: Central Department of Mathematics, Institute of Science and Technology, Tribhuvan
University, P.O.Box. 13143, Kathmandu, Nepal. Phone: (977) 1 4484860.

1



small-lot production avoiding production of each model in large-lots. The most important
optimization problem that has to be solved for the mixed-models, just-in-time systems is
to determine the sequence in which different models are produced. This solution impacts
the entire supply chain.

There has been growing interest in JIT systems research since Monden [32]. Miltenburg
[30] considers the problem of determining the sequence for producing different products on
the line that keeps a constant rate of usage of every part used by the line. In other words,
the quantity of each part used by the mixed-model assembly line per unit of time should be
kept as constant as possible. This allows very little variability in the usage of each part from
one time horizon to the other. Monden [32] states this as the most important goal of a JIT
production system implemented by the Toyota company. Toyota’s so-called Goal Chasing
Method, a local search heuristic, has been most popular for solving the problem. The
sequences refereed to as level, balanced or fair sequences always keep the actual production
level and the desired production level as close to each other as possible all the times. The
other production issues studied are cycle times, lead times, work-in-process and loading
[26, 30, 28, 32, 33, 17].

Multi-level production systems, where components required for different models may or
may not be distinct, make the problem more challenging than the single-level production
systems where different models require the same number and mix of components. Because
of the pull nature of the JIT systems, the production sequences at all other lower levels are
also inherently fixed as soon as the final level production sequence is fixed. That is why
the determination of the sequence of different products at final assembly level is crucial.
Miltenburg [30] provides a nonlinear integer programming formulation for the minimization
of total deviation for mixed-model JIT production systems under the assumption that the
products require approximately the same number and mix of parts. As optimal sequence
at the final assembly level would simultaneously achieve an even rate of parts usage at the
feeder production levels, this formulation can be considered as a single-level problem. An
exact exponential time algorithm and two heuristics are also presented in [30]. Miltenburg
and Goldstein [28] and Miltenburg and Sinnamon [31] extend the formulation to multi-
level assembly systems. Most of these optimization problems would require enumerative or
exponential algorithms. Miltenburg, Steiner and Yeomans [29], Yeomans [43] and Kubiak,
Steiner and Yeomans [24] present dynamic programming approaches to the multi-level prob-
lems. We refer the reader to Groeflin, Luss, Rosenwein and Wahls [14], Inman and Bulfin
[16], Ding and Cheng [9, 10], Sumichrast, Russell and Taylor [39], Sumichrast and Russell
[40] and [28, 31] for several heuristics for the problem.

Kubiak and Sethi [25, 27] reduce the minimization of total deviation JIT problem to an as-
signment problem and thereby present an efficient optimization algorithm for this problem.
The algorithm works for more general sum objective functions consisting of nonnegative con-
vex functions of deviations between cumulative average demand and cumulative production
of various models over time.

Steiner and Yeomans [37], following the optimization algorithm for the total deviation given
in [25, 27], give a graph theoretic optimization algorithm for minimizing maximum deviation
JIT single-level sequencing problem. They also give an algorithm for minimizing multi-level
maximum deviation JIT assembly systems under the pegging assumption [35]. If outputs at
production levels which feed the final assembly level are dedicated to the final product into
which they will be assembled, then the problem with pegging is equivalent to a weighted
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single-level of problem which can then be minimized by modified algorithm for un-weighted
single-level problem.

For both maximum and total deviations, there are always cyclic schedules which are optimal,
see Steiner and Yeomans [35] and Kubiak [21], which significantly reduces the computational
requirements.

Brauner and Crama [6] prove that the minimization of maximum deviation or bottleneck for
a single-level is Co-NP, but in general, the complexity of the single level problems remains
open for the binary encoding. The multi-level problem for two or more production levels is
strongly NP-hard, Kubiak [26].

Brauner and Crama [6] present an algebraic approach to the results of [37] and formulate
the small deviation conjecture. Kubiak [22] presents a geometric proof of the conjecture and
later Brauner, Jost and Kubiak [7] exploit the concept of balanced words to give another
proof of the conjecture. Kubiak [19, 20] presents properties of JIT sequences obtained
through mathematically elegant concept of balanced words. We refer the interested readers
to Vuillon [42] for a survey and the references about balanced words.

Bautista, Companys and Corominas [3], Kubiak [26] and Palli [34] present efficient algo-
rithms for maximum deviation problem based on the reduction to the bottleneck assignment
problem.

Bautista, Companys and Corominas [5] establish an interesting link between the JIT se-
quencing and the apportionment problem. An apportionment problem deals with the al-
location of seats of a legislature among the states or provinces of a nation. Balinski and
Shahidi [1] consider the JIT sequencing problem as the quota method of apportionment.

Corominas and Moreno [8] investigate relationships between the solution spaces of different
objective functions.

The plan of the paper is as follows. In Section 2, we review optimization models of JIT
sequences. In Sections 3 and 4 we survey the efficient algorithms for total-deviation and
maximum-deviation objective functions, respectively. Section 5 summarizes the balance
properties of min-max sequences. The cyclic schedules are discussed in Section 6. Section 7
relates the optimality conditions between different objective functions. Section 8 is devoted
to the study of computational complexity of the problems, heuristic solutions and a dynamic
programming approach. The final Section 9 includes conclusions with possible directions
and open questions for further research.

