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A constant problem faced by the visual system is the identification of partly occluded objects within the visual scene. Recent
experiments have demonstrated that the visual system engages in a process of visual completion, where the hidden parts of objects
are filled into the visual representation. Recent experiments have also suggested that there may be a time course to this completion
process. Here, we examined the spatiotemporal properties of visual completion by having observers classify figures defined by
either luminance-defined or illusory contours and then correlating their decisions with externally added spatiotemporal visual noise.
This ‘‘response classification’’ technique allowed us to derive a spatiotemporal correlation map (a ‘‘classification movie’’) that
revealed the locations used by observers at each point in space and time during the stimulus presentation. We found that observers
gradually became more influenced by noise at locations corresponding to illusory contours across the first 175 ms of stimulus
presentation. Our results are consistent with the idea that there is a time course to the completion process on the order ofÈ175ms.
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Introduction

One of the most fundamental problems faced by the visual
system is the segregation of the visual scene into discrete
surfaces and objects. The visual system receives patterns of
light upon the retinae and must organize and segment this
information into surfaces and objects during subsequent
stages of processing. Surface and object boundaries typically
correspond to physical discontinuities produced by changes
in properties such as luminance and spectral content, and
these discontinuities can be used by the visual system to
segregate the visual scene into discrete parts. However, the
visual system is also thought to fill in boundaries where parts
of objects are either missing or obscured (e.g., Ringach &
Shapley, 1996; Sekuler & Palmer, 1992). In the case of
modal completion, the visual system is thought to inter-
polate illusory boundaries missing from an occluding sur-
face (Kanizsa, 1979; Petry & Meyer, 1987). For example,
in the outer columns of Figure 1B, most people see illusory
contours forming a thin or fat Bsquare[ obscuring the inner
quarters of four complete circles. In the case of amodal
completion, the visual system is thought to interpolate
occluded boundaries behind surfaces (Kanizsa, 1979).
Many of the earlier approaches to the study of illusory and

occluded contour formation were subjective in nature and
relied on observers to draw or describe what they saw or to
rate the intensity of perceived contours (Kanizsa, 1979).
Although these approaches are very effective in describing
an observer’s phenomenology, they also have several short-
comings. First, subjective report techniques assume that

observers are able to accurately report their percepts. How-
ever, this is often not the case (Nisbett & Wilson, 1977).
Second, subjective techniques say little or nothing about
whether observers actually use interpolated contours when
discriminating among objects. To address these issues, sev-
eral recent studies have focused on developing performance-
based measures to determine whether observers actually
rely upon occluded and illusory contours when performing
various visual discrimination tasks.
For example, Sekuler and Palmer (1992) used a primed

matching paradigm to determine whether occluded patterns
prime an incomplete or complete representation of the
stimulus. They found that when observers were asked to
report whether two complete test patterns were the same or
different, they responded Bsame[ more quickly when they
had been primed by an occluded version of the patterns
rather than an incomplete version in which the occluder had
been removed. More recently, Ringach and Shapley (1996)
used a shape discrimination task in which they rotated the
inducers (the corners) of Kanizsa squares to create Bfat[
and Bthin[ stimuli similar to those shown in Figure 1. They
varied the rotation and the distance between inducers and
found that discrimination performance was similar for
figures defined by real, illusory, or occluded contours but
was far worse for a fragmented version of the stimulus in
which all of the inducers faced in the same direction.
Both of these studies offer evidence that the completed

representations of illusory and occluded contours can affect
performance in the same ways that complete objects can.
However, in both of these experimental paradigms, proper-
ties of completed contours were inferred from their effects
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on performance or their similarity to other stimuli. Although
both support the idea that completion does occur and that
it affects processing in various visual tasks, the techniques
do not provide information about the spatial properties of
the interpolated boundaries. An additional step toward
revealing the underlying processes of visual completion is
to measure the specific locations in images defined by either
real or illusory contours that observers use to perform a task.
Gold,Murray, Bennett, and Sekuler (2000) used the response

