
Specifications for decidable hybrid games

Vladimeros Vladimerou1,, Pavithra Prabhakar2,, Mahesh Viswanathan2,,
Geir Dullerud3,

University of Lund, LTH

University of Illinois at Urbana-Champaign

Abstract

We introduce STORMED hybrid games (SHG), a generalization of STORMED
Hybrid Systems [33], which have natural specifications that allow rich contin-
uous dynamics and various decidable properties. We solve the control prob-
lem for SHG using a reduction to bisimulation on finite game graphs. This
generalizes to a greater family of games, which includes o-minimal hybrid
games [6]. We also solve the optimal-cost reachability problem for Weighted
SHG and prove decidability of WCTL for Weighted STORMED hybrid sys-
tems.

Keywords: Hybrid systems, hybrid games, Weighted CTL, control,
verification.

1. Introduction

Designing reliable open systems requires solving the control problem wherein,
given a system M and a requirement ψ, one wants to know if the behav-
iors of M can be “controlled” so as to satisfy ψ. Such a control problem
is most naturally formalized as a game between a controller and a plant
with actions/transitions being partitioned into controllable actions, i.e. the
controller’s choices, and uncontrollable actions, i.e. the moves of the plant,

Email addresses: vladimer@control.lth.se (Vladimeros Vladimerou),
ppbrabha2@illinois.edu (Pavithra Prabhakar), vmahesh@illinois.edu (Mahesh
Viswanathan), dullerud@illinois.edu (Geir Dullerud)

1Department of Automatic Control, Lund University
2Computer Science Department, UIUC
3Mechanical Science and Engineering Department, UIUC

Preprint submitted to Theoretical Computer Science January 5, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357401337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

noise, or the environment. The controller synthesis problem is to design a
strategy for the controller that ensures that the correctness requirements are
met, no matter what the adversarial choices are, while (possibly) meeting
certain cost constraints.

In the context of embedded systems, hybrid games [17, 6, 7] have been
studied with a view to designing hybrid controllers for systems. Such games
are defined using hybrid automata, which have finitely many discrete states
and continuous variables that evolve with time, and whose discrete transi-
tions have been partitioned into those that are controllable and those that
are not. In the version that we consider here, at each step of the game, the
controller (and the environment) has two choices: either to let time pass for
t time units or to take a controllable (or uncontrollable) transition. If both
the controller and the environment pick time, then the system evolves con-
tinuously for the shorter of the two durations. If exactly one of them picks
a discrete transition, then the discrete transition chosen is taken and finally,
in the case when both pick a discrete transitions, the controller’s choice is
respected. For other versions of hybrid games considered in the literature see
Related Work below.

Our results apply to the STORMED specifications [33], and hybrid games
which satisfy these are conveniently called STORMED hybrid games (SHG),
as well as, in part, to o-minimal hybrid games. These specifications require
invariants, guards, resets, and flows to be described in an order-minimal (or
o-minimal) theory, and whose resets and flows satisfy certain monotonic-
ity constraints that are found in many real world applications [33]. When
compared to previously studied classes of hybrid games, STORMED hy-
brid games allow for richer continuous dynamics than rectangular hybrid
games [17] and timed games [3, 4], and at the same time admit a stronger cou-
pling between the continuous and discrete state components than o-minimal
hybrid games [6]. For an example see section 5.

We consider both weighted and unweighted versions of these games. In
the unweighted case, we show that for regular winning objectives, the con-
troller synthesis problem is decidable, provided the o-minimal theory used
to describe the STORMED game is decidable. Our main technical observa-
tion shows that under special acyclicity conditions, bisimulation equivalence
on the time-abstract transition system defined by the STORMED game pre-
serves winning (and losing) states; here, the time-abstract transition system
is the labelled transition system semantics of the STORMED game that ig-
nores the distinction between controllable and uncontrollable transitions and

2

abstracts the time when continuous transitions are taken. We show that both
STORMED systems and o-minimal systems meet this technical acyclicity
condition. Further the observations that the time-abstract transition system
for a STORMED automaton has a finite bisimulation quotient [33] (which is
effectively constructable when the underlying o-minimal theory is decidable)
and the fact that finite games with regular objectives are decidable [25], allow
us to conclude the decidability of STORMED hybrid games. We note that
o-minimal systems also have finite time-abstract bisimulation quotients, and
this gives an alternate proof of decidability of o-minimal games [6].

We also examine weighted versions of SHG, where there is a price on
each of the game choices, and the goal is to design optimal (cost) winning
strategies for the controller. We show that weighted STORMED games with
reachability objectives are decidable (and the controller synthesizable) when
the underlying o-minimal theory is decidable. In the games considered here,
we avoid zeno plays, that is, the behaviors in which the environment (or
controller) can simply pick shorter and shorter time steps, and thereby starve
her opponent, by excluding such behaviors in the winning conditions. We
observe that when considering non-zeno plays if there is a winning strategy λ
for the controller then there is a winning strategy in which the controller does
not choose a time step if in the previous step the controller chose a time step
shorter than the environment. Based on this technical lemma, we conclude
that for non-zeno reachability games, we need to only consider bounded
strategies (i.e., those for which every play consistent with the strategy has
bounded number of steps); and therefore we can not only compute the cost
of the optimal strategy but also synthesize it.

Finally, we consider the problem of model checking WCTL properties
for weighted STORMED systems. WCTL is a branching-time logic that
allows for one to reason about the accumulated costs along computations
in addition to regular properties. Once again we show the decidability of
the WCTL model checking problem for hybrid systems with the STORMED
specifications. Our result here relies on reducing WCTL model checking to
CTL model checking on STORMED systems, which was previously shown
to be decidable in [33].

Related Work. Work on controller synthesis for real-time and hybrid systems
has seen a lot of effort since [3] and [21]. Broadly speaking one assumes that
the controller can examine the state at various times, and can influence the
discrete steps that are taken. Other than [30], most papers typically assume

3

that the controller cannot influence the way the plant evolves continuously.
Assuming that the controller can observe the state at certain discrete time
instants, it has been shown that the controller synthesis problem is decidable
for rectangular hybrid automata [18]. In the dense time setting, there are
different formulations of the controller synthesis problem. Assuming that
the controller can only enable or disable transition (and not influence when
they are taken), it has been shown that the synthesis problem is undecid-
able for rectangular hybrid automata but decidable for initialized rectangular
hybrid automata [17]. When the controller chooses both the transition as
well as when it is taken, the problem is known to be decidable for timed au-
tomata [21], and o-minimal hybrid automata [6]4, but undecidable for initial-
ized rectangular automata [19]. We extend these observations to STORMED
systems. Symbolic algorithms for the controller synthesis problem first ap-
peared in [13]. The controller synthesis problem has also been considered for
dynamical systems (those with one discrete state) [14, 27] where dynamical
systems is first discretized, and also for switched systems, where the environ-
ment has limited power [22]. General categorical conditions on the controller
synthesis problem are identified in [16, 26].

With dense time, zeno behavior is sometimes a complicating issue for
switching dynamics [12]. It is either avoided by imposing syntactic con-
straints on the game graph [3, 4], restricting the kind of game moves al-
lowed [6, 7], or by semantic constraints imposed on the winning condi-
tion [13, 10]. Here we take the approach of avoiding zeno behavior through
the winning conditions.

To model resource consumption, weights/prices were added to timed sys-
tems, and weighted timed games have been examined since [2, 5]. However,
synthesis of the optimal cost controller for reachability is undecidable for
timed automata [9], but decidable for o-minimal hybrid systems [7] with de-
cidable underlying theories. Model checking timed automata against WCTL
properties has been shown to be undecidable [9] but decidable for o-minimal
systems [7] with decidable underlying theories. Here we show that optimal
reachability and WCTL model checking are decidable for STORMED games.

A partial summary of our results has appeared in [34].

4defined on decidable theories

4

2. Preliminaries

Equivalence Relations and Partitions. A binary relation R on a set A is a
subset of A×A. We will say aRb to denote (a, b) ∈ R. An equivalence relation
on a set A is a binary relation R that is reflexive, symmetric and transitive.
An equivalence relation partitions the set A into equivalence classes : [a]R =
{b ∈ A |aRb}. Let ΠR denote the set of equivalence classes of R. A partition
Π of the set A defines a natural equivalence relation ≡Π, where a ≡Π b iff
a and b belong to the same partition in Π. In this paper, we will use the
partition Π to mean both the partition, as well as the equivalence relation
associated with it. Finally, we will say an equivalence relation R1 refines
another equivalence relation R2 iff R1 ⊆ R2.

First Order Logic. In this paper we will consider first order vocabularies
consisting of only relation symbols and constant symbols; we will call A to
be a τ -structure if it is a structure over the vocabulary τ . Recall that a k-ary
relation S ⊆ Ak, where A is the domain of A, is said to be definable in the
structure A if there is a formula ϕ(x1, x2, . . . xk), with free variables x1, . . . xk,
such that S = {(a1, . . . , ak) | A |= ϕ[xi 7→ ai]

k
i=1}. A k-ary function f will be

said to be definable if its graph, i.e., the set of all (x1, . . . , xk, f(x1, . . . xk)),
is definable. A theory Th(A) of a structure A is the set of all sentences that
hold in A. Th(A) is said to be decidable if there is an effective procedure
to decide membership in the set Th(A). One consequence of this is that it
is also decidable to check the emptiness of a definable relation, and whether
two definable relations are equal.

O-minimality. A binary relation ≤ on a set A is said to be a total ordering
if it is reflexive, transitive, antisymmetric ((a ≤ b ∧ b ≤ a) ⇒ a = b), and
total (a ≤ b∨ b ≤ a). The set A is said to be totally ordered if there exists a
total order on it. Given a total order ≤, < is the relation such that a < b iff
a ≤ b and a 6= b. An interval is a set defined in a totally ordered set using one
or two bounds as follows: {x : a ∼1 x ∼2 b}, {x : x ∼ a}, and {x : a ∼ x},
where ∼,∼1,∼2∈ {≤, <}. Trivially, {x : a ≤ x ≤ b} with a = b, is an
interval consisting of a single point. We write A = (A,≤, . . .) to convey that
the τ -structure A has a total ordering relation ≤ and other elements in its
structure. A totally ordered first-order structureA = (A,≤, . . .) is o-minimal
(order-minimal) if every definable set is a finite union of intervals [32]. The
theory of this structure is also called o-minimal. Examples of o-minimal
structures include (R, <,+,−, ·, exp) and (R, <,+,−, ·), where +,−, ·, exp

5

are the addition, subtraction, multiplication and exponentiation operations
on reals, respectively. Additional examples can be found in [31, 32]. The
theory of (R, <,+,−, ·) is known to be decidable [28].