2 The Mathematical Programming Formulation

2.1 Multi-Level Formulation

A mixed-model multi-level assembly chain consists of a hierarchy of several distinct pro-
duction levels (for example, products ← subassemblies ← components ← raw-materials).
In these supply chains, the multiple copies of different models are produced at the final
assembly level. The assembly system also contains several other lower production levels
where subassemblies, component parts and raw materials are either fabricated or purchased
for use in the products.

Let there be L different production levels l, where l = 1, 2, . . . , L with the highest level, the
product level 1. We denote the number of different part types of level l by nl and the demand
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for part i, where i = 1, 2, . . . , nl, of level l by dil. Denoting by tilp the number of total units
of output i at level l required to produce one unit of product p, we have dil =

∑n1
p=1 tilpdp1,

the dependent demand for part i of level l determined by the final product demands dp1,
p = 1, 2, . . . , n1. Note that ti1p = 1 if i = p and 0 otherwise. Let Dl =

∑nl
i=1 dil be the total

output demand of level l. The demand ratio for part i of level l is ril = dil
Dl

and
∑nl

i=1 ril = 1
at each level l = 1, 2, . . . , L.

Under the assumption of non-preemptive schedule, a schedule is completely defined by
the sequence of product copies of the product level. A copy is said to be in stage k,
k = 1, 2, . . . , D1, if k units of product have been produced at level 1. The total horizon
will be of D1 time units and there will be k complete units of the various products p at
level 1 during the first k stages. Due to the pull nature of the JIT system along with
the fact that the lower level outputs are drawn as needed by the final product level, the
particular combination of the products produced at the product level during the first k
stages determines the necessary cumulative part production at every other level. Let xilk

be the necessary cumulative production of output i at level l during stages 1 through k
and ylk =

∑nl
i=1 xilk be the total output of level l during stages 1 through k. Clearly,

the cumulative production of level 1 through the first k stages is y1k =
∑n1

i=1 xi1k. The
required cumulative production for part i at level l, where l ≥ 2, through k stages will be
xilk =

∑n1
p=1 tilpxp1k. Finally, we could impose a weight wil because of relative importance

of balancing the schedule for part i at level l. For simplicity, we take wil = 1 for all i and
for all l.

The feasible solution region is denoted by XM = {X | X = (xp1k)n1×D1}, where the
variables satisfy the following constraints:

xilk =
n1∑

p=1

tilpxp1k i = 1, . . . , nl, l = 1, . . . , L, k = 1, . . . , D1, (1)

ylk =
nl∑

i=1

xilk l = 2, . . . , L, k = 1, . . . , D1, (2)

y1k =
n1∑

p=1

xp1k k = 1, . . . , D1, (3)

k =
n1∑

p=1

xp1k k = 1, . . . , D1, (4)

xp1k ≥ xp1(k−1) p = 1, . . . , n1, k = 1, . . . , D1, (5)
xp1D1 = dp1 , xp10 = 0 p = 1, . . . , n1, (6)

xilk ∈ N i = 1, . . . , nl, l = 1, . . . , L, k = 1, . . . , D1. (7)

In this paper, N denotes the set of all nonnegative integers. Constraint (1) ensures that the
necessary cumulative production of output i of level l by the end of stage k is determined
explicitly by the quantity of products produced at production level 1. Constraints (2) and
(3) calculate the total cumulative production of level l and 1, respectively, through stages 1
to k. Constraint (5) is to ensure that the total production of every product over k stages is
a non-decreasing function of k. Constraint (6) guarantees that the production requirements
for each product are met exactly. Constraints (4), (5) and (7) ensure that exactly one
product is scheduled for final assembly during each stage.
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Then the mixed-model, multi-level schedule problem is to select X = (xp1k)n1×D1 that
minimizes one of the following min-max/min-sum objective function(s)

GAMD(X) = max
i,l,k

|xilk − ylkril| (8)

GQMD(X) = max
i,l,k

(xilk − ylkril)2 (9)

GASD(X) =
nl∑

i=1

L∑

l=1

D∑

k=1

|xilk − ylkril| (10)

GQSD(X) =
nl∑

i=1

L∑

l=1

D∑

k=1

(xilk − ylkril)2 (11)

With this notation, the multi-level JIT sequencing problem is equivalent to

min{G(X) | X ∈ XM}, where G ∈ {GAMD, GQMD, GASD, GQSD}.

By [24], wil|xilk−ylkril| = |∑n1
p=1 γilpxp1k|, where γilp = wilδilp and δilp = tilp−ril

∑nl
h=1 thlp.

We define a matrix Γ = [γilp]n×n1 with n =
∑L

l=1 nl, where γilp representing the (
∑l−1

m=1 nm+
i)th row and pth column element. Let Xk = (x11k, . . . , xn11k)T be a vector representing the
cumulative production at level 1 through the first k stages. Then

GAMD(X) = max
k
||ΓXk||1, where ||ΓXk||1 = max

il
{wil|xilk − ylkril|}.

