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ABSTRACT
The artificial neural network (ANN) methods are introduced

(mainly for calculation of thermal and hydraulic coefficients)
into a computer-aided design code of compact heat exchangers
(CCHE). CCHE integrates the optimization, database, and pro-
cess drawing into a software package. In the code, a strategy
is developed for the optimization of compact heat exchangers
(CHEs), which is a problem with changeable objective functions
and constraints. However, the applicability and/or accuracy of
all these methods are limited by the availability of reliable data
sets of the heat transfer coefficients ( j or Nu) and friction fac-
tors ( f ) for different finned geometries. In fact, due to expenses
and difficulties in experiments, only a limited number of exper-
iments has been carried out for some kinds of heat transfer sur-
faces. The information, therefore, is usually given by means of
correlations. It is well known, however, that the errors in the pre-
dicted results by means of correlations are much larger than the
measurement errors, being mainly due to the data reduction rep-
resented by them. This implies doubts on the optimal solutions.
Fortunately, a well-trained network is capable of correlating the
data with errors of the same order as the uncertainty of the mea-
surements. This is the main reason for the present introduction of
the ANN method to correlate the discrete experimental data sets
into continuous formulas. In this study, the ANN method is used
to formulate the complex relationship between the thermal and
hydraulic coefficients and the other parameters, including the ge-
ometry and process data. A specific case on the optimal analysis
of a plate-fin heat exchanger (PFH) is presented to show how the
all correspondence to this author. 1
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trained ANNs can be used for optimal design of heat exchang-
ers. In addition, a case is presented to illustrate how an inverse
heat transfer problem is solved by the optimization methodology
developed in the present code.

NOMENCLATURE
A Heat transfer area
b Bias
cp Specific heat
C Annual cost
CA Price of one m2 Heat transfer surface
CI Investment annual cost
CO Operation annual cost
C Annual cost
f Fanning friction factor
F Square of the temperature unevenness
G Mass flow velocity M

A
h Heat transfer coefficient
H Fin height
I Input or Index I
j Colburn factor, StPr2/3, or Subscript
kel Price of electrical energy
L Strip length
M Mass flow rate
O Output
P Fin pitch, or Pressure
Pr Prandtl number
∆P Pressure drop
Q Heat transfer rate
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Re Reynolds Number ρUD
µ

S Weighted sum
T Target vector, Temperature, or Fin thickness
Ti Inlet temperature
To Outlet temperature
U Overall heat transfer coefficient
Vt Volumetric flow rate
W Weight

Greek symbols
α∗ Amortization
η0 Overall efficiency of the heat transfer area
ηP Efficiency of the pump
τ The hours of operation per year

Subscripts
c The cold fluid side
h The hot fluid side
i,J The low-I surface of the element I,J
I,J The element I,J

INTRODUCTION
Compact heat exchangers (CHE) include plate-fin (PF) heat

exchangers and plate heat exchangers, which are characterised
by hydraulic diameters between 1 and 10 mm. They are com-
plex devices used in a wide variety of engineering applications,
e.g. automotive, aerospace, air-conditioning and refrigeration, as
well as in electronic equipment industries for single phase and
phase change duties. The complexity of these systems is due to
their geometrical configuration, the physical phenomena present
in the transfer of heat and to the large number of variables in-
volved in its operation. These and the related physical processes
increase the difficulty of solving the governing equations based
on a first-principles approach. As a consequence, experimental
information of the heat transfer coefficients and pressure drop as
functions of the variables of the system must be determined ex-
perimentally, usually by the manufacturer, and presented to the
user, i.e. the design engineer. Such information is usually given
by means of correlations. These, however, have very little phys-
ical bases and are usually created to have the simplest form that
will give the best accuracy. It is well known, however, that pre-
diction errors in the heat transfer coefficients and pressure drop
by means of correlations are much larger than the measurement
errors, being mainly due to the data compression represented by
them.