3. Game Graph

Definition 1. A game graph (GG) G = (Q,ΣC ,ΣU ,ΣQ,ΣE,→,LQ,LE),
where

• Q is a set of states,

• ΣC is a set of controllable actions,

• ΣU is a set of uncontrollable actions,

• ΣQ is a set of state labels,

• ΣE is a set of edge labels,

• →⊆ Q× ΣC × ΣU ×Q is a transition function,

• LQ : Q→ ΣQ is a state labeling function, and

• LE : ΣC × ΣU → ΣE is a transition labeling function.

Remark 1. A transition system can then be defined as a game graph in
which the controllable alphabet ΣC is a singleton. This captures the situation
in which the controller has no choice but to select the only action in ΣC.
Hence we will drop this component from the definition of a transition system.

A game on a game graph is played by two players, namely, a controller and
an environment. In each step of the game, the controller selects a controllable
action enabled at the state and the environment selects an uncontrollable
action. The game proceeds by moving to a new state depending on the
actions chosen. Next, we formalize the game.

6

Runs and traces. A (finite or infinite) run of the game graph G is a sequence

of transitions. We will denote (q1, c, u, q2) ∈→ by q1
c,u−→ q2. A run σ is

a sequence q0(c1, u1)q1(c2, u2)q2 · · · where qi
ci+1,ui+1−→ qi+1 for all i ≥ 0. We

denote the first state of the run σ by first(σ), thus first(σ) = q0. We denote
a prefix q0(c1, u1)q1(c2, u2) · · · (ci, ui)qi of a run σ by σi. We call σi+1 an
extension of σi. A run σ is finite if σ = σi for some i; in this case we will say
that σ is of length i+1. Given a finite run σ = q0(c1, u1)q1(c2, u2) · · · (ci, ui)qi,
we denote the last state qi by last(σ). We say that c ∈ ΣC (or u ∈ ΣU) is
enabled at q if there exists a u ∈ ΣU (or c ∈ ΣC) and q′ ∈ Q such that

q
c,u−→ q′. Then we also say that (c, u) is enabled at q if there is a q′ such that

q
c,u−→ q′. We say that (c, u) is enabled after a run σ, if it is enabled at last(σ).

We use Runs(G) to denote the set of all infinite runs of G, and Runs(G, q) to
denote the set of those starting at q. Similarly we will denote the set of all
finite runs of G by Runsfin(G), and those starting at q by Runsfin(G, q).

A trace of a run σ = q0(c1, u1)q1(c2, u2)q2 · · · is the sequence of la-
bels on its states and transitions, i.e, trace(σ) = LQ(q0) LE(c1, u1)LQ(q1)
LE(c2, u2)LQ(q2) · · · . We denote the set of all traces of the runs of G by
trace(G) and the set of all traces of runs of G starting at q by trace(G, q).

Strategies and winning conditions. A strategy is a function λ : Runsfin(G) →
ΣC such that if λ(σ) = c then c is enabled after σ. A run σ = q0(c1, u1)q1 · · · is
consistent with a strategy λ if λ(σi) = ci+1 for all i ≥ 0. A winning condition
W is a subset of (ΣQΣE)ω. A strategy λ is winning for a state q with respect
to the winning conditionW if trace(σ) ∈ W for all σ ∈ Runs(G, q) consistent
with λ. Then we say that q has a winning strategy λ for W . The control
problem is a pair (G,W), where G is a game graph and W is a winning
condition, and asks to find the set of all states in G which have a winning
strategy forW . The controller synthesis problem asks to construct a winning
strategy for all winning states.

The following theorem states that when the game graph is finite, the
control problem can be solved for winning conditions which are specified in
LTL.

Theorem 1 ([25]). If the game graph G is finite, then the LTL control prob-
lem is PTIME-complete in the size of G and 2EXPTIME-complete in the size
of the LTL formula.

Now we define a bisimulation relation on game graphs which will relate
states which are either both winning or losing with respect to some objective.

7

The definition we present below is a restricted version of that presented in
[1].

Bisimulation. Given two game graphs G = (Q,ΣC ,ΣU ,ΣQ,ΣE, →,LQ,LE)
and G ′ = (Q′,Σ′C ,Σ

′
U ,ΣQ,ΣE,→′,L′Q,L′E) with the same set of state and

transition labels, we say that R ⊆ Q× Q′ is a bisimulation on (G,G ′), if for
all (q1, q

′
1) ∈ R, the following conditions hold:

1. LQ(q1) = L′Q(q′1).

2. For all c1 ∈ ΣC enabled at q1, there exists a c′1 ∈ Σ′C enabled at q′1 such
that:

• for all u′1 ∈ Σ′U and q′2 ∈ Q′ such that q′1
c′1,u

′
1−→ q′2, there exists

u1 ∈ ΣU and q2 ∈ Q such that LE(c1, u1) = L′E(c′1, u
′
1), q1

c1,u1

−→′ q2

and q2Rq′2.

3. For all c′1 ∈ Σ′C enabled at q′1, there exists a c1 ∈ ΣC enabled at q1 such
that:

• for all u1 ∈ ΣU and q2 ∈ Q such that q1
c1,u1−→ q2, there exists

u′1 ∈ Σ′U and q′2 ∈ Q′ such that L′E(c′1, u
′
1) = LE(c1, u1), q′1

c′1,u
′
1

−→′ q′2
and q2Rq′2.

Remark 2. We observe that the above definition of bisimulation on game
graphs reduces to the standard definition of bisimulation for transition sys-
tems.

Also we call a bisimulation finite, if it is also an equivalence relation with
a finite number of equivalence classes.

The following proposition from [1] restated according to our definition of
bisimulation relates bisimulations and winning strategies.

Proposition 2. Let (G1,G2) be two game graphs over the state labels ΣQ

and transition labels ΣE. Let W ⊆ (ΣQΣE)ω be a winning condition. Let R
be a bisimulation on (G1,G2) and let (q1, q2) ∈ R. Then there is a winning
strategy from q1 for W if and only if there is one from q2.

Remark 3. We call a bisimulation on (G,G), a bisimulation on G.

8

4. Control for Hybrid Games

Definition 2. A hybrid game H is a tuple (Loc,ActC ,ActU , Labels,Cont,
Edge, Inv,Flow, Guard, Reset,Lfunc) where:

• Loc is a finite set of locations,

• ActC is a finite set of controllable actions,

• ActU is a finite set of uncontrollable actions,

• Labels is a finite set of state labels,

• Cont = Rn for some n, is a set of continuous states,

• Edge ⊆ Loc× (ActC ∪ ActU)× Loc is a set of edges,

• Inv : Loc → 2Cont is a function that associates with every location an
invariant,

• Flow : Loc× Cont→ (R+ → Cont) is a flow function,

• Guard : Edge→ 2Cont is a function that assigns to each edge a guard,

• Reset : Edge → 2Cont×Cont is a function mapping an edge to a reset
relation,

• Lfunc : Loc× Cont→ Labels is a state labeling function.

Remark 4. As before, a hybrid system is a hybrid game with ActC a sin-
gleton set. Hence we will drop this component from the definition of a hybrid
system.

The locations in Loc will be called the discrete (part of) states and the
elements of Cont the continuous (part of) states. A state is an element
of Loc × Cont, that is, a pair containing a discrete state and a continuous
state. The flow function associates with each state a function that describes
the evolution of the continuous state with respect to time. A guard is a
condition on the continuous part of the state that must hold in order to take
a transition. The reset function associates with each edge a reset, which
is a binary relation that describes how the continuous state changes when
a discrete transition is taken. In the above hybrid game, we call n the
dimension of H.

9

Remark 5. In contrast to most expositions of hybrid systems, the Flow func-
tion does not define a vector field, but describes a closed-form solution of the
continuous dynamics. We will later impose a semi-group property on the
Flow function which is guaranteed by closed form solutions of vector fields.

Before giving the semantics of a hybrid game we introduce some notation.

We denote by (l, x)
t−→H (l, x′) the fact that starting at some state (l, x)

one can let some time t elapse and reach (l, x′), i.e, there exists a t ≥ 0
such that Flow(l, x)(t) = x′ and for all 0 ≤ t′ ≤ t, Flow(l, x)(t′) ∈ Inv(l).
Similarly we denote by (l, x)

a−→H (l′, x′) the fact that starting at some
state (l, x) one can take a discrete action a ∈ ActC × ActU and go to (l′, x′),
i.e, there exists e = (l, a, l′) ∈ Edge such that x ∈ Guard(e), x′ ∈ Inv(l′)
and (x, x′) ∈ Reset(e). We will drop the H whenever it is clear from the
context. We will use t, t1, t2 and so on to denote an element of R≥0, the set
of non-negative real numbers.

The semantics of a hybrid game is given in terms of a game graph corre-
sponding to the following game. In each step, the controller selects a time t1
or a controllable action, and similarly the environment selects a time t2 or an
uncontrollable action. If both of them choose a time, then the game proceeds
by a time evolution equal to the minimum of the two times. The one with
the minimum time is said to have won this step. If both of them selected the
same time, then we non-deterministically declare one of them to have won. If
one of them chooses a time and the other an action, then the action is taken,
and the one selecting the action wins. Finally if both of them choose an
action, then the controllable action is taken, and the controller wins. When
both the controller and the environment choose a time step t, we need to be
able to non-deterministically choose a winner. Hence we introduce a new set
of uncontrollable actions {env} · R≥0, such that a situation where the envi-
ronment wins is modelled by a transition on the action (t, env · t), where as
the case where the controller wins is modelled by a transition on the action
(t, t). (Given two sets S and T , S ·T denotes the set {s·t | s ∈ S, t ∈ T}.) The
transition labels will correspond to the winning player: a transition in which
the controller wins is labelled by either an action from ActC or by con · τ
depending on whether is chose an action or a time. Similarly, a transition in
which the environment wins is labelled by either ActU or env · τ .