Here, ||ΓXk||1 represents the maximum deviation at stage k over all i and j. Notice from
the matrix representation that at any particular stage, the deviation of any part of any level
is determined by the level 1 sequence.

Likewise, sum deviation objective GQSD(X) =
∑D1

k=1(||ΩXk||2)2 with deviation matrix Ω =

[
√

wilδilp] and the Euclidean norm ||a||2 =
√∑m

i=1 a2
i of a vector a = (a1, a2, . . . , am).

The sequencing problems, maximum-deviation JIT and total-deviation JIT, are denoted
by MDJIT and SDJIT problems, respectively. The problem is one of the most fundamen-
tal problems in flexible just-in-time mixed-model production systems, referred to as JIT
sequences. In these formulations, the min-sum and min-max objectives are similar to Mil-
tenburg and Sinnamon [31], Steiner and Yeomans [35] and Kubiak, Steiner, and Yeomans
[24], respectively. Note that the min-max objectives seek to minimize the deviations for
each output at each stage, whereas the min-sum objectives are concerned for finding the
lowest possible total deviation which may result in relatively large deviation for a certain
product.

The effects of weights in single-level as well as other multi-level problems are considered in
[43, 24, 35, 29, 28, 32].

2.2 Single-Level Formulation

For i = 1, . . . , n, given n products (models) i, n positive integers (demands) di and n convex-
symmetric functions fi of a single variable, called deviation, all assuming minimum 0 at
0. The following optimization problem have been considered to model single-level system.
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Find a sequence s = s1s2 . . . sD with total demand D =
∑n

i di of products 1, . . . , i, . . . , n,
where product i occurs exactly di times that minimizes the following objective function(s)

FMD(s) = max
i,k

fi(xik − kri) (12)

FSD(s) =
n∑

i=1

D∑

k=1

fi(xik − kri) (13)

where xik represents the number of product i occurrences (copies) in the prefix s1s2 . . . sk,
k = 1, . . . , D, and ri = di

D , i = 1, . . . , n. The following two measures of deviations have been
studied in the literature.

fi(xik − rik) =

{
|xik − kri| the absolute-deviation objective,
(xik − kri)2 the squared-deviation objective.

The whole feasible solution region X = {X | X = (xik)n×D} in single-level problem is
constrained as

∑n
i=1 xi,k = k k = 1, . . . , D,

xi,k ≤ xi,k+1 i = 1, . . . , n, k = 1, . . . , D − 1,
xi,D = di , xi0 = 0 i = 1, . . . , n,
xi,k ∈ N i = 1, . . . , n, k = 1, . . . , D.

This problem is refereed to as the Product Rate Variation Problem (PRV) in the literature
Kubiak [26]. A solution of this problem always keeps the actual production level xik and
the desired production level rik as close to each other as possible all the times. A solution
s = s1s2 . . . sD of the single-level MDJIT problem for n models is called B-feasible (or B-
bounded) if maxi,k fi(xik − rik) ≤ B holds for the n ×D matrix variables X = (xik). We
denote the sets of all single-level B-feasible solutions by XB.

Note that the above formulation gives the following number-theoretic interpretation of JIT
sequencing problem: given n rational numbers ri, i = 1, 2, . . . , n, with common denominator
D, the problem is to find nD integers xik which optimally approximate the sequence (kri)
under the cardinality and monotonicity restrictions defined above (see also [6], for the
references).

A multi-level, min-max problem under the pegging assumption has been reduced to a
weighted single-level problem [12] (see also [35]). Similarly, the min-sum, multi-level prob-
lem with pegging can be reduced to a weighted single level problem considered by Yeomans
[43]. Goldstein and Miltenburg [12] were the first to provide mathematical formulation of
pegging in JIT systems (see also [35]).

Under the pegging assumption, parts of output i at level l are dedicated to the particular
product at level 1 into which they will be assembled. This assumption decomposes the lower
level parts that will be assembled into different level 1 products into disjoint sets. With
this assumption, the multi-level AMDJIT sequencing problem subject to the constraint set
XM with p = 1, . . . , n1, i = 1, . . . , nl, l = 1, . . . , L and k = 1, . . . , D1 can be formulated as

min max
p,i,l,k

{wp1|xp1k − krp1|, wiltilp|xp1k − krp1|}.

Since ti1p = 1 if i = p and 0 otherwise, the above problem is equivalent to

minmax
p,k

{vp1|xp1k − krp1|}, where vp1 = max
i,l

{wiltilp}, l = 1, . . . , L.
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By dropping the superfluous subscript 1, we obtain the following weighted single-level AMD-
JIT problem

min max
i,k

{vi|xik − kri| : X ∈ X}, i = 1, . . . n, k = 1, . . . , D. (14)

3 Efficiently Solvable SDJIT Sequencing

In this section, we study the single-level, min-sum problems with the objective defined in
(13). Unless otherwise specified, single level, min-sum problems will be denoted by SDJIT.
These results are valid for convex, symmetric, nonnegative functions which take value 0 at
0.