classification technique to provide a performance-based mea-
sure of the spatial properties of the completion process. Re-
sponse classification (Ahumada, 2002; Ahumada & Lovell,
1971; Murray, Bennett, & Sekuler, 2002) typically involves
presenting one of two images that have been corrupted by ran-
dom luminance noise and having observers identify which
of the two images was presented (although response classifi-
cation can be used with many different tasks and numbers of
stimuli). When the noise is high in contrast, it will cause the
observer to make classification errors. By correlating the con-
trast of the noise at each pixel location with the observer’s
responses across many trials, it is possible to derive a cor-
relation map (called a Bclassification image[) that shows
which areas of the stimulus the observer used to perform the
task. Gold et al. adapted the fat/thin Kanizsa discrimination
task used by Ringach and Shapley (1996), using a fixed ro-
tation of the inducers but varying the contrast of the stimuli
across trials. The left and right columns of Figure 1 show
thin and fat stimuli, respectively, for two conditions of their
experiment. In the real condition (Figure 1A), thin black lines
between the inducers physically define the contours; in the
illusory condition (Figure 1B), only the inducers appear. The
center column of Figure 1 shows the classification images
(averaged over all observers and smoothed by a small convo-
lution kernel) for the real and illusory conditions obtained by
Gold et al. The dark areas in the classification images rep-
resent a negative correlation between pixel contrast at that
location and a Bthin[ response; the white areas represent a
positive correlation between pixel contrast and a thin re-
sponse (the red transparent inducers in the figure have been
superimposed as landmark references). In other words, the
classification images indicate the locations in the stimuli that
observers were using when asked to discriminate among ob-
jects defined by real or illusory contours. Figure 1 shows that

observers used the regions in between the inducers to per-
form the task in both conditions, although there was no
stimulus information present between the inducers in the il-
lusory condition. These results show that observers use areas
that correspond to perceptually filled-in regions of the stim-
ulus when discriminating among patterns. The similarity
between the classification images for illusory and luminance-
defined contours also suggests that real and interpolated
contours are treated similarly by the visual system. However,
it is worth noting that, strictly speaking, a classification image
does not necessarily reflect the properties of an observer’s
visual representation of a pattern. What it does reflect is the
spatial strategy or Btemplate[ used by an observer to recog-
nize a pattern or set of patterns. Using the properties of
classification images to make inferences about the spatial
characteristics of visual completion requires the assumption
that an observer’s template is matched to the visual repre-
sentation of the patterns they are attempting to recognize.
Despite the similarities in the effects on performance and

observers’ spatial strategies in tasks involving illusory and
luminance-defined contours, the spatiotemporal properties of
real and illusory contours may be quite different. The visual
system receives all contour information about a Breal[ object
from the moment of presentation, whereas the physical rep-
resentation of a partly occluded object that falls upon the
retina is incomplete. At some point in time, the visual sys-
tem forms a completed representation of the pattern that is
then used in object discrimination and other tasks.
Several studies have attempted to measure the temporal

properties of the completion process by using either subjec-
tive report methods or variants of the performance-based
techniques described above. For example, Reynolds (1981)
asked observers to report whether Kanizsa triangle figures
followed by a set of masks appearing at the same locations
as the inducers at various stimulus onset asynchronies (SOAs)
appeared as a complete triangle figure defined by illusory con-
tours or as a set of disconnected inducing elements. Reynolds
found that the local masking elements disrupted the perception
of illusory contours with SOAs below about 100 ms. Beyond
this SOA, observers reported seeing a completed triangle.
A performance-based variant of this kind of approach was

used by Sekuler and Palmer (1992) in a primed matching
experiment involving occluded primes but with variable
SOAs. As the duration of the priming stimulus increased,
the effects of the occluded prime became more similar to
the effects of the complete prime. At a prime duration of
400 ms, the reaction times for occluded and complete primes
were virtually identical. By tracing the progression of prim-
ing over time, they concluded that the completion process
takes between 200 and 400 ms.
Similarly, Ringach and Shapley (1996) adapted their 2AFC

Kanizsa square discrimination task by adding two types of
backward masking patterns: a Blocal[ mask to determine the
amount of time exposed to inducers that is needed to begin
the completion process and a Bglobal[mask to determine the
amount of time needed to form a completed representation.
By varying the duration of exposure to inducers before a