Game graph of a hybrid game. Formally, the game graph corresponding to
the hybrid game H = (Loc,ActC , ActU , Labels, Cont, Edge, Inv,Flow, Guard,
Reset, Lfunc) is given by game(H) = (Q,ΣC , ΣU ,ΣQ,ΣE,→,LQ,LE), where:

10

• Q = Loc× Cont,

• ΣC = ActC ∪ R≥0,

• ΣU = ActU ∪ R≥0 ∪ ({env} · R≥0),

• ΣQ = Labels,

• ΣE = ActC ∪ ActU ∪ ({con, env} · {τ}),

• → is defined as:

– for t1, t2 ∈ R≥0 such that (l, x)
min(t1,t2)−→ H (l′, x′), (l, x)

(t1,t2)−→ (l′, x′),

– for t ∈ R≥0 such that (l, x)
t−→H (l′, x′), (l, x)

(t,env·t)−→ (l′, x′).

– for t ∈ R≥0 and u ∈ ActU such that (l, x)
u−→H (l′, x′), (l, x)

(t,u)−→
(l′, x′).

– for c ∈ ActC and a ∈ ActU ∪ R≥0 such that (l, x)
c−→H (l′, x′),

(l, x)
(c,a)−→ (l′, x′).

• LQ(q, x) = Lfunc(q) for all q ∈ Q.

• – for t1, t2 ∈ R≥0, LE(t1, t2) = con · τ if t1 ≤ t2 and env · τ if t1 > t2.

– for t ∈ R≥0, LE(t, env · t) = env · τ .

– for t ∈ R≥0 and u ∈ ActU , LE(t, u) = u.

– for c ∈ ActC and a ∈ ActU ∪ R≥0, LE(c, a) = c.

Remark 6. Observe that the way we have defined hybrid games, it is possi-
ble for the environment (or controller) to stall, by repeatedly picking a time
transition of shorter and shorter durations, resulting in zeno behavior. We
will assume that such zeno behavior is eliminated using an appropriate win-
ning condition. More precisely, we will assume that plays with an infinite
sequence of consecutive time transitions labelled con.τ are won by the envi-
ronment, and those with an infinite sequence of (not necessarily consecutive)
time transitions labelled env.τ since the last discrete transition, are won by
the controller. Please note that these simple fairness objectives can be ex-
pressed in a logic like LTL.

11

Time abstract transition system. We also associate a transition system called
time abstract transition system TATS with the hybrid game which abstracts
away the exact time elapsed during a continuous transition. We will use a new
action time to represent the abstracted time. Formally, the TATS correspond-
ing to the hybrid game H = (Loc,ActC , ActU , Labels, Cont, Edge, Inv,Flow,
Guard,Reset,Lfunc) is given by time-abstract(H) = (Q, ΣU , ΣQ, ΣE, →,
LQ,LE), where:

• Q = Loc× Cont,

• ΣU = ActC ∪ ActU ∪ ({con, env} · time),

• ΣQ = Labels,

• ΣE = ActC ∪ ActU ∪ ({con, env} · {τ}),

• → is defined as:

– for a ∈ {con, env} and t ∈ R≥0 such that (l, x)
t−→H (l′, x′),

(l, x)
a.time−→ (l′, x′).

– For a ∈ ActC∪ActU such that (l, x)
a−→H (l′, x′), (l, x)

a−→ (l′, x′).

• LQ(q, x) = Lfunc(q) for all q ∈ Q.

• LE(a) = a′ · τ if a = a′ · time, LE(a) = a otherwise.

Control problem for hybrid games. The control problem for hybrid games is
a pair (H,W) where H is a hybrid game and W is a winning condition on
the state and transition labels of game(H), and asks to find the set of all
states in game(H) from which there is a winning strategy with respect to
W . The controller synthesis problem asks to construct a winning strategy
for each winning state.

Consistent hybrid game. We say that a hybrid game H is consistent if for all

t1 < t2 and for all (l, x) ∈ Loc× Cont, (l, x)
t1−→ (l, x1) and (l, x)

t2−→ (l, x2)

implies (l, x1)
t2−t1−→ (l, x2). This condition says that if starting from x one can

reach x1 at some time and x2 at a later time, then one should also be able
to start at x1 and reach x2 at a later time.

12

Total order on the bisimulation of a TATS. Let ' be a bisimulation on
time-abstract(H) which is also an equivalence relation. Let P ∈ Π'. We

define succ'(P) to be the set of all classes P ′ ∈ Π' such that p
a·time−→ p′ for

some p ∈ P, p′ ∈ P ′ and a ∈ {con, env}. We then define a binary relation �'
on Π' as follows. P1 �' P2 if either P1 = P2 or P2 ∈ succ'(P1). We say a
bisimulation ' on time-abstract(H) is totally ordered if ' is an equivalence
relation and for every P ∈ Π', (succ'(P),�') is totally ordered. We will
also say P ≺' Q if P 6= Q and P �' Q. We will drop the subscript ' from
succ', ≺' and �' when it is clear from the context.

Next we relate a bisimulation on time-abstract(H) to one on game(H).

Lemma 3. Let H be a consistent hybrid game. Let ' be a bisimulation
on its TATS time-abstract(H) which is totally ordered. Then ' is also a
bisimulation on game(H).

Proof. Let game(H) = (Q,ΣC ,ΣU ,ΣQ,ΣE,→,LQ,LE), and time-abstract(H)
= (Q,Σ′U ,ΣQ,ΣE,→′,LQ,L′E). Suppose q1 ' q2. We need to show that for
any controllable action c1 from q1 (or q2) there is a controllable action c2 from
q2 (or q1) such that no matter which uncontrollable action the environment
takes from q2 (from q1), there is corresponding uncontrollable action from q1

(from q2) such that future behaviors are the “same”. We will only consider
the case of transitions out of q1 being mimicked by q2; the symmetric case of
transitions out of q2 being mimicked by q1 is similar and skipped.

Let us first consider the case when the controller chooses a non-time action
c ∈ ActC from q1. Since q1 ' q2 and c is enabled at q1, c is also enabled at
q2. Suppose the environment chooses an uncontrollable action u or a time t2
from q2. The resulting state q′2 is such that q2

c−→H q′2. Since q1 ' q2, there
exists q1

c−→H q′1 such q′1 ' q′2. Hence if the environment chooses u or a time
t1 from q1, then the resulting state q′1 is bisimilar to q′2.

The main challenge in proving this lemma is in handling the time actions.
Suppose the controller chooses a time t1 ∈ R≥0 enabled at q1 in game(H).

Let q′1 be the unique state such that q1
t1−→H q′1. Therefore q1

con·time

−→′ q′1.

Then since q1 ' q2, there exists q′2 such that q2

con·time

−→′ q′2 and q′1 ' q′2. This

implies that there exists t2 such that q2
t2−→H q′2. Therefore t2 is enabled at

q2 in game(H). The controllable action from q2 corresponding to t1 from q1

is t2.
Now we need to show that for every uncontrollable transition the envi-

ronment selects at q2, we can find one for q1 with the same label such that

13

they result in equivalent states. Suppose the environment chooses an uncon-
trollable action from q2, then it is easy to see that same uncontrollable action
can be taken from q1 and the resulting behaviors are the same. Suppose the
environment chooses t′2 (or env · t2) from q2 to q′′2 ; there are two cases to
consider, namely, either q′2 ' q′′2 or q2 6' q′′2 .

Case q′2 ' q′′2 : Now if t2 ≤ t′2 then q2

(t2,t′2)
−→ q′2 with LE(t2, t

′
2) = con · τ . In

this case we let t′1 = t1, and so q1

(t1,t′1)
−→ q′1 with LE(t1, t

′
1) = con · τ as well.

On the other hand, if t′2 < t2 or the environment choose env · t2, then the
label of the resulting transition is env · τ . Therefore from q1 we consider the
action env · t1, which also results in a transition with label env · τ .

Case q′2 6' q′′2 : Now since ' is a bisimulation on time-abstract(H) there

is a t′1 such that q1

t′1−→H q′′1 and q′′1 ' q′′2 . Further q′′1 6' q′1, otherwise
q′′1 ' q′1, q′1 ' q′2 and q′′1 ' q′′2 would imply q′2 ' q′′2 , a contradiction. This
also implies that t1 6= t′1. Observe that if we prove that t′1 < t1 iff t′2 < t2,
then the transition (t1, t

′
1) from q1 exactly mimics the transition (t2, t

′
2) from

q2. Suppose t′2 < t2. We will show that t′1 < t1. The other direction is

similar. Since q2
t2−→H q′2 and q2

t′2−→H q′′2 , consistency of H implies that

q′′2
t2−t′2−→H q′2. Therefore, [q′′2]' ≺ [q′2]'. Hence [q′′1]' ≺ [q′1]'. Suppose for the

sake of contradiction that t′1 ≥ t1. We have seen that t′1 6= t1, hence t′1 > t1.
We can deduce by an argument similar to the above that [q′1]' ≺ [q′′1]'. This
contradicts the fact that �' is a total order.

Our next goal is to solve the controller synthesis problem. Towards this
we define a quotient game graph of game(H), which has the property that
a winning strategy for this graph can be lifted to a winning strategy for
game(H). Hence if the quotient game graph is finite, we may be able to solve
the controller synthesis problem for game(H).

Quotient game graph corresponding to game(H). Let H be a hybrid game
with controllable actions ActC and uncontrollable actions ActU . Let the
game graph of H be game(H) = (Q,ΣC ,ΣU ,ΣQ,ΣE,→,LQ,LE). Let ' be a
bisimulation on game(H). We define quo-game(H) = (Q′, Σ′C ,Σ

′
U , ΣQ

′,Σ′E,
→′, L′Q,L

′
E), where:

• Q′ = Π', is the set of equivalence classes of '.

• Σ′C = ActC ∪Q′.

14

• Σ′U = ActU ∪Q′ ∪ ({env} ·Q′).

• ΣQ
′ = ΣQ.

• Σ′E = ΣE.

• →′ is defined as:

– for P1, P2 ∈ Q′, P
(P1,P2)

−→′ P ′, if P1, P2 ∈ succ(P) and either P ′ = P1

and P1 � P2 or P ′ = P2 and P2 � P1.