Let Y = {(i, j, k) : i = 1, . . . , n; j = 1, . . . , di; k = 1, . . . , D}. Define cost Ci
jk ≥ 0 for

(i, j, k) ∈ Y with respect to the ideal position Zi
j = d2j−1

2ri
e, for the j-th copy of model i as

follows

Ci
jk =





∑Zi
j−1

l=k ψi
jl if k < Zi

j ,
0 if k = Zi

j ,∑k−1
l=Zi

j
ψi

jl if k > Zi
j ,

where Zj
i uniquely solves fi(j − kri) = fi(j − 1− kri) and fi(x) = |x|,

ψi
jl =

{
fi(j − lri)− fi(j − 1− lri) if l < Zi

j ,
fi(j − 1− lri)− fi(j − lri) if l ≥ Zi

j .

A subset Y of Y is called feasible if it satisfies the following constraints

C1. For each k = 1, . . . , D, there is exactly one (i, j), i = 1, . . . , n; j = 1, . . . , di s.t.
(i, j, k) ∈ Y , i.e., exactly one copy product at each time.

C2. For each (i, j), i = 1, . . . , n; j = 1, . . . , di, there is exactly one k, k = 1, . . . , D s.t.
(i, j, k) ∈ Y , i.e., each copy is produced exactly once.

C3. If (i, j, k), (i, j′, k′) ∈ Y and k < k′, then j, j′, i.e., lower indices copies are produced
earlier.

Consider any set S of D triples (i, j, k) satisfying C1, C2, C3 and define the sequence s =
s1s2 . . . sD with sk = i if (i, j, k) ∈ S for some j = 1, . . . di corresponding to the set S. Then
the sequence s is feasible for any given instance (d1, d2, . . . dn) and following results hold,
Kubiak and Sethi [25].

Theorem 1 Let c(S) =
∑

(i,j,k) Ci
jk for any S ⊆ Y. Then,

a. For any feasible S, it holds FSD(s) = c(S) +
∑n

i=1

∑D
k=1 infj fi(j − kri).

b. If S satisfies C1 and C2, then S∗ satisfying C1, C2 and C3 with c(S) ≥ c(S∗) can be
determined in O(D) steps. Moreover, each product copies preserve the order in the
sequence s∗ as it does in the sequence s.
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As the term
∑n

i=1

∑D
k=1 infj fi(j − kri) is independent of the set S, that is constant, an

optimal solution to SDJIT would be an immediate consequence if an optimal set S is found.
But an optimal set cannot be obtained by simply solving the Assignment Problem 15 with
constraints C1 and C2 and the costs Ci

jk with (i, j, k) ∈ S, as the constraint C3 is not of
the assignment type. Notice that the latter constraint is essential as it ties up the copy j
of a product with the j-th ideal position for the product. The main idea of the proof is
to show that there exists at least one optimal sequence for the assignment problem such
that copy (i, j + 1) of product i should appear after the copy (i, j). The proof is done by
mathematical induction. With these costs the corresponding assignment problem has been
formulated as follows Kubiak and Sethi [25]:

min[F (s) =
(n,di)∑

(i,j)

D∑

k=1

Ci
jkx

i
jk] (15)

subject to the constraints

D∑

k=1

xi
jk = 1, for i = 1, . . . , n; j = 1, . . . di,

(n,di)∑

(i,j)

xi
jk = 1, for k = 1, . . . , D,

where, xi
jk =

{
1, if (i, j) is assigned at position k,
0, otherwise.

Observe that an obvious optimal solution could be obtained if sequencing all copies in their
ideal positions were possible without competition for these positions. As this is not the case
in general, we need to resolve competition to minimize the given objective. This is done
efficiently by solving the assignment problem [25, 26]. Recall that the assignment problem
with 2m nodes can be solved in O(m3) time (see [25, 26], for the references).

The approach proposed by [25, 27] for the total deviation product rate variation problem is
applicable to any lp norm with FSD = lp, and in particular to l∞-norm. In the latter case
the approach minimizes maximum deviation objective.

Consequently, solution to multi-level min-sum problem with pegging assumption could be
obtained as in Kubiak and Sethi [27].

Steiner and Yeomans [36] look at the min-sum problem as a weighted matching problem
in a complete bipartite graph G = (V,E), where weights of the edges equal penalty costs
Ci

jk. Then the problem is to find a perfect matching with the minimum sum of the weights.
An incomplete bipartite graph is defined by introducing the earliest and latest completion
times possible for a copy (i, j) of product i (see Section 4 for the definition). Moreover, a 1-
bounded solution that is optimal (if such solution exists) could be obtained in O(nD2 log D)
time, since for B ≤ 1 implies |E| ≤ (n + 2)D. A Pareto optimal solution can be found in
O(nD2 log D) time. But the existence of 1-bounded solutions optimal for min-sum problems
is not always the case (see Section 7). The following question remains open. What is
minimum B such that optimal solution for min-sum problem is B-bounded? It is known
that an upper bound on the optimal min-sum-absolute and min-sum-squared objectives is
nD though the bound is not tight [36].
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For the sake of completeness, we mention that several heuristics for single-level problem
have already been investigated in [9, 10, 12, 16, 28, 29, 30, 31, 39, 40]

4 Efficiently Solvable MDJIT Sequencing

In this and in Section 5 we study the min-max problems that are either single-level with
the objective defined in (12). Unless otherwise specified, single level absolute deviation
min-max problems will be denoted by AMDJIT.