The problem of single-phase and condensing heat exchanger
predictions has been previously addressed using artificial neural
networks (ANNs) [1]. This is a technique that allows the mod-
eling of physical phenomena in complex systems without requir-
ing explicit mathematical representations. ANNs have been de-
veloped in recent years and used in many application areas, in-
2
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cluding thermal engineering [2]. Some examples are: analysis of
thermosyphon solar water heaters [3], heat transfer data analy-
sis [4], HVAC computations [5], predictions of critical heat flux
[6], predictions of aerodynamic coefficients [7], predictions of
thermal dynamic properties [8] [9].

In the present study we are interested in employing the ANN
method to the prediction of the heat transfer coefficients and
pressure drop in the optimization of plate-fin heat exchangers. To
this end, we will use typical experimental data provided from the
available literature. Firstly, the ANN approach will be applied to
the data to show its capability in the representation of the thermal
hydraulic coefficients. Secondly, the proposed technique will be
applied to the available experimental measurements to confirm
the validity of the method, and the error will be estimated. Fi-
nally, the validated ANN system is coupled to the optimization
of a plate-fin heat exchanger, and the solution of a inverse heat
transfer problem.

METHODS
Neural Network Methodology

ANN consists of large numbers of computational units con-
nected in a parallel structure. The processing units (neurones)
from each layer n are linked to all of the other processing units
appearing in layer n+ 1 by weighted connections. Collectively,
these connections (as well as the transfer functions of the pro-
cessing units) form more or less good distributed representations
of relationships between input and output data. Neural networks
do not need an explicit formulation of the mathematical or phys-
ical relationships of the handled problem. The input layer of the
network (see Fig. 1) does not perform any processing, but acts as
a means to introduce scaled data to the network. The data from
the input neurones are propagated through the network via the
interconnections. Every neurone in a layer is connected to ev-
ery neurone in adjacent layers. A scalar weight is associated to
each connection. The neurones within the hidden layer perform
two tasks: they sum the weighted inputs connected to them and
then pass the resulted summations through a non-linear activation
function to the output neurone or adjacent neurones of the corre-
sponding hidden layer (in case of more than one hidden neurone
layer). In this work, the sigmoid function: f (x) = 1/(1+ e−x) is
used in the interval (0.1, 0.9). A bias term is associated with each
interconnection in order to introduce a supplementary degree of
freedom.

The expression of the weighted sum to the kth neurone in the
jth layer ( j ≥ 2) is given by

S jk =
Nj−1

∑
i=1

(W j−1
i,k I j−1i )+b jk (1)
Copyright  2003 by ASME
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Figure 1. A feed-forward artificial neural network architecture

where I j−1i is the output from the ith neurone in the ( j−1)th

layer, b jk the bias term and N j−1 is the number of neurones in the
layer j−1.

The output of the kth neurone in the layer j ( j ≥ 2) is

Oj
k =

1

1+ exp(−S jk)
(2)

An important aspect of a neural network is the learning
step, based on a set of measured numerical values (the learning
database). Representative examples are presented to the network
so that it can integrate this knowledge within its structure. The
accuracy of model representation depends directly on the topol-
ogy of the neural network. Numerous papers have shown that a
feed-forward network is potentially able to approximate any non-
linear function. More details about neural networks are given in
Hagan et al. [10]. The learning process consists of identifying
the weights W j

i,k and b
j
k which produce the best fit of the output

data over the entire training data set. In this work, only one hid-
den layer has been considered. At the beginning of the learning
step, random values are chosen to initialize weight data. During
the learning step, the weights of the network are continuously
adjusted, based on the error signal generated by the deviation be-
tween the output data computed through the network (OL) and
the data from the database used in the training examples (tar-
get vector T ). This is accomplished by means of the learning
algorithm-the back propagation algorithm-designed to minimize
the least square total output error given by the objective function
F :

F =
1
2

NT

∑
i=1

NL

∑
k=1

(Tk(i)−OL
k (i))

2 (3)

NT is the number of training data set, NL corresponds to the
3
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Figure 2. Schematic view of a strip fin

number of outputs of the neural network, Tk represents the target
value corresponding to the kth neurone of the output layer and
OL
k the calculated value corresponding to the k

th neurone of the
output layer. The deviations between network outputs and targets
are summed over the entire data set and updating of the weights
is performed after every presentation of the complete data set.
This procedure is iterated until a converged solution is reached.