– for P1, P2 ∈ Q′, P
(P1,env·P2)

−→′ P ′, if P1, P2 ∈ succ(P), and P1 = P2 =
P ′.

– for P1 ∈ Q′ and u1 ∈ ActU , P
(P1,u1)

−→′ P ′, if P1 ∈ succ(P) and there
exists p ∈ P and p′ ∈ P ′ such that p

u1−→H p′.

– for c1 ∈ ActC and u1 ∈ Σ′U , P
(c1,u1)

−→′ P ′, if there exists p ∈ P and

p′ ∈ P ′ such that p
c1−→H p′, and either u1 ∈ ActU and is enabled

at some p ∈ P , or u1 = P ′′ or env · P ′′ for some P ′′ ∈ succ(P).

• L′Q(P) = LQ(p) for some (all) p ∈ P .

• L′E is defined as follows:

– for P1, P2 ∈ Q′, L′E(P1, P2) = a.τ , where a = env if P2 ≺ P1, and
a = con otherwise.

– for P1, P2 ∈ Q′, L′E(P1, env · P2) = env · τ .

– for c1 ∈ ActC and u1 ∈ Σ′U , L′E(c1, u1) = c1.

– for u1 ∈ ActU , L′E(P1, u1) = u1.

Consider the relation R between the states of game(H) and quo-game(H)
given by, R(p, P) iff p ∈ P . The following proposition relates the game graph
with its quotient.

Proposition 4. R is a bisimulation on (game(H), quo-game(H)).

Hence, from Proposition 2, there is a winning strategy from a state p of
game(H) iff there is a winning strategy from a state [p]' of quo-game(H).
Next we will explicitly define these strategies.

15

For every (finite or infinite) run of game(H) there is a corresponding
run of quo-game(H) such that their traces are the same, and vice versa.
Let σ ∈ Runs(game(H)) be p0(c1, u1)p1 · · · . Then the corresponding run
quo-run(σ) ∈ Runs(quo-game(H)) is given by P0(C1, U1)P1 · · · , where Pi =
[pi]', Ci = ci if ci ∈ ActC , otherwise if ci = t then Ci = [q]' where q is such

that pi
t−→H q, and similarly Ui = ui if ui ∈ ActU , otherwise if ui = t or

env · t then Ui = [q]' or (u, [q]'), respectively such that pi
t−→H q. Similarly

let σ′ = P0(C1, U1)P1 · · · be a run in Runs(quo-game(()H)). Since P0 is not
empty, it is easy to see from the definition above that there is a run starting
from some p ∈ P0 whose trace is equivalent to σ′.

Given a strategy λ for quo-game(H) we can construct a strategy unquo(λ)
for game(H) as follows. We define unquo(λ)(σ) as follows. Let λ(quo-run(σ)) =
C. If C ∈ ActC , then unquo(λ)(σ) = C, otherwise if C ∈ Q′, then unquo(λ)(σ) =

t, for some t ∈ R≥0 such that there exists p′ ∈ C with last(σ)
t−→H p′. Also

given a strategy λ for H, we can define a strategy quo(λ) analogously.
The following lemma summarizes the relationship between λ, unquo(λ)

and quo-run(λ).

Lemma 5. Let p be a state of game(H) and P a state of quo-game(H). Let
p ∈ P . Then p is winning for game(H) with respect to a winning condition
W if and only if P is winning for quo-game(H) with respect to the winning
condition W. Further given a strategy λ which is winning for p, quo(λ) is
winning for P . Similarly, if λ is a winning strategy for P , then unquo(λ) is
a winning strategy for p.

Proof. Routine and skipped.

5. Decidability of Control

In this section we solve the control problem for some classes of hybrid
games. We consider two classes, namely, STORMED hybrid games and
o-minimal hybrid games. Let us fix a hybrid game H = (Loc,ActC , ActU ,
Labels, Cont, Edge, Inv,Flow, Guard,Reset,Lfunc) for the rest of this section.

5.1. Hybrid Game Specifications

Definition 3. A hybrid game H is said to be o-minimally definable if the
invariants, flow function, guards, resets and the state labelling functions are
definable in some o-minimal theory.

16

Definition 4. An o-minimal hybrid game is an o-minimally defined hybrid
game with strong resets, i.e, for every edge e ∈ Edge of the hybrid game,
Reset(e) = Cont1 × Cont2 for some Cont1,Cont2 ⊆ Cont.

Definition 5. A STORMED hybrid game is a hybrid game such that there
exists a vector φ which satisfies the following conditions:

S Guards are Separable. For all e1, e2 ∈ Edge such that e1 6= e2, dist(Guard(e1),
Guard(e2)) = inf{||x − y|| |x ∈ Guard(e1), y ∈ Guard(e2)} ≥ dmin for
some dmin > 0.

T The flow is time-independent and satisfies the semi-group property (TISG).
For every state (l, x) ∈ Loc×Cont, Flow(l, x) is continuous and Flow(l, x)(0) =
x, and for all t, t′ ∈ R≥0, Flow(l, x)(t+ t′) = Flow(l,Flow(l, x)(t))(t′).

O o-minimally definable.

R Resets are monotonic along vector φ. There exist ε, ζ > 0 such that for
all edges e = (l1, a, l2) ∈ Edge and x1, x2 ∈ Cont such that (x1, x2) ∈
Reset(e):

• if l1 = l2, then either x1 = x2 or φ · (x2 − x1) ≥ ζ,

• otherwise φ · (x2 − x1) ≥ ε||x2 − x1||.

M Flows are Monotonic along φ. There exists ε > 0 such that for all l ∈
Loc, x ∈ Cont and t, τ ∈ R≥0, φ · (Flow(l, x)(t + τ) − Flow(l, x)(t)) ≥
ε||Flow(l, x)(t+ τ)− Flow(l, x)(t)||.

ED Guards are Ends-Delimited along φ. The set {φ · x |x ∈ Guard(e), e ∈
Edge} ⊆ [b−, b+] for some b−, b+ ∈ R.

STORMED hybrid games are based on STORMED hybrid systems. The
constraints imposed by STORMED hybrid systems are realized in some phys-
ical systems as follows.

• Monotonicity can be associated with energy or time depletion, or in
vehicle control problems, with non-decreasing trajectories.

• The Ends-Delimited property can be present as a deadline on the mono-
tonic direction or a spatial confinement.

17

• Separability of guards represents infrequency in making control deci-
sions, also based on location or time.

• TISC flows arise naturally, whereas o-minimality is not necessarily a
common property, but can be used as an approximation most of the
time. Linearization and other model reductions may also result in o-
minimal realizations.

We have that STORMED systems have bounded number of discrete tran-
sitions in any execution. This follows from the monotonicity conditions, sep-
arability of guards and the condition on ends-delimited. As a matter of
fact, the bounded number of discrete transitions, together with a property
of o-minimally defined systems is all we need to prove our results.

We believe that the STORMED specifications are natural specifications
that enforce an upper bound on the number of discrete transitions of any
execution of the system and for that we provide the following example.

5.2. An Example

The system examined in this section was first analyzed in a slightly dif-
ferent original form in [29], and revisited in various forms in [24], [23] and
elsewhere. It defines an aircraft collision avoidance scheme in which an air-
craft is to join the trajectory of another aircraft while maintaining a safe
distance. The aircraft performs this joining procedure in order to either land
or avoid collision in an air traffic congestion policy. In this example, as op-
posed to [23], only a small part of the procedure is checked for safety, but an
exact system is used instead of an abstraction.

5.2.1. Description

The instantaneous locations of two aircraft are (x1, y1, θ1) and (x2, y2,
θ2), with x1, y1 and x2, y2 are the Cartesian locations of the two aircraft on
the plane and with θ1, θ2 being the counterclockwise angle of their heading
with the x axis. The trajectories of the two aircraft are shown with dotted
lines in Figure 1. The motion of the first aircraft does not change. It follows
a straight path from position (x1, y1, θ1) = (−d2, 0, 0) with velocity v1 to-
wards the runway. The second aircraft, on the other hand, approaches from
(x2, y2, θ2) = (−r,−(r+d2), π/2), with initial velocity v2. When y2 = −d2 +r
the first airplane’s position is x1 = d1. After that point and before it reaches
the state where y2 = −r, the second aircraft can choose to start decelerating
at a constant rate ad, accelerating at a constant rate aa or not change its

18

velocity at all. The deceleration/acceleration or lack thereof will take place
until y2 = −r, at which point the second aircraft will continue with its ac-
quired velocity onto the quarter circle path turning into the runway fix on
the x axis. The requirement is that the aircraft arrive at a safe distance
denoted ds on the x axis on their final approach. From there it is assumed
that they can safely regulate the rest of their landing approach. Clearly, the
system can be modeled as a hybrid automaton with three discrete states.

In [23] the authors verify the safe-distance requirement for all times, by
abstracting the system to one with linear flows that has aircraft 2 make two
instantaneous 45o-clockwise turns in order to merge with aircraft 1 on its
runway fix. This is in order to avoid trigonometric functions and be able to
use quantifier elimination as they try to verify the safe distance requirement
at all times. The abstraction is turned to an over-approximation of the
original system by using differential inclusions. The approximation is shown
in the right diagram of Figure 1. In this section a quantifier free formula will
be derived on the parameters for the specification of the system.

Figure 1: Right: Aircraft 1 and 2 are shown with their trajectories and velocities as
indicated. Left: The abstraction in [23].

One can observe that, since the safety distance requirement is only on

19

the final leg of the route of aircraft 2 and its angular velocity on the circular
segment is constant, we can eliminate the y2, θ2 components and use a dif-
ferent discrete location to contain the curved path on a straight line of equal
length. The remaining components for which we need to verify safety are
x1, x2 and ẋ2 only! Figure 2 shows how the trigonometric functions can be
eliminated.

Figure 2: An equivalent system representation that is STORMED.

5.2.2. Formal Game Definition

The game definition is as follows:

• Loc = {initstate, faststate, slowstate, steadystate, turnstate, finalstate}
and Cont = R3, i.e. (x1, x2, ẋ2).

• The controlled actions are ActC = {actfast, actslow, actsteady}, all from
the initstate state to the faststate, slowstate, and steadystate states. The
uncontrollable actions are ActU = {actturn, actapproach} and corre-
spond to the rest of the edges.