Steiner and Yeomans [37] study AMDJIT problem reducing it to a single machine scheduling
decision problem with release times and due dates. They represent the problem as a perfect
matching problem in a V1-convex bipartite graph G = (V1 ∪ V2, E) where the set V1 =
{1, . . . , D} represents positions and the set V2 = {(i, j) | i = 1, . . . , n ; j = 1, . . . , di}
represents the copies of the products. Here, for i = 1, . . . , n and j = 1, . . . , di, the notation
(i, j) denotes the j-th copy of product model i. There exists an edge {k, (i, j)} ∈ E if and
only if k lies in the permissible interval [E(i, j), L(i, j)] ⊆ V1 of release time and due date
for the j-th copy of the product i. They prove the following result (see also Brauner and
Crama [6]).

Lemma 1 Let d1, . . . , dn be any instance of AMDJIT problem. A sequence s = s1s2 . . . sD

is B-feasible if and only if for all i = 1, . . . , n and j = 1, . . . di, this sequence assigns the
copy (i, j) to the interval [E(i, j), L(i, j)], where

E(i, j) = dj −B

ri
e and L(i, j) = bj − 1 + B

ri
+ 1c

denote the release date and the due date of the copy (i, j) for given upper bound B.

An interesting question would be to show similar closed form formula for other measure of
deviation, for instance squared deviation.

Amongst various versions of the earliest due date algorithms for scheduling unit time jobs
with release times and due dates on a single machine (see Steiner and Yeomans [37] for the
references), they apply a modified version of Glover’s [11] O(|E|) earliest due date (EDD)
algorithm for finding a maximum matching in a V1-convex bipartite graph G = (V1∪V2, E)
such that each ascending k ∈ V1 is matched to the unmatched copy (i, j) with smallest due
date value of L(i, j) as defined in Lemma 1. They conclude the following.

Theorem 2 The AMDJIT sequence s is 1-feasible if and only if the V1-convex bipartite
graph G with bound B = 1 has a perfect matching. Moreover, an optimal solution can be
determined by an exact pseudo-polynomial algorithm with complexity O(D log D).

Steiner and Yeomans [35] consider weighted AMDJIT problem and show that a binary
search finds an optimal solution for the weighted AMDJIT in O(D log(DφGmax)) time,
where φ is a positive integer constant depending upon problem data. The maximum weight
Gmax = maxi Gi gives an upper bound and LBW = mini Gi(1− ri) gives a lower bound for
the optimal objective value of the considered problem.
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Theorem 3 An optimal solution to the pegging multi-level AMDJIT can be determined by
an exact pseudo-polynomial algorithm in O(D log(DφGmax)) time.

Let B∗ be the optimal value of the AMDJIT problem. Then for any instance di, i = 1, . . . , n
of the AMDJIT problem, it holds that 1 − 1

D ≥ B∗ ≥ 1
∆i
b∆i

2 c for i = 1, . . . , n where
∆i = D

gcd(di,D) , Brauner and Crama [6]. A stronger upper bound has been obtained by
Tijdeman [41], B ≤ 1− 1

2(n−1) . Thus we have

Theorem 4 For any instance di, i = 1, . . . , n (n > 1) of the AMDJIT problem, the optimal
value B∗ satisfies the inequality B∗ ≤ 1−max{ 1

D , 1
2(n−1)}.

As D < 2(n− 1) when di = 1 for all i with n > 2, and D ≥ 2(n− 1) in most practical cases,
both possibilities have to be taken into account. Obviously, B∗ = 0 for n = 1.

An instance of the AMDJIT sequencing problem is defined as standard if gcd(d1, . . . , dn) =
1. We call the corresponding sequence standard. The small deviation conjecture states that
for n ≥ 3, a standard instance (d1, . . . , dn) of the AMDJIT problem has B∗ < 1

2 if and only
if di = 2i−1 for i = 1, . . . n, Brauner and Crama [6].

Brauner and Crama [6] prove the conjecture for n ≤ 6 and conjectured it ”true” for all
positive n. Kubiak [22] presents a geometric proof that the conjecture holds true for any
n > 2. His proof exploits a natural symmetry of regular polygons inscribed in a circle
of circumference D are described. Subsequently, Brauner, Jost and Kubiak [7] exploit the
concept of balanced words to give another proof of the conjecture (see Section 5). Thus, we
can state the following theorem.

Theorem 5 For n ≥ 3, a standard instance (d1, d2, . . . , dn) of the AMDJIT problem has
optimal value B∗ < 1

2 if and only if di = 2i−1 for i = 1, . . . , n, and B∗ = 2n−1−1
2n−1 .