Figure 1. Examples of fat and thin Kanizsa square stimuli (outer
columns) and average classification image results (center column)
for the real and illusory conditions described in Gold et al. (2000).
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local mask appeared over the inducers, they found that
È117 ms is needed to elicit the interpolation process and
affect discrimination performance. To interrupt further
completion of the figure, they presented a later global mask
at varying times after the local mask. They found that
performance improved when the delay between the local
and global masks was È140Y200 ms. From these results,
they proposed that the completion process consists of two
phases: an initial local feature detection stage that lasts
È117 ms and a second global feature integration stage that
lasts an additional È140Y200 ms.
More recently, in an experiment designed to measure the

effects of motion on the time course of visual completion,
Murray, Sekuler, and Bennett (2001) asked observers to
determine whether a complete, occluded, or fragmented
rotating rectangle was longer vertically or horizontally.
VerticalYhorizontal discrimination performance was mea-
sured for a range of stimulus durations, and they found that
discrimination performance for the occluded stimuli matched
performance for the complete stimuli beyond È75 ms, sug-
gesting that observers requiredÈ75 ms to form a completed
representation of the occluded stimulus.
Each of these studies provides estimates of the time course

of visual completion inferred by interrupting processing at
various points in time and then comparing the effects on
performance to the effects of Bcomplete[ stimuli. These
techniques offer valuable assessments of the time required for
visual completion to affect performance in visual dis-
crimination tasks. But what are the spatial characteristics of
the interpolated contours over the time it takes to generate
a completed internal representation that then affects perfor-
mance? The specific relationship between these two aspects
of the completion process remains unclear. To measure this
relationship, both spatial and temporal properties of interpo-
lated contours would need to be simultaneously examined.
The purpose of this study was to use the response classi-

fication technique to obtain a more comprehensive measure
of the spatiotemporal properties of visual completion. By
using noise that varies not only over space but over time as
well (dynamic noise), a classification image Bmovie[ that
reveals the locations that observers use to perform the task at
each point in space and time can be created, that is, a spatio-
temporal classification image (Neri & Heeger, 2002; Xing &
Ahumada, 2002). If there is a time course to visual comple-
tion, we would expect to see an increase in the use of the
locations that correspond to interpolated contours over time.
Moreover, the classification movies would allow us to ob-
serve the spatiotemporal dynamics of the completion process.

Methods

Observers

Two men and one woman served as observers in the ex-
periment. Their ages were 28, 31, and 27, respectively. One

of the men (M.S.) was new to psychophysical tasks, whereas
the other two participants were experienced psychophysical
observers. Both male observers were naive as to the pur-
poses of the experiment. The third observer was an author
and was thus aware of the experimental hypotheses. All ob-
servers had corrected-to-normal vision.

Apparatus

Stimuli were displayed on a Sony Trinitron Multiscan
G520 CRT monitor that displayed 1024 � 768 pixels at a
frame rate of 85 Hz. The display subtended a visual angle of
20.93 � 15.91 deg from the viewing distance of 100 cm.
Luminance calibration was performed with a Minolta
LS-100 photometer, and a 1779 element lookup table was
generated from the calibration data to linearize the CRT
(Tyler, Chan, Liu, McBride, & Kontsevich, 1992). The
luminance values from this lookup table were used in
constructing the stimuli on each trial. Display luminance
ranged between 0.92 and 145.14 cd/m2; average (back-
ground) luminance was defined as 49.64 cd/m2. MATLAB
(version 5.2.1) and the Psychophysics Toolbox (Brainard,
1997) were used to generate the stimuli and control the
experiment.

Stimuli

Fat and thin Kanizsa figures (the Bsignals[) were produced
by rotating the corners of Kanizsa squares by T1.75 deg (see
outer columns of Figure 1). Each inducer spanned a radius
of 0.34 deg of visual angle and the center of each was
1.36 deg from the center of adjacent inducers, giving a
support ratio (the ratio of the diameter of a single inducer to
the distance between the center of adjacent inducers) of
0.25. Signals were negative in contrast (i.e., darker than the
background) on a uniform gray background (49 cd/m2). In
the illusory condition, only the inducers appeared; in the
real condition, a thin black line connected the inducers. On
each trial, 43 unique frames of high-contrast Gaussian white
noise (2 = 0, A = 25% contrast) were generated. Each noise
field subtended 2.13 � 2.13 deg (100 � 100 pixels), which
covered the entire area of the signal.