ANN Design for the Analysis of Thermal Hydraulic Data
In this work, and for both thermal and hydraulic parame-

ters, the neural models are devoted to the computation of the heat
transfer coefficients ( j) and friction factors ( f ) (output neurone),
as function of fin geometry parameters (pitch, height, thickness,
and etc.) and Reynolds number (Re) (input neurones of the in-
put layer). For example, the parameters, for a strip fin as shown
in Fig. 2, are the fin thickness (T ), fin height (H), fin pitch (P),
strip length (L), and Reynolds number (Re). One hidden layer
has been considered.

The number of nodes on the hidden layer determines a net-
works’s ability to learn the intended function from the training
data and to generalize it to new data. If a neural network has too
many hidden neurons, it will almost exactly learn, or memorize,
the training examples, but it will not perform well in recognizing
new data after the training process is complete. If a neural net-
work has too few hidden neurons, it will have insufficient mem-
ory capacity to learn a complicated function represented by the
training examples, i.e., the data will be under-fitted, as stated by
Rajkumar et al. [7]. The optimized number of hidden neurons
has been determined during the learning phase by trial and er-
ror tests. Two neural network models are elaborated for j and f
separately.

In order to improve the approximation capabilities of the
feed-forward neural networks, the availability of sufficiently
large and representative training data well distributed over the fin
parameters and Re domains, usually ensures good generalization
properties of the trained neural networks. We collected data for
training or testing purposes from the book by Kays and London
[13], for plain, strip, wavy, and louvered fins.
Copyright  2003 by ASME
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Table 1. Thermal parameters in the heat exchanger design problem.

Sizing Problem Rating Problem

UA N Y

[Mcp]h Y Y

[Mcp]c Y Y

Ti,h * Y

To,h * N

Ti,c * Y

To,c * N

Q N N

Y - Known, N - Unknown.

* - Three of these are known.

Design of Compact Heat Exchangers
Nearly all heat exchangers can be analyzed from the follow-

ing basic design equations:

Q=UA∆T (4)

Q= [Mcp(Ti−To)]h = [Mcp(To−Ti)]c (5)

where ∆T is a suitable temperature difference, depending on
heat exchanger type, flow rates, and actual temperatures. There
are eight variables in the above equations, as shown in Tab. 1. In
order to solve these equations, five of them have to be given.

In CCHE, the ε −NTU method (Kays and London [13])
is employed to solve the thermal equations. In the design of a
CHE, the data of heat transfer and friction factors are required
for various heat transfer surfaces, which made the solving pro-
cedure complex, unlike shell-and-tube heat exchangers (STHE).
In a previous study [12], these factors were calculated with data
queries from the database or empirical correlations. However, in
this work, they are feeded by the trained ANN which provides
the relation among Re, j, f , and fin geometry.

RESULTS
Validation of the Neural Network

Four type of fin geometries are studied in this work, namely,
plain, strip, louver, and wavy, where the experimental data are
4
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Table 2. Fins employed in the present study.

plain strip louver wavy

5.3 1/2-11.94(D) 1/2(a)-6.06 11.44-3/8W

6.2 1/4-15.4(D) 1/2-11.1 11.5-3/8W

9.03 1/6-12.18(D) 1/2-6.06 17.8-3/8W

10.27T 1/7-15.75(D) 1/4(b)-11.1

11.1 1/8-13.95 1/4-11.1

11.11(a) 1/8-15.2 3/16-11.1

11.94T 1/8-16.00(D) 3/4(b)-11.1

12.00T 1/8-16.12(D) 3/4-11.1

14.77 1/8-16.12(T) 3/8(a)-6.06

15.08 1/8-20.06(D) 3/8(a)-8.7

16.96T 3/8(b)-11.1

19.86 3/8-11.1

25.79T 3/8-6.06

30.33T 3/8-8.7

obtained from the book of Kays and London [13]. For the plain,
strip, and louver fins, half of the data (every second of the fins
shown in Tab. 2) are selected for the learning process, and the
left data are used for the test purpose. However, all the data for
wavy fins are employed for the learning process, because only
three kinds of wavy fins are available.