This result can be restated as follows. For given rational numbers r1 ≤ r2, . . . ,≤ rn with
n ≥ 3, it holds

∑n
i [kri] = k for any integer k if and only if ri = 2i−1

2n−1 for i = 1, . . . , n. The
statement observes that |xi,k − kri| < 1

2 implies xi,k = [kri], where [x] denotes the rounding
of x to the closest integer.

The structure of instances with B ≤ 1
2 becomes more complex as xik may then be equal

either to [kri] = kri − 1
2 or to [kri] + 1 = kri + 1

2 for half-integer kri [6].

5 Balanced Words and AMDJIT Sequences

Brauner and Crama [6], Brauner, Jost and Kubiak [7], Jost [13], Kubiak [19, 22] study
the AMDJIT sequences as balanced words. One of the main problems of balanced words
in practice is to construct an infinite periodic sequence over a finite set of letters where
each letter is distributed as ”evenly” throughout the sequence as possible and each letter
occurs with a given rate. Unfortunately, the existence of balanced sequences for most rates
is unlikely.

We write an infinite word as w = a1a2 . . . such that ai ∈ A = {a1, a2, . . . , an} for all
i ∈ {1, . . . , n}. A factor of length |f | ≥ 0 of w is word such that f = aiai+1 . . . ai+|f |−1.
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We say that the index i is the position of the letter ai in the word w. The rate ri of the
letter ai in finite word w is defined as the fraction ri = |w|i

|w| where |w|i denotes the number
of occurrences of the index i in the word w. An infinite sequence w = w1w2 . . . for which
||u|i − |v|i| ≤ δ for all i with with |u| = |v| is called δ-balanced. We denote the infinite
repetition of a finite word w by w∗ = ww . . .. An infinite word s is called periodic if s = w∗

for some finite word w. A finite word w is called symmetric if w = wR where wR is a mirror
reflection of w. An infinite balanced word s is called symmetric and periodic if s = w∗ for
some finite symmetric word w.

One way of building an infinite word on finite letter alphabet A using the numbers 2j−1
2ri

=
(j−1)D

di
+ D

2di
is described in Kubiak [19]. It builds an infinite word as follows. Label the

points { (j−1)D
di

+ D
2di

, j ∈ N} by the letter i, consider ∪n
i { (j−1)D

di
+ D

2di
, j ∈ N} and

the corresponding sequence of labels. Break the tie by choosing i over i′ when i < i′ giving
higher priority to a lower index whenever a conflict needs to be resolved. Thus a word with
angle vector α = ( D

d1
, D

d2
, . . . , D

dn
) and the starting point β = ( D

2d1
, D

2d2
, . . . , D

2dn
), referred

to as an hyperbolic billard word in Vuillon [42], is obtained. Let w be an infinite word
associated with n-dimensional hypercubic billards of angle α and starting point β. Then
w is d=n-1-balanced on each letter. Moreover, the bound for the balance is always reached
Vuillon [42].

Jost [13] proves that for any finite sequence of total demand D =
∑n

i di with maximum
deviation B for n product rates di, any infinite periodic word w of period s is 1-balanced,
2-balanced or 3-balanced on each product i, if B < 1

2 , B < 3
4 and B < 1, respectively. Any

sequence with di = 1 for all i = 1, . . . , n, is a 1-balanced word though its maximum deviation
B = 1− 1

n > 1
2 for n ≥ 3, Kubiak [19]. However, the maximum deviation B is greater than

3
4 for the 2-balanced word a1a1a2a2 . . . anan with di = 2 for each i = 1, . . . , n. Likewise, the
maximum deviation B is greater than 1 for the 3-balanced word a1a1a1a2a2a2 . . . ananan

with di = 3 for each i = 1, . . . , n with n ≥ 3. Thus we have

Theorem 6 Let s be a finite sequence of length D =
∑n

i di with maximum deviation B for
n rates di, and let S

1
2 , S

3
4 and S1 be the sets of sequences with B < 1

2 , B < 3
4 or B < 1,

respectively. Then S
1
2 , S

3
4 and S1 are properly contained in the sets of 1-balance, 2-balance

and 3-balance words, respectively.

The result of Vuillon [42] shows that the priority based conflict resolution applied whenever
there is a competition for an ideal position yields d being almost the same size of the
alphabet, that is n. Theorem 6 shows that the conflict resolution provided by any algorithm
minimizing maximum deviation leads to d being constant. Thus, it is clear that the conflict
resolution provided by any algorithm minimizing maximum deviation yields a better balance
than the priority based conflict resolution applied whenever there is a competition for an
ideal position with model n ≥ 3.