Procedure

All sessions were conducted in a dark room. Viewing
distance was stabilized with a chinrest. Each trial began
with 1 s of fixation on a 2 � 2 pixel central fixation point.
Next, a fat or thin Kanizsa square appeared in the center
of the screen embedded in 43 successive frames of noise
(approximately 12 ms/frame for a total of 508 ms). The
final frame was followed by a 36-ms blank screen, af-
ter which high-contrast, noise-free versions of both pos-
sible signals and their corresponding keypress responses
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appeared above and below fixation. This selection screen
remained visible until the observer made a keypress
response, after which the next trial automatically began.
Auditory feedback was given after each trial in the form
of a high (correct) or low (incorrect) beep. Signal contrast
was varied across trials according to a staircase procedure
to maintain approximately constant performance through-
out the experiment (for details, see Threshold estimation
section). The sequence of noise fields generated for each
trial was saved for later analysis.
Each observer completed approximately 1,000 trials over

the course of a 1-hr session. Observers completed between
one and three sessions per day. The mean number of days
each observer took to complete a condition was 26 days. A
blocked design was used (i.e., observers participated in
only one conditionwithin a given session, and all sessions for
a given condition were completed before switching to a
new condition). Observers C.B. and M.S. completed the il-
lusory condition before the real condition; E.S. completed
the real before the illusory condition. Observers E.S. and
M.S. completed 30,000 trials in each condition. C.B. com-
pleted 50,000 trials in the illusory condition and 30,000
trials in the real condition. Only the first 30,000 trials
from the illusory condition are included in these analyses
for purposes of comparison with the other observers and
conditions.

Threshold estimation

A two-down, one-up adaptive staircase procedure was
used to vary the signal contrast across trials. The staircase
shifted through a series of logarithmically spaced signal
contrast levels according to the observer’s response accu-
racy. A Weibull function was fit to the data to estimate the
contrast level that yielded 71% correct performance. Boot-
strap simulations (Efron & Tibshirani, 1993) were used to
produce confidence intervals for the threshold estimates
(500 simulated experiments per threshold).

Ideal observer

For the task and stimuli used in this experiment, the ideal
decision rule is to compare both of the noise-free signals with
the noisy stimuli in each frame of a given trial and choose
the signal that yields the higher overall cross-correlation
(Green & Swets, 1966; Tjan, Braje, Legge, & Kersten,
1995). As the ideal observer is only constrained by the phys-
ical availability of information, a comparison of human to
ideal performance gives a measure of the proportion of the
information used by a human observer. A human observer’s
efficiency is the ratio of ideal to human contrast energy
threshold, where contrast energy is the squared contrast in-
tegrated across the signal over space and time (Pelli, 1990;
Tjan et al., 1995).

Ideal observer performance in the fat/thin Kanizsa task
was estimated through Monte Carlo simulations (5,000 trials
per condition). The ideal observer thresholds were calculated
as described above for the human observers.

Results and discussion

Performance

Contrast energy thresholds and efficiencies (ideal/human
energy thresholds) are plotted for each observer in each
condition in Figure 2. For all observers, thresholds were

Figure 2. Thresholds (top panel) and efficiencies (bottom panel) for
the fat/thin discrimination tasks in which the externally added noise
was temporally dynamic. Error bars correspond to T2 SE.
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lowest in the real condition. However, efficiencies were
actually greatest in the illusory condition. This surprising
reversal between the real and illusory conditions nicely
illustrates how comparing human to ideal performance
unconfounds physical constraints on performance from
psychological inefficiencies. One possible explanation as
to why efficiencies were greater in the illusory than the real
condition is that observers may have been using templates
that were better matched to the signal in the locations where
the signal was present in the illusory than the real condition.
This possibility is addressed with the classification image
analyses below. However, a second possible process that
could explain the pattern of relative efficiencies across
conditions is that there was greater temporal summation in
the illusory condition than the real condition. With dynamic
Gaussian noise, averaging across N frames (samples) of
noise will reduce the expected variance of the averaged
noise by a factor of N. Thus, temporal averaging in this task
would effectively increase the signal-to-noise ratio, reduc-
ing the signal contrast necessary to obtain threshold
performance. If the visual system integrates information
across longer periods when identifying patterns defined by
illusory contours, it would serve to boost efficiency in the
illusory condition.
To test whether part of the difference in efficiencies across