Ability to Fit the Experimental Data Figure 3 shows
the comparison between the experimental Fanning friction fac-
tors and those computed by the ANN models for a learning data
base for the plain fins. It is clear that the ANN model gives an
accurate representation of the Fanning friction factors over the
full operating conditions. Even better prediction by the ANN for
the wavy fins can be observed, as shown in Fig. 4. Similar levels
of accuracy are obtained for the other types of fins and the heat
transfer factor j, so they are not shown here.

Ability in Predicting the Thermal and Hydraulic
Data The trained ANNs for the plain fins are used to predict
the data sets which are reserved for the test purpose, and the pre-
diction errors made by ANN on the test data are shown in Fig. 5
as an error frequency distribution histogram. It is interesting to
observe that the error distribution is nearly Gaussian. The av-
erage errors, and the RMS errors of the distribution are 1.4%,
11.1% for f , and 1.5%, 5.5% for j, respectively.
Copyright  2003 by ASME
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Figure 3. Friction factor of the plain fins
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Figure 4. Friction factor of the wavy fins

Check of Over-fitting An important step in validating
the network is to check the over-fitting problem, which could
appear due to too many hidden layers or neurons. In this case,
400 input sets, which are different in Reynolds number, were
generated for the fin wavy11.44-3/8W. The test results are
shown in Fig. 6. As can be observed, there is no fluctuation or
over-fitting at all, which means the number of the hidden layer
neurons is not excessive. Similar tests are performed on the other
trained ANNs, and there is no over-fitting found.

Optimal Design of a Plate-Fin Heat Exchanger
The trained ANNs are employed in the study of the plate-fin

heat exchangers, which is an extension of the work presented in
Jia et al. [12]. The sketch of the heat exchanger core is shown
5
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Figure 6. Check of over-fitting

in Fig. 7. The thermal and hydraulic parameters of the targeted
heat exchanger is shown in Tab. 3, and more detailed specifica-
tions can be found in Jia et al. [12]. The present trained ANNs
enabled the possibility of the optimization of plate-fin heat ex-
changer based on the available experimental data set, and a de-
tailed study of the effect of the fin geometries. In this study,
the pressure drops on both side are set as optimization variables.
This was proved to be important in the previous studies.
Copyright  2003 by ASME
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Figure 7. Schematic view of a cross-flow PF core

Cost Function The annual cost, including the initial in-
vestment and operation cost, is modelled as follows:

C = CI +CO (6)

CI = CAAα∗

CO =
(
kelτ

∆pVt
ηp

)
h

+
(
kelτ

∆pVt
ηp

)
c

The annual costs of investment CI or capital costs are taken
to be proportional to the surface area A and the amortization α∗
(of say 10%/yr). The price per unit area CA depends of course
on the type of apparatus, on the material needed, and on the size

Table 3. Heat exchanger process parameters.

1st Side 2nd Side

Initial Fin Type strip1/8-16.00(D) plain19.86

Working Fluid Air Gas

Mass flow rate (kg/s) 0.8296 0.8962

Temperature, Inlet (oC) 4 240

Temperature, Outlet (oC)* 199.8 61.4

Pressure, Inlet (kPa) 110 110

Allowable pressure

drop (kPa)# 1.67 0.32

Heat duty (kW) 166.886

* One of the two outlet temperatures is known.

# Allowable pressure drops can be optimization variables.
6
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Figure 8. The variation of the objective functions with the 1st side fin

density, where both the x- and y-axes are normalized

(i.e., on the surface area A) itself. It is generally well known that
the price of equipment is not linearly increasing with its size.
Thus CI in Eq. 6 should be regarded as a linearization of a more
appropriate empirical power law (e.g., C = Const ·An), with an
exponent n less than unity.

The cost of operation CO for heat exchangers with process
fluids on both sides is taken as proportional to the pumping power
required to overcome the flow resistances in the exchanger. It
depends on the following variables: the price of electrical energy
kel , the hours of operation per year τ, the pressure drop ∆p, the
volumetric flow rate Vt , and last but not the least, the efficiency
of the pump (or fan) ηp.