Theorem 6 combined with Theorem 4 guarantees the existence of an optimal solution in
the set of all 3-balanced words. However, it is an open question whether there always exists
a 2-balanced word that optimizes AMDJIT. For n ≥ 3, the standard instance satisfies the
property of 1-balanced words Kubiak [22], Brauner, Jost and Kubiak [7]. Kubiak [22] proves
that there exists a periodic, symmetric and 1-balanced word on n ≥ 3 letters with densities
r1 ≤ r2 ≤ . . . ≤ rn, if and only if the densities satisfy ri = 2i−1

2n−1 (see Theorem 5). It is

easy to construct symmetric, periodic, 1-balanced word with densities 2i−1

2n−1 : given such a
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sequence with n ≥ 3 letters, one fixes a new letter and inserts it between every consecutive
letters of s as well as at the beginning and end of s to obtain a sequence for n + 1, letters
with required properties. The number of instances with 1-balanced property is infinite in
case of n = 2 as Brauner and Crama [6], Kubiak [22] prove that the optimal value of the
AMDJIT problem is less than 1

2 if and only if one of the demands is even and the other is
odd.

6 The Cyclic MDJIT and SDJIT Sequences

In this section, we discuss the existence of cyclic sequence that are optimal. As all existing
algorithms have time complexities depending on the magnitude of the demands d1, . . . , dn

and hence on D, the existence of cyclic schedule reduces computational time. Therefore,
the question whether the concatenation sm of m ≥ 1 copies of an optimal sequence s for
d1, d2, . . . , dn is optimal for md1,md2, . . . , mdn is important for JIT sequencing.

Miltenburg [30], Miltenburg and Sinnamon [31] observe the existence of cyclic schedules for
sum of squared deviations in single-level. The min-sum problem have such a cyclic optimal
solution if fi = f for all i, where f is convex and symmetric function with f(0) = 0, Bautista,
Companys and Corominas [4]. Kubiak and Kovalyov [23] prove that if fi(x) = f(x) for all
i with x ∈ (0, 1) for symmetric and convex function f , then the cyclic schedule for min-
sum problem is optimal. Moreover, they give a counterexample to show that the answer is
negative if at least one fi is asymmetric.

All the affirmative answers have been based on the following two observations. The first
observation is that if w = uv where u and v are sequences for the instances βd1, . . . , βdn and
γd1, . . . , γdn, respectively, where β, γ are positive integers, then FSD(w) = FSD(u)+FSD(v),
Miltenburg [30]. The second observation is that even if one relaxes the constraints x(w)iD =
di, i = 1, 2, . . . , n, then there still exists an optimal sequence w∗ such that x(w∗)iD = di,
i = 1, 2, . . . , n, Bautista, Companys and Corominas [4]. The latter conclusion does not hold
if fi are different though convex and symmetric fi having the values zeros at 0, Kubiak and
Kovalyov [23].

Kubiak [21] proves that the set of all optimal sequences for min-sum single-level problem
includes cyclic sequences for symmetric, convex and nonnegative functions. In his proof a
different exchange method is used.

Theorem 7 Given d1, . . . , dn, let s be an optimal sequence for the single-level min-sum
problem SDJIT with convex, symmetric and nonnegative fi, i = 1, . . . , n, all assuming
minimum 0 at 0. Then sm, m ≥ 1, is optimal sequence to SDJIT for md1, md2, . . . , mdn.

A similar result for single-level min-max problem MDJIT could be proved for l∞-norm.

Steiner and Yeomans [35] show that the set of optimal sequences for both weighted as well as
un-weighted single-level min-max problems for absolute deviations include cyclic sequences.

We conjecture that cyclic JIT sequences in multi-level problem are optimal.

7 Relations Between Different Objectives

Corominas and Moreno [8] prove the following.

12



Theorem 8 Let s be any sequence for single-level JIT sequencing problem. Then FASD(s)−
FQSD(s) = H0 − H(s) where the constant H0 ≥ 0 depends only on the problem instance,
and H(s) = 0 if s is an 1-bounded solution and positive otherwise.

Furthermore, the min-sum problems for absolute and squared deviations have the same set
of optimal solutions on X1, where X1 is the set of all 1-bounded solutions, [8]. Moreover,
any 1-bounded solution optimal for min-sum absolute deviation problem (if exists) is also
optimal for min-sum squared deviation problem, and hence, all optimal solutions for the
latter problem are 1-bounded [8]. If none of the min-sum optimal solution for squared
deviation is 1-bounded, then the problem for absolute deviation also does not have 1-
bounded solution.

An optimal solution to the min-sum problem with absolute deviation which is not 1-bounded
may not be optimal for the min-sum problem with squared deviation [8]. There may exist a
1-bounded optimal solution to the latter problem even though none of the optimal solution
to the former problem is 1-bounded. Moreover, either of these problems may have 1-bounded
optimal solutions [8].

Unlike the absolute deviation and squared deviation objectives for min-sum problems, the
sets of 1-bounded optimal solutions with other convex, symmetric and nonnegative functions
are not the same, Corominas and Moreno [8].

The empirical results of Kovalyov, Kubiak and Yeomans [18] refute number of conjectures
about the relationships between optimal solutions for different objective functions.

8 Complexity and Dynamic Programming

The question of the exact complexity of single-level JIT sequencing problem remains open
Kubiak [26]. As the input size of any instance (d1, . . . , dn) is O(

∑n
i=1 log di) = O(n log D),

an algorithm which is polynomial in n and D is only pseudo-polynomial but not polynomial
in the input size. The problem MDJIT is in Co-NP but it is still open if the problem is
Co-NP-Complete or polynomially solvable Brauner and Crama [6].