• State labels are Labels = {initial, safe, collision}, where initial is the label
for the states in initstate where x1 = −d1∧x2 = −(d2+πr

2
)∧ẋ2 = v2, safe

is the label for all the states in finalstate where |x1− x2| > ds ∧ x2 = 0,
and collision is the label for all the rest of the states.

• The edge set is Edge = {(initstate, actfast, faststate), (initstate, actslow,
slowstate), (initstate, actsteady, steadystate), (slowstate, actturn, turnstate),

20

(faststate, actturn, turnstate), (steadystate, actturn, turnstate), (turnstate,
actapproach, finalstate) }.

• The invariants are given by

Inv(initstate) = Inv(faststate) = Inv(slowstate) =Inv(steadystate)= x2 ≤
−r, Inv(turnstate) = x2 < 0 and Inv(finalstate) = x2.

• All the guards leading to states slowstate, faststate, steadystate are−(d2+
πr
2

) < x2 < −πr
2

. The guards to all the transitions to the turnstate state
are x2 = πr

2
and to the finalstate state is x2 = 0.

• The flows are:

Flowinitstate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t, v2)

Flowslowstate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t+
1

2
adt

2, v2 + adt)

Flowfaststate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t+
1

2
aat

2, v2 + adt)

Flowsteadystate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t, v2)

Flowturnstate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t, v2)

Flowfinalstate,(x1,x2,v2)(t) = (x1 + v1t, x2 + v2t, v2)

Assuming that the system parameters v2, ad are such that the possible
deceleration while in slowstate will not bring aircraft 2 below a stall velocity,
which can be imposed by an extra invariant, the system flows are monotonic.
This can be imposed by an extra trivial invariant. The guards are delimited
by x2 = 0 and separable by min{d2,

πr
2
}. Everything is defined in the de-

cidable theory (R, 1, 0,+, ·, <); therefore, the system is a STORMED hybrid
game, and the control problem for an LTL winning condition is decidable.

5.3. Decidability

Theorem 6. [20, 11], [33] STORMED hybrid games and o-minimal hy-
brid games have finite bisimulations of their time-abstract transition systems
which are definable in their underlying o-minimal theory. The finite bisimu-
lation can be effectively constructed when the underlying theory is decidable.

A finite bisimulation is definable in a theory if its equivalence classes are
definable in the theory.

21

Lemma 7. Hybrid games with TISG flows are consistent.

Proof. Follows from the definition of TISG.

Lemma 8. Let H be an o-minimally defined hybrid game satisfying the TISG
property, and let ' be a finite bisimulation of its TATS definable in the
underlying o-minimal theory. Then ' is a totally ordered bisimulation on
time-abstract(H).

Proof. We need to show that for each P ∈ Π', (succ(P),�) is totally ordered.
Note that � is reflexive by definition . Let P1 � P2 and P2 � P3. To show
that � is transitive, we need to show that P1 � P3. Suppose P1 6= P2 and
P2 6= P3 (otherwise we are done). Let p1 ∈ P1. There exist p2 ∈ P2 and

p3 ∈ P3 such that p1
a·time−→ p2 and p2

a·time−→ p2. We have from the TISG

property that the hybrid game is consistent. Hence p1
a·time−→ p3, which implies

P1 � P3.
Next we need to show that� is anti-symmetric. Let P1 � P2 and P2 � P1.

Suppose P1 6= P2. This violates the o-minimality of H. We will describe the
intuition behind the proof here, details can be found in [11]. From every
state in P1, there exists an infinite run that alternates between P1 and P2.
We can define in the o-minimal theory the set of all times at which such an
infinite run is in the equivalence class P1. This set is not a finite union of
intervals, which contradicts the o-minimality. Hence, � is a partial order.

Further, � is totally ordered. To see this, let P1 and P2 belong to succ(P).
Since P � P1 and P � P2, for every p ∈ P , there exist t1 and t2 in R≥0 such

that p
t1−→H p1 and p

t2−→H p2 for some p1 ∈ P1 and p2 ∈ P2. Without
loss of generality, assume t1 ≤ t2. It follows from the consistency of H, that

p1
t2−t1−→H p2, and hence P1 � P2.

Theorem 9. Given a STORMED hybrid game H and a winning condition
W which is ω-regular, the control problem is decidable if the underlying o-
minimal theory is decidable. The controller synthesis problem is also decid-
able.

Proof. From Lemma 7, a STORMED hybrid game is consistent, from The-
orem 6 it has a finite bisimulation ' of its TATS which is definable, and
from Lemma 8 the bisimulation ' is totally ordered. Hence, if the underly-
ing o-minimal theory is decidable, we can construct quo-game(H) and solve

22

the control problem on it. Then it follows from Lemma 5 and the control
problem is decidable for H. Also, since we can synthesize a winning strategy
for quo-game(H) from a winning state, it follows from the decidability of the
theory and Lemma 5 that we can lift it to synthesize a winning strategy for
H from the corresponding states in H.

Along the same lines, we have the following.

Theorem 10. Given an o-minimal hybrid game H with TISG flows and
a winning condition W which is ω-regular, the control problem is decidable
if the underlying o-minimal theory is decidable. The controller synthesis
problem is also decidable. 5

Our results for o-minimal hybrid games are stronger than the ones in [6]
in that we solve the control problem with respect to any ω-regular winning
conditions as opposed to just reachability as in [6].

6. Weighted Hybrid Games

Now we examine weighted games, which have costs on transitions. The
goal is to minimize the accumulated costs while meeting certain qualitative
objectives. We will first consider optimal controllers that satisfy given reach-
ability objectives. Then we examine the problem of verifying hybrid systems
of the same specifications.

6.1. Weighted hybrid games and optimal-cost reachability problem

A weighted hybrid game is a pair (H,Cost), where H is a hybrid game
and Cost is a non-negative and time-non-decreasing function Cost : Loc ×
Cont × R≥0 → R≥0, i.e., Cost((l, x), t) ≥ 0 for all t, and Cost((l, x), t1) ≥
Cost((l, x), t2) if t1 ≥ t2. The cost function also satisfies the following additive
property Cost((l, x), t1 + t2) = Cost((l, x), t1) + Cost((l,Flow(l, x)(t1)), t2).

Given a weighted hybrid game (WHG) (H,Cost), where H = (Loc,ActC ,
ActU , Labels, Cont,Edge, Inv,Flow, Guard, Reset,Lfunc), the semantics is
given by a weighted game graph. A weighted game graph (WGG) J is a
pair (G,Cost), where G = (Q, ΣC , ΣU , ΣQ, ΣE, →, LQ, LE) is a game
graph and Cost : (Q × ΣC × ΣU × Q) → R≥0 is a cost function on its

5The flows considered in [6] are not TISG, but have unique suffixes with respect to the
partition, we can extend Lemma 3 to obtain the same results.

23

transitions. The WGG associated with the WHG (H,Cost) is (G,Cost ′)
where G = game(H) and Cost ′ is the function that assigns a weight to the
transitions depending on how long the system stays in a particular location.
The cost of taking a discrete transition is taken to be 0. More precisely, Cost ′

on game(H) is defined as follows. Recall that in game(H) ΣC = ActC ∪ R
and ΣU = ActU ∪ R ∪ ({env} · R). For c ∈ ΣC and u ∈ ΣU ,

Cost ′(q, (c, u), q′) =

0 if c ∈ ActC or u ∈ ActU
Cost(q,min(c, u)) if c ∈ R≥0 and u ∈ R≥0

Cost(q, c) if c ∈ R≥0 and u = env · c

In this section, we will consider the problem of synthesizing optimal
cost controllers for reachability objectives. We are given a set of states
Goal ⊆ Loc × Cont which the controller wants to reach. We want to find
a strategy which will eventually reach goal and the worst cost of reaching
the goal is minimized. The environment can often avoid reaching the goal
by selecting smaller and smaller time steps. We assume that the zeno be-
havior is eliminated through choosing appropriate winning conditions. We
say that the environment stalls a play if there are an infinite number of
time transitions labelled env · τ since the last discrete transition. Thus, in
the case of reachability objectives we mean that the controller wins if either
the play reaches the goal or the environment stalls the play. Otherwise the
environment wins.

We now define optimal-cost reachability problem formally using the weighted
game graph. Let (H,Cost) be a WHG and (G,Cost ′) its WGG . Let Goal ⊆
Q be a set of states of G which we want to reach. Towards this, we define
the cost of a run to be the sum of the costs of its transitions till the goal
is reached. Given a run ρ = q0(c1, u1)q1(c2, u2) . . . ∈ Runs(G) with qn the
first state contained in Goal , Cost(ρ) =

∑n
i=1 Cost(qi−1, ci, ui, qi). If ρ does

not contain a state from Goal , then its cost is 0. The cost of a strategy λ
is the supremum of the cost of all the runs consistent with it. Formally, the
cost of a strategy λ from a state q is Cost(λ, q) = supρ{Cost(ρ)|first(ρ) =
q, ρ is consistent with λ}. A run is winning if either it reaches the Goal
at some time or there are infinitely many consecutive transitions labelled
env · τ . A strategy λ is winning for q, if every run starting from q consistent
with it is winning. Finally, the optimal-cost from a state q is defined as:
Costopt(q) = infλ{Cost(λ, q)|λ is a winning strategy}.

We now define the following problems on weighted hybrid games.

24

Definition 6 (optimal-cost reachability problem). Given a weighted hy-
brid game (H,Cost), a set of states Goal of its game graph (G,Cost ′), a con-
stant c ∈ R≥0, and a state q of the game graph, the optimal-cost reachability
problem is to decide if there exists a winning strategy λ from q such that
Cost ′(λ, q) ≤ c. The optimal cost of reaching the Goal is given by Costopt(q).