conditions was due to greater temporal summation in the
illusory condition, we measured efficiencies for the same
stimuli but in static rather than dynamic noise. All
procedures and stimuli remained identical to those described
in the main experiment, with the exception that one frame of
noise (instead of 43 frames) remained on the screen for the
duration of each trial. The same three observers completed
500 trials in each condition. If it is the case that there is
greater temporal summation in the illusory condition, we
would expect observers to benefit more from dynamic noise
in the illusory condition than in the real condition. That is, the
relative difference in thresholds between static and dynamic
noise would be greater in the illusory condition than in the
real condition.
The resulting contrast energy thresholds and efficiencies in

static noise are plotted for each observer in each condition in
Figure 3. The corresponding ratios of static to dynamic
contrast energy thresholds are shown in Figure 4. All ratios
are above unity because thresholds were higher with static
noise in all conditions, indicating a general improvement in
performance with dynamic noise. However, for all observ-
ers, the threshold ratio is larger for the illusory condition
than for the real condition, indicating that observers did in
fact benefit more from dynamic noise in the illusory
condition.
These data suggest that temporal summation was greater

for stimuli defined by illusory contours. One possible ex-
planation for this is that the visual system integrates infor-
mation over the initial completion period in the illusory
condition but halts this summation process earlier when dis-
criminating among objects defined by luminance contours,
which offer more information from the point of stimulus

onset. Further experiments are necessary to examine more
closely the idea that the visual system integrates informa-
tion across longer periods when identifying patterns defined
by illusory contours.

Classification images

For each observer, the noise fields shown during the
experiment were classified, averaged, and combined across
trials according to the combination of signal and response on
each trial to make a classification movie for each condition.

Figure 3. Thresholds (top panel) and efficiencies (bottom panel) for
the fat/thin discrimination tasks in which the externally added noise
was temporally static. Error bars correspond to T2 SE.
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Specifically, for each trial, all 43 noise fields were classified
according to the identity of the signal (Sthin or Sfat) and the
response (Rthin or Rfat) made by the observer on that trial.
The noise fields at each frame within each stimulusY

response bin were then averaged and combined according
to Equation 1:

C¼ðSthin Rthin þ Sfat RthinÞjðSthin Rfat þ Sfat RfatÞ: ð1Þ

The resulting classification movie shows how the correla-
tion between pixel contrast at each stimulus location and the
observer’s responses changed over the course of the 43
stimulus frames. If there is a time course for visual com-
pletion, we would expect to see features gradually emerge
between the inducers in the illusory condition over time.
The classification movies in the real condition serve as a
control to test the possibility that any gradual changes seen
in the illusory condition simply reflect the time course of
normal visual information processing between the inducers.
Figure 5 is a QuickTime movie that summarizes the

results of the response classification analysis for all three
observers in both the illusory and real conditions. When the
QuickTime movie is played, each panel shows an individ-
ual observer’s spatiotemporal classification movie for a
particular condition (indicated in the lower left corner
below each panel). Each frame in the QuickTime movie
advances through the spatiotemporal classification movies
by È12 ms (indicated in the lower right corner below each
panel). For the purposes of visualization, the classification
movies have been smoothed over space and time by a

Figure 4. The ratio of static/dynamic thresholds for the fat/thin
discrimination tasks. Error bars correspond to T2 SE.

Figure 5. Classification movies for each observer in each condition. Click on the image to view the movies. Each panel corresponds to a single
observer’s spatiotemporal classification image for a particular condition (indicated in the bottom left corner of each panel). The bottom right
corner of each panel shows the corresponding number of milliseconds that have passed during the stimulus presentation. Eachmovie has been
convolved with a 5 � 5 � 5 spatiotemporal convolution kernel, and red inducers have been superimposed as signal landmarks.
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linearly ramped 5 � 5 � 5 pixel spatiotemporal convolution
kernel. The brightness of each pixel in the classification
movies represents the correlation between the noise contrast
at that location in space and time and the observer’s re-
sponses across trials. Specifically, the dark areas in the
classification movies indicate a negative correlation be-
tween pixel contrast at that location and the observer’s thin
responses, and the white areas indicate a positive correla-
tion between pixel contrast and the observer’s thin re-
sponses. Unrotated red inducers have been superimposed
on the classification movies to provide a reference to the
general position where the signals appeared within the
noise.
The classification movies shown in Figure 5 share several