Kubiak [26] proves that a version of multi-level min-sum problem, referred to as Output
Rate Variation Problem, is NP -hard. The multi-level min-max problem with absolute
deviation objective is strongly NP -hard, Kubiak, Steiner and Yeomans [24].

However, Kubiak, Steiner and Yeomans [24] present following dynamic programming ap-
proach for multi-level, min-max and min-sum problems.

Let d = (d11, . . . , dn11) = (d1, . . . , dn1) be the demand vector at level 1 and let ei be
a unit vector of dimension n1 with unity in the ith row. Redefine states in a schedule
by X = (x1, . . . , xn1), where xi denotes the cumulative production of the product i with
xi ≤ di and the cardinality of a state X as |X| =

∑n1
i=1 xi. The minimum value of the

maximum deviation for all products and parts over all partial schedules which lead to state
X is defined by ψ(X). The maximum norm ||ΓX||1 represents the maximum deviation of
actual production from desired one over all products and parts in state X at stage k = |X|
(see Section 2.1 for the definition of Γ). Following dynamic programming DPAMD recursion
holds for ψ(X) [43]:

ψ(∅) = ψ(X : xi = 0, i = 1, 2, . . . , n1) = 0,
ψ(X) = min

i
{max{ψ(X− ei), ||ΓX||1} : xi ≥ 1, i = 1, 2, . . . , n1}.
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The space and time complexities of DPAMD are O(
∏n1

i=1(di + 1)) and O(nn1
∏n1

i=1(di + 1)),
respectively.

Kubiak, Steiner and Yeomans [24] give extensive experiments to problems of practical size.
They consider Toyota’s scheduling application described in Monden [32] which requires the
production of D1 = 500 products for one 8-hour production shift. Two filtering heuristics
were introduced to reduce potentially vast state space to be examined in dynamic program-
ming. They tested four level randomly generated problems with total product demands
D1 = 500 and unit weights. For a problem with n1 = 16, L = 4 and D1 = 400, time
required to implement the algorithm is 342.38 minutes, for instance. The ratio of heuristic
solution 79.857 to the optimal solution 76.136 is 1.03. Moreover, they conclude that the
solution time of a problem strongly depends on the number of different products n but only
slightly not on the range of part requirements.

The dynamic programming for multi-level min-max problem is modified for multi-level min-
sum problem [24, 43].

The minimum total squared deviation for all products and parts over all partial schedules
of X is defined by φ(X). For the amount of product produced X, let (||ΩX||2)2 denoted by
θ(X) be the squared sum of the deviations of actual production from the desired one for all
products and parts (see Section 2.1 for the definition of Ω). Then the following dynamic
programming DPQSD recursion holds for φ(X) [24, 43]:

φ(∅) = ψ(X : xi = 0, i = 1, 2, . . . , n1) = 0,
φ(X) = min

i
{φ(X− ei) + θ(X) : xi ≥ 1, i = 1, 2, . . . , n1}.

9 Concluding Remarks

In this paper we reviewed some research in JIT sequencing that has been carried out till
now. A number of outstanding and interesting questions have been explored which are still
open and challenging.

The single-level min-sum problems with any convex, symmetric, nonnegative functions
which take the value zero only at zero deviation are solvable by reduction to the assignment
problem. This approach applies to min-max problems as well.

A pseudo-polynomial binary search for a feasible B-bounded sequence obtained through per-
fect matching in bipartite graph solves the single-level min-max absolute-deviation problem.
This approach can be applied to other convex, symmetric, nonnegative functions.

Regardless of the methods, obtaining common solutions to different objective functions
would significantly save the complexity cost. However, the 1-bounded solutions obtained via
incomplete bipartite graphs does not guarantee an optimal solution for min-sum problems.
The question, what is minimum B such that optimal solution for min-sum problem is B-
bounded?, remains open.

Although most of the single-level JIT problems had been efficiently solved by pseudo-
polynomial algorithms depending on the input size of the demands, their complexity status
is not yet clear. Even the basic min-man absolute-deviation problem is Co−NP but it is
still open whether the problem is Co-NP-Complete or polynomially solvable.

The multi-level problems for two or more levels are strongly NP-hard. However, they are
efficiently solvable if either the products require approximately the same number and mix of
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parts or the pegging assumptions are imposed. Therefore, searching for special properties in
this class of problems for which efficient algorithms exist or looking for good approximation
algorithms would be an interesting direction of research in this area.

The existence of optimal schedules that are cyclic considerably reduces the computational
requirements for any type of JIT optimization problem. This problem has been resolved for
single-level problems. We conjecture that cyclic Just-in-Time sequences in multi-level are
optimal as well.

One way to deal with JIT problems is the elegant concept of balanced words. However, 1-
balanced words cannot be obtained for some rates. The set of all 3-balanced words always
contains an optimal sequence for AMDJIT. It is an open question whether there always
exists a 2-balanced word that is optimal for any given instance of AMDJIT. Characteriza-
tions of balance words to min-max squared-deviation and min-sum problems would be an
interesting problem for further research.
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