6.2. Weighted STORMED Hybrid games and optimal reachability

We now turn to deciding optimal-cost reachability problem for STORMED
hybrid games. Our decidability result for optimal controllers relies on the
observation that in reachability games, we can focus our attention on games
between a controller that is time consistent and conservative and an environ-
ment that is conservative. Plays between such a controller and environment
alternate between a time step (i.e., one labelled by con · τ or env · τ , de-
pending on who won) and a discrete action. Next, since any STORMED
execution has a bounded number of discrete steps, this allows us to focus
on bounded strategies when synthesizing optimal controllers, which we show
can be effectively constructed. Thus, before presenting the technical details
of our decidability result, we define what we mean by time consistent and
conservative. For the rest of this section, we fix a STORMED hybrid game
H = (Loc,ActC ,ActU , Labels,Cont, Edge, Inv,Flow, Guard, Reset,Lfunc),
with cost function Cost , that defines a weighted game graph (G,Cost ′).

Time Consistent and Conservative Controllers. A controller strategy λ :
Runsfin(G)→ ΣC is said to be time consistent and conservative if the follow-
ing conditions hold.

Conservative On any run σ such that trace(σ) = ρ(con·τ), λ(σ) ∈ ActC . In
other words, λ will pick discrete controllable action if the last transition
was a time step that it won.

Time Consistent On any runs σ1 and σ2 such that λ(σ1) = t and σ2 =
σ1(t, t′)q′ for some q′ and t′ < t, then λ(σ2) = t− t′. In other words, if
σ2 is an extension of σ1 consistent with λ in which the last step was a
time transition which the environment won, then the controller picks a
time step that is consistent with its previous decision.

Conservative Environment Plays. In a run σ, we will say that the environ-
ment played conservatively, if in trace(σ) every transition labelled env · τ is
followed by an edge in which the environment choose a discrete action (i.e.,

25

the transition contains a symbol from ActU). Thus, in such plays, the envi-
ronment does not pick a time transition if it won the previous time transition.

We are now ready to present our main technical observations. We first
show that if there is a winning strategy (for the controller) with cost c, there
is a time consistent, conservative winning strategy with cost at most c. More
precisely,

Lemma 11. Let λ be a winning strategy from state q. Then there is a time
consistent, conservative winning strategy λ′ from q such that Cost(λ′, q) ≤
Cost(λ, q).

Proof. Let λ be a winning strategy for q with respect to Goal . We will
construct λ′ inductively. More precisely, we will build a sequence of functions
λ′i such that λ′i will be defined on all runs of length at most i consistent with
λ′i−1 and not containing Goal . Further λ′i will agree with λ′i−1 on all runs of
length at most i− 1. The strategy λ′ itself will be the limit of this sequence.

The strategy λ′ that we construct will “restrict” the possible plays al-
lowed by λ. Therefore, in order for us to inductively define λ′ (and later
prove properties about it), we will also need to inductively define functions
f0, f1, f2, . . . such that fi will map runs of length i consistent with λ′i−1 to
runs (of unknown length) consistent with λ.

Inductive invariant. We will ensure that following conditions hold during
our inductive construction of λi and fi+1. We will assume σ is a run of length
i consistent with λ′i−1 and the only possible state in Goal is last(σ), and σ′

is a run of length i− 1 consistent with λ′i−2 and not containing goal.

1. last(σ) = last(fi(σ)) and fi(σ) does not contain a goal state except
possibly for last(fi(σ)).

2. If σ′ is a prefix of σ of length j, such that the label of the last transition
in σ′ is in ActC ∪ ActU ∪ {con · τ} then fj(σ

′) is a prefix of fi(σ).

3. fi(σ) is consistent with λ.

4. Cost(σ) = Cost(fi(σ)).

5. If λ(fi(σ)) is a time step t and σ does not visit Goal then the last label
in trace(σ) is not con · τ .

6. If the last transition of σ′ is labelled con · τ and σ′ does not contain a
state from Goal , then λi−1(σ′) is not t.

7. If the last transition of σ′ is (t1, t2) which the environment won, then
λ′i−1(σ′) = t and t = t1 − t2.

26

Observe that the last condition ensures that λ′ will be time consistent. On
the other hand, the second to last condition will ensure that λ′ is conservative.

Having outlined the intuition behind the construction of λ′, we will now
present its formal definition. We will begin by first defining λ′i using λ′i−1

and fi, and then define fi+1 using λ′i and fi.
Let σ be a run of length i ≥ 0 consistent with λ′i−1. λ′i(σ) is defined based

on the form of σ.

• If λ(fi(σ)) ∈ ActC , then λ′i(σ) = λ(fi(σ))).

• If λ(fi(σ)) is some time t0 and last edge label of trace(σ) is not env · τ ,
then we do the following. Observe that in this case, the last edge label
in σ cannot be con · τ , because of the invariant we maintain, and so
must be in ActC ∪ ActU . Let σ0 = fi(σ). If last(σ0) is not in Goal ,
then let σ1 be the run obtained by taking the transition (t0, t0) after
σ0. If λ(σ1) is a time t1 and last(σ1) is not in Goal , then σ2 is the run
obtained by taking (t1, t1) from σ1, and we repeat this process from
σ2. Thus in general, if λ(σj) is a time tj and last(σj) is not in Goal
then σj+1 is obtained by taking (tj, tj) from σj. Observe that since
λ is a winning strategy, this process cannot go on forever, otherwise
it would give result in a run consistent with λ (since σ0 is consistent
by induction hypothesis) which does not reach the goal and contains
an infinite sequence of consecutive time transitions which is winning
for the controller (and hence does not contain an infinite sequence of
consecutive time transitions which is winning for the environment.)
Let σn be the first run such that last(σn) ∈ Goal . Then we define
λ′i(σ) =

∑n−1
j=0 tj.

• Finally, if λ(fi(σ)) is some time t1 and last edge label of trace(σ) is
env · τ , then we do the following. Let σ = σ′(t, t′)q′ or σ′(t, env · t′);
thus, λ′i−1(σ′) = t and t′ ≤ t. Then, λ′i(σ

′) = t− t′.

We will now present the formal definition of f . We will define f0(q) = q.
Inductively, we need to define fi+1 on runs σ of length i+1 that are consistent
with λ′i. fi+1 is defined as follows.

• Let σ = σ′(c, u)q′, where either c ∈ ActC and u ∈ ΣU or u ∈ ActU and
c ∈ ΣC . By the invariant that is maintained, last(σ′) = last(fi(σ

′)),
and so (c, u) is enabled in last(fi(σ

′)) and will go to the same state.
Therefore, define fi+1(σ) = fi(σ

′)(c, u)q′.

27

• Let σ be a run where the last transition is (tn, u
′), where u′ 6∈ ActU ;

thus, u′ is either t′ or env · tn. Now, we can write σ as σ′(c, u)q0(t1, t
′
1)q1

(t2, t
′
2)q2 · · · (tn−1, t

′
n−1)qn−1 (tn, u

′)qn, where σ′ is a prefix of length
j, and either c ∈ ActC and u ∈ ΣU or u ∈ ActU and c ∈ ΣC . (The
analysis is similar if any of the t′i is env · ti.) From item 6 of the
invariant, we have tn−1 ≥ t′n−1. Further from item 7 of the invariant
we have tn = tn−1− t′n−1. Similarly tn−1 = tn−2− t′n−2. Continuing the

argument we obtain tn = t1 −
∑n−1

j=1 t
′
i.

Let σ′′ = σ′(c, u)q0 be of length j. Then λ(fj(σ
′′)) is some time t and

the label of the last transition is not env · τ . Hence from the definition
of fj, we have a sequence of runs σ0, · · · , σk each consistent with λ such
that (a) σ0 = fj+1(σ′(c, u)), (b) λ(σi) = t′′i+1, (c) σi+1 = σi(t

′′
i+1, t

′′
i+1)q′′i ,

and (d) t1 =
∑k

`=1 t
′′
` . None of the σi except possibly for σk contains a

goal state.

Let tsum =
∑n−1

`=1 t
′
i+x where x = tn if u′ = env · τ and x = min(tn, t

′
n)

if u′ = t′n. Since tsum ≤ t1, tsum ≤
∑k

`=1 t
′′
` . Hence either tsum =∑k

`=1 t
′′
` or there is some m < k such that

∑m
`=1 t

′′
` ≤ tsum <

∑m+1
`=1 t′′` .

In the case when tsum =
∑k

`=1 t
′′
` , define fi+1(σ) = σk. On the other

hand, if
∑m

`=1 t
′′
` ≤ tsum <

∑m+1
`=1 t′′` , define fi+1(σ) = σm(tc, tu)q

′,
where tc = t′′m+1 and tu = tsum −

∑m
`=1 t

′′
` .

Observe that our inductive definitions of λ′i and fi satisfy all the invariants
that we maintain; the costs are preserved because the cost functions are
TISC.

Finally, the invariants ensure that λ′ satisfies the conditions of the lemma
as follows. λ′ is winning because any play consistent with λ′ can be mapped
to play consistent with λ using fi. The third invariant ensures that the cost of
the strategy λ′ is bounded by the cost of strategy λ. Finally, conservativeness
and time consistency are ensured by invariants 6 and 7 respectively.

Next, we show that if a time consistent, conservative strategy is win-
ning in all plays where the environment is conservative, then it is winning
against all plays. Moreover, the supremum cost is achieved on runs where
the environment plays conservatively.

Lemma 12. Let λ be a time consistent, conservative strategy. Let R denote
the collection of all runs consistent with λ starting from q and let RC ⊆ R
be those runs in which the environment is conservative. If all the runs in

28

RC are winning then λ is a winning strategy from q. Moreover, Cost(λ, q) =
supρ∈R Cost(ρ) = supρ∈RC Cost(ρ).

Proof. Recall that we use R to denote the collection of all runs consistent
with λ starting from q and RC ⊆ R to be those runs in which the environment
is conservative. Suppose all the runs in RC are winning. We need to show
that all runs in R are winning. Suppose σ ∈ R is not winning. Then σ does
not reach goal and does not contain an infinite sequence of env · τ labels.
Further since a con ·τ is necessarily followed by a discrete transition, we have
only finite sequences of transitions labelled by env · τ or con · τ and con · τ
appears only at the end as λ is a conservative strategy. Consider a maximal
sequence of time transitions in σ: q1(t1, t

′
1)q2 · · · (tn, t′n)qn. We can replace

this by q1(t1,
∑n

i=1 t
′
i)qn and the resulting sequence will be consistent with

λ and have the same cost as the original run (because λ is time-consistent
and the cost-function is additive). Hence σ′ obtained by replacing every
such maximal sequence by a single transition is in RC and is not winning, a
contradiction.