The Effect of the 1st Side Fin Density Figure 8
shows the variation of the normalized core volume (L1L2L3) and
annual cost (C) with the normalized fin density, i.e., the fin num-
ber per unit length. As shown, the volume of the heat exchanger
core will decrease with the increase of the fin density. This is so
because the increase of the fin density results in a higher com-
pactness of the fin, and consequently a smaller core size. How-
ever, the increase of the fin density will increase the pressure
drop used to maintain the working fluid flow. This increase of
pressure drop definitely results in a higher annual cost, including
the capital cost and operation cost. Therefore, it is a compromise
to get the the optimal fin density, which depends on the weights
of the core volume and annual cost.

The Effect of the 1st Side Fin Height Figure 9 shows
the variation of the normalized core volume and annual cost with
the normalized fin height of the 1st side. As shown, both the
annual cost and core volume follow a similar trend with varia-
tion of the fin height. This makes the selection of the optimal
fin height straightforward, which is around 0.55. With the in-
Copyright  2003 by ASME

Use: http://www.asme.org/about-asme/terms-of-use



Down
0.4 0.6 0.8 1.0
0.7

0.8

0.9

1.0

1-strip, 2-plain

 volume

 cost

V
o
l
u
m
e
 
a
n
d
 
C
o
s
t

Height of fin1

Figure 9. The variation of the objective functions with the 1st side fin

height, where both the x- and y-axes are normalized

crease of the fin height, the friction will be lower, so that the heat
exchanger can operate at a higher Reynolds number, which re-
sults in a higher heat transfer coefficient. Consequently, less heat
transfer area, smaller size, and less cost are obtained. However, if
the fin height is further increased, the fin efficiency will decrease
fast. This is not a good feature for heat transfer. Therefore, the
cost and core size will increase again.

The Effect of the 2nd Side Fin Height Figure 10
shows the variation of the normalized core volume and annual
cost with the normalized fin height of the 2nd side. The change
of the core volume and annual cost follow different directions
with the increase of 2nd side fin height. The decrease of the core
volume is due to the friction factor decrease with increasing fin
height. Similar to the increase of the 1st side fin height, higher
Reynolds number can be employed on this side, which results in
a smaller heat transfer area, and consequently a smaller core size.
Because plain fins are used, there are no elements to breakup the
boundary layer, so that a large Reynolds number is needed in or-
der to provide sufficient heat transfer coefficients. This higher
Reynolds number requires a high pressure drop, which results in
a high operation cost.

Solution of an Inverse Heat Transfer Problem to Obtain
a Uniform Outlet Temperature

The object of this case is to obtain a uniform or close to uni-
form outlet temperature distribution for the 1st side flow. The in-
let mass flow distribution is adjusted by the optimization method
to obtain the targeted outlet temperature distribution, so that it
becomes a kind of inverse heat transfer problem. The heat ex-
changer geometry and the pressure drops are obtained from the
optimization in the last section, and the parameters are shown
in Tab. 3. In the present study, the longitudinal heat conduction
7
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through the fins, plates, and closing bars are neglected. How-
ever this effect which could be of interest in the future study. In
addition, the proposed mass flow distributions are assumed to be
achievable by proper arrangement of the headers and distributors.

The Equations to be Solved We consider the 2D prob-
lem. The heat exchanger is splitted into 50×50 units, as shown
in Fig. 11, which is idealized from Fig. 7. For each elements, like
small heat exchangers, the energy conservation equations 4 and 5
are solved, e.g., for the hatched element, the following equations
apply:

Q1
I,J = M1

J c
1
pI,J(T

1
i+1,J−T 1i,J) (7)

= UI,JAI,J(
T 2I, j+1+T 2I, j

2
− T 1i+1,J +T 1i,J

2
)

where M1
J is the mass flow rate at the Jth passage of the

1st side flow, c1pI,J is the heat capacity, UI,J is the overall heat
transfer coefficient of element I,J, and AI,J is the heat transfer
area of element I,J. The superscripts are the side numbers, and
the subscripts are the element locations.