features with the images obtained with static noise by Gold
et al. (2000) (see Figure 1). Most notably, with the excep-
tion of one observer (M.S.), contours appear in the space
between adjacent inducers in the illusory as well as the real
condition (although not at all points in time, as discussed
below). Recall that there is no information about the signal
in the areas between the inducers in the illusory condition,
yet we see contours in these regions of the classification
images, indicating that noise in these locations affected
observers’ responses. There are also similarities in observer
strategies between the two studies, as indicated by the ten-
dency of observers to rely on the vertical sides of the figure
in both conditions.
Of greater interest here, though, are the temporal changes

that can be seen in the classification movies. Although one
observer (M.S.) did not show any influence of noise in the
regions between the inducers during the entire stimulus du-
ration (discussed in more detail below), the remaining two
observers (C.B. and E.S.) showed a gradual increase over
time in the influence of noise in the vertical regions be-
tween the inducers in the illusory condition. This gradual
change takes place over the course of the first È200 ms, a
time period that is similar to the time course estimated by
Ringach and Shapley (1996) using backward masking in a
nearly identical task. In contrast, there is a far less gradual
change in the influence of noise in the vertical regions be-
tween the inducers in the real condition during this time
period for both of these observers.
We quantified the effect of time on the use of the spatial

locations between the inducers for these two observers by
measuring the cross-correlation between each frame of each
classification movie and the parts of the template used by an
ideal observer in the real condition that fall between the
inducers. If observers made increasing use of the regions
between the inducers over time, the correlation with the ideal
template in these locations from the real condition should
also increase accordingly.
For our task, the ideal template is simply the difference

image produced by point-by-point subtracting the thin from
the fat noise-free images. It can be shown that this difference
image is also what would be produced by computing a
classification image for a noiseless observer using an ideal
decision rule after an infinite number of trials (Gold, Sekuler,

&Bennett, 2004). We multiplied this template by a masking
cross pattern that preserved the values of the template
between the inducers and set the remaining pixels to zero
contrast. We then blurred the masked template with the
same kernel used to smooth the human classification images
to make the human and ideal templates comparable. The
resulting template is shown in Figure 6. Finally, this tem-
plate was cross-correlated (i.e., point-by-point multiplied and
summed) with each frame of the real and the illusory
smoothed classification movies for observers C.B. and E.S.
The results of this cross-correlation analysis are shown in

Figure 7. The top panel of Figure 7 shows the results for
observer C.B., and the bottom panel shows the results for
observer E.S. Each graph plots the cross-correlation be-
tween the ideal template and the human classification
movie as a function of time. The real condition is shown
in the filled symbols and the illusory condition is shown in
the open symbols. The error bars on each symbol cor-
respond to T2 SE, estimated through bootstrap simulations
(Efron & Tibshirani, 1993). Specifically, a series of 30,000
trial experiments were simulated for each observer’s clas-
sification movie in each condition by randomly sampling
(with replacement) from the trials used to generate each
classification movie. Because of the large amount of time
necessary to run these simulations, only 50 simulated ex-
periments were conducted for each classification movie
(this took approximately 12 days to complete running on
four G4 PowerMac computers simultaneously). According
to Efron and Tibshirani (1993), 50 simulated experiments
are a sufficient number to obtain a reasonable estimate of
standard error through bootstrapping methods.
These data show that there was a gradual increase in

correlation for both observers in both conditions during the
initial period of the stimulus presentation. However, both
observers show a more gradual increase in correlation to an
initial peak for the illusory condition. For both observers, the
initial increase in correlation in the real condition peaked