Consider σ ∈ R which is winning. If it does not reach goal, then its cost is
0, then the σ′ obtained above will also have cost 0 and is in RC . If σ reaches
goal, then ρ be the prefix of σ such that last(ρ) is the first state in ρ which is
in Goal . Then the ρ′ obtained by merging transitions as above is in RC and
has the same cost as ρ or equivalently σ. Hence for every σ ∈ R, there is a
σ′ ∈ RC such that Cost(σ) ≤ Cost(σ′), hence Cost(λ, q) ≤ supρ∈RC Cost(ρ).
But supρ∈RC Cost(ρ) ≤ supρ∈R Cost(ρ) = Cost(λ, q).

Based on Lemmas 11 and 12, we can conclude the following:

Corollary 13. Let λ be a conservative and time-consistent strategy. Any
run σ which is consistent with λ and in which the environment is conserva-
tive does not have two consecutive time labels, i.e, does not contain the two
consecutive a.τ where a is con or env.

This along with the fact that the number of discrete transitions in any
execution of a STORMED game is bounded allows us to conclude that we
can restrict ourselves to bounded strategies.

Theorem 14 ([33]). The number of discrete transitions in any run σ on the
game graph induced by a STORMED game is bounded by a constant ν.

Let us formally define a bounded strategy.

29

Definition 7. A strategy λ is n-bounded from a state q if it is conservative
and time-consistent and every run from q consistent with λ in which the
environment is conservative has at most n discrete transitions.

Thus we have the following observation about the existence of n-bounded
strategies for weighted STORMED games.

Lemma 15. If a state q of a weighted STORMED game has a winning
strategy with cost c, then there is a n-bounded winning strategy from q of cost
at most c.

The above lemma implies that to solve the optimal-cost reachability prob-
lem we need to search only for n-bounded strategies. Following is an obser-
vation about optimal-bounded strategies. From now on we assume that the
hybrid game is a weighted STORMED game.

Lemma 16. Let q be a winning state and λ be an n-bounded optimal winning
strategy. If λ(q) = c for some c ∈ ActC and q

c,u−→ q′ for u ∈ ΣU , then λ
is a (n − 1)-bounded optimal winning strategy for q′. If λ(q) = t for some

t ∈ R≥0 and q
t,t′−→ q′ or q

t,env·t−→ q′, then λ(q′) = c for some c ∈ ActC and λ is

a (n− 1)-bounded optimal winning strategy for q′′, where q′
c,u−→ q′′ for some

u ∈ ΣU . If λ(q) = t for some t ∈ R≥0 and q
t,u−→ q′ for u ∈ ΣU , then λ is a

(n− 1)-bounded optimal winning strategy for q′.

We can now use a backward algorithm presented in [7] to compute the
optimal cost of reaching the goal from a state q. Given a state q and a n ∈ N,
we define cn(q), the optimal cost of reaching Goal ⊆ Loc×Cont from q in at
most n steps.

• c0(q) = 0 if q ∈ Goal , c0(q) = inf
q
t−→Hq′,q′∈Goal

{Cost(q, t) | @t′ ≤ t, u ∈

ActU , q
t′−→H q′, q′

u−→ q′′, q′′ 6∈ Goal} if there exists t such that q
t−→H

q′, q′ ∈ Goal , ∞ otherwise.

• cn+1(q) = inf
q
t−→Hq′,q′

c−→Hq′′
max(Cost(q, t)+cn(q′′), sup

q
t′−→Hp′,p′

u−→p′′,t′≤t
Cost(q, t′) + cn(p′′)).

Lemma 17. For every ε > 0, for every q such that cn(q) <∞, there exists a
definable n-bounded winning strategy λ from q such that Cost(q, λ) ≤ cn(q)+
ε.

30

Proof. cn(q) is taken to be the infimum cost over all enabled pairs (t, c).
Hence given any ε, one can find a pair (t, c) enabled at q such that the cost
of the expression within max is within [cn, cn + ε/n). In each step, there is a
choice of (t, c) which is within ε/n from the optimal cost. Hence the cost of
the strategy itself is within ε from the optimal cost.

Lemma 18. If λ is an n-bounded winning strategy from q, then Cost(q, λ) ≥
cn(q).

Theorem 19. Given a Weighted STORMED hybrid game (H,Cost), whose
underlying theory M is decidable, a state q of H, a constant c ∈ R≥0 and
a set of state Goal of H, all of which are definable in M, the optimal-cost
reachability problem is decidable. In fact, we can define the optimal cost of
reaching Goal .

Proof. Since the number of discrete transitions in a STORMED game is
bounded, the optimal cost of reaching Goal is equal to cn(q), for a computable
n. cn(q) is definable in the o-minimal theory. To solve the optimal-cost
reachability problem, we need to be able to determine if the number defined
by cn(q) ≤ c. But since c is definable, we can decide if the inequality holds.
cn(q) is also Costopt(q).

6.3. Model Checking Weighted STORMED systems

In this section, we consider the problem of model-checking weighted hy-
brid systems with respect to a Weighted branching time logic called Weighted
Computation Tree Logic (WCTL) which was introduced in [8, 9].

A weighted STORMED hybrid system is the hybrid system version of a
weighted STORMED game, that is, a weighted STORMED hybrid system
is a weighted STORMED game with a single controllable action. Hence the
semantics of a weighted STORMED system is given in terms of the weighted
transition graph as for the case of weighted STORMED games.

First, let us define the logic WCTL. Given a structureM and an alphabet
ΣQ, a formula in WCTL(M,ΣQ) is defined inductively as:

φ ::= a |φ ∨ φ | ¬φ |EφU∼cφ |AφU∼cφ

where a ∈ ΣQ is an atomic proposition, ∼∈ {<,≤,=,≥, >} and c is an
M-definable constant.

31

Given a weighted transition system (T,Cost) with a set of state labels
ΣQ and a state q, and a WCTL(M,ΣQ) formula φ, the satisfaction relation
T, q |= φ is defined inductively as follows:

T, q |= a ⇔ a ∈ LQ(q).
T, q |= ¬φ ⇔ T, q 6|= φ.
T, q |= φ1 ∨ φ2 ⇔ T, q |= φ1 or T, q |= φ2.
T, q |= Eφ1U∼cφ2 ⇔ there exists a maximal run ρ from q in T such that

T, ρ |= φ1 U∼c φ2.
T, q |= Aφ1U∼cφ2 ⇔ for every maximal run ρ from q in T, T, ρ |= φ1 U∼c φ2.

Recall that ρi denotes the prefix of ρ of length i. Let ρ[i] denote the last
state of ρi. Below Cost(ρi) denotes the sum

∑i
j=1 Cost(qj−1, cj, uj, qj), where

ρ = q0(c1, u1)q1(c2, u2)

T, ρ |= φ1U∼cφ2 ⇔ ∃i ≥ 0 such that T, ρ[i] |= φ2,
for all 0 ≤ i′ < i, T, ρ[i′] |= φ1 and Cost(ρi) ∼ c.

The next theorem states that the problem of model-checking weighted
STORMED hybrid systems against WCTL formulas is decidable.

Theorem 20. Given a weighted STORMED hybrid system H definable in a
decidable o-minimal structureM, a definable state q ofH and a WCTL(M,ΣQ)
formula φ, where ΣQ is the set of state labels of game(H), the problem of
whether game(H), q |= φ is decidable.

Proof. We solve the problem by reducing it to the problem of model-checking
a bounded discrete horizon o-minimally definable hybrid system against a
CTL formula, which is shown to be decidable in [15, 33].

Given a weighted STORMED hybrid systemH = (Loc,ActU ,Labels,Cont,
Edge, Inv,Flow,Guard,Reset,Lfunc) and a WCTL(M,ΣQ) formula φ, we
construct the hybrid systemH′ = (Loc′,Act′U ,Labels′,Cont′,Edge′, Inv′,Flow′,
Guard′,Reset′,Lfunc′) such that H, q |= φ iff H′, q′ |= t(φ), where q′ is a state
of H′ corresponding to q and φ and t(φ) is a CTL formula over ΣQ

′.
Informally, to constructH′ for a give φ, we add a variable corresponding to

every subformula of the form φ1U∼cφ2 of φ. InH′, the variables corresponding
to these subformulas evolve with rate 0 and at some point start evolving
according to the cost function. In the formula we ensure that the point
at which a subformula starts evolving according to the cost function aligns

32

with the point where the particular subformula is interpreted. The values
of the the variable at any point captures the cost since it started evolving
according to the cost function. We introduce a label for each subformula
which is true only if the value of the cost function in a particular state
satisfies the constraint imposed by the subformula. We modify φ1U∼cφ2 so
that at the state chosen for satisfaction of φ2, the proposition corresponding
to the variable for φ1U∼cφ2 also holds.

Next we present the formal definitions. Define Cψ = {ψ1U∼cψ2 |ψ1U∼cψ2

is a subformula of ψ}. Let us fix a WCTL formula φ. Let k = |Cφ| and f :
[k] → Cψ be a bijection. Let Zψ = {zeroϕ |ϕ ∈ Cψ} and Bψ = {compϕ |ϕ ∈
Cψ}. DefineH′φ = (Loc′,Act′U ,Labels′,Cont′, Edge′, Inv′,Flow′,Guard′,Reset′,Lfunc′),
where:

• Loc′ = Loc× 2k.

• Act′U = ActU ∪ {τ}.

• Labels′ = ΣQ ∪ Zφ ∪Bφ.

• Cont′ = Cont× Rk.

• Edge′ = Edge′1 ∪ Edge′2 where Edge′1 = {((l, S), a, (l′, S ′)) | (l, a, l′) ∈
Edge, S ⊆ S ′} and Edge′2 = {((l, S), τ, (l, S ′)) |S ⊂ S ′}.

• Inv′((l, S)) = Inv(l)× Rk.

• Given x ∈ Cont′, we denote x by (xr, xc) where xr ⊆ Cont is the
projection of x to the first n components (where Cont = Rn) and
xc ∈ Rk is the projection of x to the last k components.

Flow′((l, S), (xr, xc))(t) = (Flow(l, xr)(t), x
′
c), where if j 6∈ S then j-th

component of x′c is same as the j-th component of xc, and if j ∈ S,
then the j-th component of x′c is Cost((l, xj), t) where xj is the j-th
component of xc.