One also has for the 2nd side:

Q2
I,J = M2

I c
2
pI,J(T

2
I, j+1−T 2I, j) (8)

= UI,JAI,J(
T 1i+1,J +T 1i,J

2
− T 2I, j+1+T 2I, j

2
)

The overall heat transfer coefficients U is calculated from
the following equation:
Copyright  2003 by ASME
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Figure 11. The control volumes for discretization

1
UA

=
1

(η0hA)h
+

1
(η0hA)c

(9)

where η0 is the fin overall efficiency, and h is the heat trans-
fer coefficient calculated as follows,

h=
jGcp
Pr2/3

(10)

where G is the mass flow velocity.
This overall heat transfer coefficientU is calculated for each

control volume, because it is not uniform for an uneven flow dis-
tribution from the heat exchanger header, i.e., G and j are differ-
ent for different passages.

By setting C1I,J
.= M1

J c
1
pI,J , C

2
I,J

.= M2
J c

2
pI,J , and CI,J

.=
UI,JAI,J , the following equations can be obtained:

(2C1I,J +CI,J)T 1i+1,J = (2C1I,J−CI,J)T 1i,J
+ CI,J(T 2I, j+1+T 2I, j) (11)

(2C2I,J +CI,J)T 2I, j+1 = (2C2I,J−CI,J)T 2I, j
+ CI,J(T 1i+1,J +T 1i,J) (12)

These are implicit equations, and can be solved by iteration
methods.
8
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Figure 13. The outlet temperature distribution of the 1st side

Obtained Temperature Distribution Figure 12 shows
the predicted temperature distribution on the 1st flow side with
the uniform mass flow distribution. The temperature distribution
at the outlet is shown in Fig. 13. As shown, the difference be-
tween the maximum and minimum outlet temperature is about
120 oC, which is far from uniform.

Optimization of the Inlet Mass Flow Distribution
In order to obtain a more uniform outlet temperature, the opti-
mization is directed to minimize the difference F between the
outlet temperature distribution and the uniform temperature dis-
tribution.
Copyright  2003 by ASME
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F =
N

∑
j=1

∣∣TM, j−T
∣∣2 (13)

where M, N are the numbers of elements in the i, and j di-
rection, respectively, and T is the average outlet temperature.

Figure 14 shows the optimized mass flow distribution. As
shown, the 1st side mass flow rate decreases with the distance
from the 2nd side inlet. Because the exchange of heat between
the 2nd side flow with 1st side flow, the temperature difference
becomes smaller. Therefore, the flow rate of the 1st side flow
should be smaller at the places further from the 2nd side flow
inlet. At the same time, the mass flow distribution of the 2nd
side flow is also uneven, because stronger flow is preferable to
keep the heat exchange ability further downstream.

Figure 15 shows the temperature distribution of the 1st side
flow. The outlet temperature distribution, which is shown in
Fig. 13, is much more uniform than for the even mass flow in-
let. The difference between the largest and smallest is about 80
oC. In this optimization, only linear distribution of mass flow in-
let is assumed, so the unevenness of the outlet temperature is still
large. Nonlinear distribution of the mass flow could also be used,
which could provide a more uniform outlet temperature.

The adjustment of the inlet mass flow distribution also re-
sults in the degradation of the heat transfer efficiency. For the
uniform mass flow inlet, the heat transfer efficiency is 0.8296.
However, only 0.716 is obtained if the uneven mass flow inlet is
applied. This is because the uneven heat transfer coefficient dis-
tribution for the uneven mass flow inlet, as shown in Fig. 16. This
is similar to the maldistribution phenomena in heat exchangers,
as studied by Ranganayakulu et al. [11].
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CONCLUSIONS
The ANN model used in the present study can accurately

predict the heat transfer and friction factors. This also enables
the detailed parameter study of compact heat exchangers.

The adopted optimization method is effective in solving the
inverse heat transfer problem. However, the resulted temperature
distribution is still not satisfactory. Nonlinear mass flow inlet dis-
tribution and/or inlet temperature distribution could be employed
in future studies.

In addition, a neural network could be constructed and
trained by the mass flow distribution and the temperature distri-
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bution of the outlet side where one wants a desired temperature
distribution. The temperature distribution is set as the input, and
the mass flow distribution is the output. After the training of the
neural network, one can give the desired temperature outlet dis-
tribution as the input, and then get the mass flow distribution as
the output. In this way, the inverse problem can be solved.
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