Figure 6. Illustration of the template used in the cross-correlation
analysis (see text for details).
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at È129 ms (indicated by the black triangle marker in each
figure), whereas the initial increase in correlation for the
illusory condition peaked later at È176 ms (indicated by the
gray triangle marker in each figure). Although these results
are consistent with the idea that observers were increasingly
influenced by the regions in between the inducers in the
illusory condition during the first È176 ms of the stimulus
presentation, it is worth pointing out that similar results
could also be obtained with a kind of process that does not
involve a gradual change in visual processing over time.
For example, a process that involves only the use of frames
beyond È129 ms but was subject to a large amount of
nonuniformly distributed (e.g., Gaussian) temporal uncer-
tainty would predict a gradual increase in the influence of

noise during the first part of the classification movie.
However, this kind of model would also be forced to claim
that real and illusory contours are subject to different
amounts of temporal uncertainty. This is because (a) the
increase in the influence of noise between the inducers is
more rapid and reaches ceiling earlier in the real than the
illusory condition, and (b) both observers made use of the
regions corresponding to the physical edges of the induc-
ing elements in the illusory condition earlier in time than
the regions corresponding to the locations of the illusory
contours.
Although two of the observers showed the above pattern of

results, the third observer (M.S.) appears to have adopted a
very different strategy in this task. First, this observer used
the horizontal edges of the top two inducers to perform the
task, a strategy no other observer has adopted in this task
when measured with the response classification technique.
Second, this observer used only the physically defined edges
of the inducers and not the regions in between the inducers to
perform the task, thus showing no evidence of engaging in
visual completion. Although it is not clear why this observer
adopted a different strategy, the pattern of results may be
consistent with recent work by Pillow and Rubin (2002).
They argue that the preferential use of vertical contours
exhibited by most observers is related to the fact that each
vertical illusory contour in a centrally fixated Kanizsa
square is processed by a single hemisphere of the brain,
whereas each horizontal illusory contour is processed by
both hemispheres of the brain. Pillow and Rubin hypothe-
size that difference in hemispheric processing results in
stronger interpolation for vertical than horizontal contours
because the completion process recruits only a single
hemisphere to join vertical points of occlusion but must
coordinate the activity between two hemispheres to join
horizontal points of occlusion. Such an account would
predict that an observer who used the horizontal edges of
the occluders to perform the task would exhibit weaker in-
terpolation and thus make less use of the horizontal regions
in between the inducers. This is in fact what we see with
observer M.S. However, this observer also makes little or
no use of the regions in between inducers in the real con-
dition, a result that is inconsistent with Pillow and Rubin’s
finding that real contour discrimination is not compromised
by cross-hemispheric processing. Thus, it remains unclear
whether the lack of evidence for interpolation exhibited by
observer M.S. in the illusory condition is due to a process
associated with visual completion.
Finally, it is worth noting that the regions between the

inducers in C.B. and E.S.’s classification movies in the
illusory condition appear to fade in relatively uniformly
across the regions in between the inducers during the first
È176 ms of the stimulus presentation. This result is con-
sistent with a completion process that does not slowly prop-
agate across space from the points of occlusion but rather fills
in uniformly across the regions of interpolation. Of course, it
still remains a possibility that our measures were simply too
temporally coarse to reveal a highly rapid initial filling-in

Figure 7. The results of the cross-correlation analysis for observers
C.B. (top panel) and E.S. (bottom panel) in the fat/thin discrimination
tasks. Each point corresponds to the correlation between the
template shown in Figure 6 and each successive frame in the
smoothed classification movies depicted in Figure 5. Error bars
correspond to T2 SE.
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process that involves propagation from the points of oc-
clusion. Such a process would likely be difficult to measure
using the response classification technique, as it has been
shown that internal noise greatly reduces the signal-to-noise
ratio in classification movies at high temporal frequencies
(Xing & Ahumada, 2002). However, at the very least, our
results are inconsistent with the existence of a slowly prop-
agating interpolation process.

Conclusions

In the experiments described above, we measured spatio-
temporal classification images for discriminating stimuli
defined by either luminance-defined or perceptually interpo-
lated contours. We found that the locations corresponding to
perceptually filled-in contours had increasingly greater
influence on observers’ decisions over time, and that this
process was more gradual than for luminance-defined
contours. These results are consistent with the idea that the
gradual changes between the inducers in the presence of
perceptually filled-in contours do not simply reflect the time
course of normal information acquisition but rather might
reflect a time course associated with the completion process
itself. Based on the temporal changes observed in the
classification movies, we estimate the completion process
to be on the order ofÈ176ms in duration. An interesting and
important question for future research is how dependent this
estimate is on the particular properties of the stimuli (e.g.,
distance between inducers, amount of curvature in the
interpolated contours, etc.).
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