• G ′(e) = G(e)× Rk if e ∈ Edge′1, G ′(e) = Cont× Rk otherwise.

• Reset′(e) = {((xr, xc), (x′r, xc)) | (xr, x′r) ∈ Reset(e), xc ∈ R≥0} if e ∈
Edge′1, Reset′(e) = {(x, x) |x ∈ Cont× Rk

≥0}, otherwise.

• Lfunc′((l, S), (xr, xc)) = Lfunc(l, xr)∪Z∪B, where Z = {zerof−1(i) | i ∈
S}, and B = {compf−1(j) |xj ∼ c}, where xj is the j-th component of
xc}.

33

H′φ satisfies all the conditions of STORMED except for the separability
of the guards. Nevertheless, H′φ has bounded number of discrete transitions
along any execution, since H itself had bounded number of transitions along
any execution and the newly added edges can be taken only finitely many
times (due to the condition that an edge from Edge′2 requires that the second
component of the location strictly increase in size). Hence, due to results
from [15, 33], we can conclude that H′φ has a finite computable bisimulation
and model-checking H′φ with respect to any CTL formula is decidable.

We now define the CTL formula t(φ) corresponding to φ inductively.
The X operator here is the “next” operator of CTL. Given a formula ψ, let
Fψ =

∧
ψ′∈Cψ ¬zeroψ′ .

t(a) = a.
t(¬φ) = ¬t(φ).
t(φ1 ∨ φ2) = t(φ1) ∨ t(φ2)
t(Eφ1U∼cφ2) = EX(zeroφ1U∼cφ2 ∧ E((t(φ1) ∧ Fφ1)U(t(φ2) ∧ Fφ2 ∧ compφ1U∼cφ2)).
t(Aφ1U∼cφ2) = AX(zeroφ1U∼cφ2 =⇒ A((t(φ1) ∨ ¬(Fφ1 ∧ Fφ2))U

(¬(Fφ1 ∧ Fφ2) ∨ (t(φ2) ∧ compφ1U∼cφ2)))).

Given a state (l, x) ∈ Loc × Cont of H, and a subformula ψ of φ,
let Ext((l, x), ψ) defines a set of states of Hφ as follows. Ext((l, x), ψ) =
{((l, S), x, y) |S ⊆ [k], y ∈ Rk, S ∩ f−1(Cψ) = ∅, y = (y1, · · · , yk), yi = 0,∀i ∈
f−1(Cψ)}.

Proposition 21. Let q ∈ Loc×X and ψ be a subformula of φ. Then
H, q |= ψ iff for all q′ ∈ Ext(q, ψ), Hφ, q

′ |= t(ψ).

Since H′φ has a finite bisimulation quotient which can be constructed
when the underlying o-minimal theory is decidable, we can effectively check
if Hφ, q

′ |= t(ψ) which is a model-checking problem for CTL formula. Hence
we can model-check H with respect to a WCTL formula.

7. Conclusion

We have provided results for controller design for LTL winning condi-
tions and optimal-cost reachability conditions for a general class of hybrid
games and weighted hybrid games respectively. Our results apply to sys-
tems with rich continuous dynamics as well as a strong coupling between the
discrete and continuous dynamics (they do not require strong resets), called

34

STORMED hybrid games. At the same time, by providing a connection be-
tween the time-abstract bisimulation and the bisimulation on game graphs
we have extended the reachability-only results from [6] to general LTL game
specifications for other classes of hybrid games such as o-minimal hybrid
games. In addition, we have shown decidability for the optimal reachability
game for weighted STORMED hybrid games and decidability of WCTL for
weighted (closed) STORMED hybrid systems.

References

[1] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In In Proceedings of the Ninth
International Conference on Concurrency Theory (CONCUR98), vol-
ume 1466 of LNCS, pages 163–178. Springer-Verlag, 1998.

[2] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths
in weighted timed automata. In Proceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control, HSCC ’01,
pages 49–62, London, UK, 2001. Springer-Verlag.

[3] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller syn-
thesis for discrete and timed systems. In Hybrid Systems II, LNCS 999,
pages 1–20. Springer, 1995.

[4] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller
synthesis for timed automata 1. In Proc. IFAC Symposium on System
Structure and Control, pages 469–474, 1998.

[5] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaandrager.
Minimum-cost reachability for priced timed automata. In Proceedings of
the 4th International Workshop on Hybrid Systems: Computation and
Control, HSCC ’01, pages 147–161, London, UK, 2001. Springer-Verlag.

[6] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control in
o-minimal hybrid systems. In LICS ’06: Proceedings of the 21st An-
nual IEEE Symposium on Logic in Computer Science, pages 367–378,
Washington, DC, USA, 2006. IEEE Computer Society.

35

[7] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Weighted
o-minimal hybrid systems are more decidable than weighted timed au-
tomata. In LFCS, pages 69–83. Springer, 2007.

[8] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. Model-
checking for weighted timed automata. In Yassine Lakhnech and Sergio
Yovine, editors, FORMATS/FTRTFT, volume 3253 of Lecture Notes in
Computer Science, pages 277–292. Springer, 2004.

[9] Thomas Brihaye, Vronique Bruyre, and Jean franois Raskin. Model-
checking for weighted timed automata. In In Proceeding of FORMATS-
FTRTFT04, Lect. Notes Comput. Sci. 3253 , 277292, pages 277–292.
Springer, 2004.

[10] Thomas Brihaye, Tom Henzinger, Vinayak Prabhu, and Jean-Franois
Raskin. Minimum-time reachability in timed games. In ICALP 2007
Automata, Languages and Programming, pages 825–837, July 2007.

[11] Thomas Brihaye and Christian Michaux. On the expressiveness and
decidability of o-minimal hybrid systems. J. Complexity, 21(4):447–478,
2005.

[12] F Cassez, T A Henzinger, and J-F Raskin. A comparison of control
problems for timed and hybrid systems. In In HSCC 02, LNCS 2289,
pages 134–148. Springer, 2002.

[13] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms
for infinite state games. In Proceedings of CONCUR, pages 536–550,
2001.

[14] Georgios E. Fainekos, Antoine Girard, and George J. Pappas. Hierar-
chical synthesis of hybrid controllers from temporal logic specifications.
In Proceedings of the 10th international conference on Hybrid systems:
computation and control, HSCC’07, pages 203–216, Berlin, Heidelberg,
2007. Springer-Verlag.

[15] Raffaella Gentilini, Klaus Schneider, and B. Mishra. Successive abstrac-
tions of hybrid automata for monotonic ctl model checking. In Sergei N.
Artëmov and Anil Nerode, editors, LFCS, volume 4514 of Lecture Notes
in Computer Science, pages 224–240. Springer, 2007.

36

[16] E. Haghverdi, P. Tabuada, and G.J. Pappas. Bisimulation relations for
dynamical, control, and hybrid systems. Theoretical Computer Science,
342(2):229–261, 2005.

[17] A Henzinger, B Horowitz, and R Majumdar. Rectangular hybrid
games. In In Proc. 10th International Conference on Concurrency The-
ory (CONCUR’99),volume 1664 of Lecture Notes in Computer Science,
pages 320–335. Springer, 1999.

[18] T.A. Henzinger and P.W. Kopke. Discrete time control for rectangular
hybrid automata. Theoretical Computer Science, 221:369–392, 1999.

[19] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Proc. 27th Annual ACM
Symp. on Theory of Computing (STOC), pages 373–382, 1995.

[20] G. Lafferierre, G. J. Pappas, and S. Sastry. O-minimal hybrid systems.
In Mathematics of Control, Signals, and Systems, volume 13, pages 1–
21, March 2000.

[21] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of dis-
crete controllers for timed systems. In Ernst Mayr and Claude Puech,
editors, STACS 95, volume 900 of Lecture Notes in Computer Science,
pages 229–242. Springer Berlin / Heidelberg, 1995.

[22] Thomas Moor and J. M. Davoren. Robust controller synthesis for hy-
brid systems using modal logic. In Proceedings of the 4th International
Workshop on Hybrid Systems: Computation and Control, HSCC ’01,
pages 433–446, London, UK, 2001. Springer-Verlag.

[23] Y. Pang, M. P. Spathopoulos, and Hao Xia. Reachability and optimal
control for linear hybrid automata: A quantifier elimination approach.
IJC, 80(5):731–748, May 2007.

[24] André Platzer and Edmund M. Clarke. Computing differential invariants
of hybrid systems as fixedpoints. In ICAV, pages 176–189, 2008.

[25] R. Rosner. Modular synthesis of reactive systems. In Ph.D. thesis,
Weizmann Institute of Science, 1992.

37

[26] P. Tabuada. Controller synthesis for bisimulation equivalence. Systems
and Control Letters, 57(6):443–452, 2008.

[27] P. Tabuada and G.J. Pappas. Linear temporal logic control of
discrete-time linear systems. IEEE Transactions on Automatic Control,
51(12):1862–1877, 2006.

[28] Alfred Tarski. A Decision Method for Elementary Algebra and Geome-
try. University of California Press, 2nd edition, 1951.

[29] C. Tomlin, G.J. Pappas, and S. Shankar Sastry. Conflict resolution for
air traffic management: A case study in multi-agent hybrid systems.
Technical Report UCB/ERL M96/38, EECS Department, University of
California, Berkeley, 1996.

[30] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic ap-
proach to controller design for hybrid systems. Proceedings of the IEEE,
88(7):949 –970, July 2000.

[31] L. van den Dries and C. Miller. On the real exponential field with
restricted analytic functions. Israel Journal of Mathematics, (85):19–
56, 1994.

[32] Lou van den Dries. Tame Topology and O-minimal Structures. Cam-
bridge Univesity Press, 1998.

[33] Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan,
and Geir Dullerud. STORMED hybrid systems. In Proceedings of the
35th international colloquium on Automata, Languages and Program-
ming, Part II, ICALP ’08, pages 136–147, Berlin, Heidelberg, 2008.
Springer-Verlag.

[34] Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan,
and Geir E. Dullerud. STORMED hybrid games. In Rupak Majum-
dar and Paulo Tabuada, editors, HSCC, volume 5469 of Lecture Notes
in Computer Science, pages 480–484. Springer, 2009.

38

