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Optimal Design of Rack-and-Pinion 
Steering Linkages 
A mathematical model is developed for the design synthesis of rack-and-pinion 
steering linkages. The general objective is to minimize the difference between the 
steering centers over the full range of steering angle inputs while fitting into a 
reasonable space. Because there is a substantial amount of design art in these 
systems and the mathematical representation is not clear, the model, constraints, 
and objective actually "evolve" to the eventual desired form. The problem has 
multiple optima, and practical and heuristic considerations are used to choose 
suboptimal but more realistic solutions, once satisfactory optimal solutions are 
identified. These involve manipulation of the objective function, constraint set, and 
intitial guesses. Both leading and trailing link designs are considered, the former 
being slightly better. Limitations of the model are also presented. 

Introduction 

While there is considerable literature on computer analysis, 
design, and optimization of mechanisms (see e.g. [1]), there 
appear to be few published applications to the design syn
thesis of vehicle steering systems. Visa and Alexandru address 
this problem in [2] although they present limited explicit 
results and conclusions; in this and a companion article [3], 
they are more concerned with cross-coupling effects due to the 
suspension-steering linkage interaction. Interestingly, these 
articles contain no citations from Western literature. 
Otherwise, most of the steering linkage literature is in vehicle-
oriented publications and addresses qualitative factors af
fecting tire and linkage forces, tracking, and radius of cur
vature, e.g. [4-8]. In this paper, we attempt to relate this 
design art to specific criteria, mathematically expressed, and 
then employ computer-aided design techniques to synthesize 
"optimal" linkages. In so doing, the design synthesis problem 
actually evolves, since the problem as initially formulated was 
"incomplete"—as are most real design problems. 

The system considered is the rack-and-pinion steering 
linkage, currently one of the most widely used systems. The 
advantages of rack-and-pinion steering are its superior 
response to steering inputs, simplicity, and relative rugged-
ness. There are two practical implementations of the rack-
and-pinion steering mechanism, both of which are considered 
here: 

8 a trailing link design shown schematically in Fig. 1(a) 
8 a leading link design per Fig. \{b) 

Both designs are symmetric. 

Model 

In positioning the front wheels of a car to guide its direc-
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tion, ideally the center of curvature should be the same for all 
four wheels [4]. The greater the discrepancies between the 
respective centers ( Q and C2 in Fig. 1(c)), the more each 
wheel works against the others, producing increased wear on 
the tires, increased effort in the steering wheel, and additional 
drag which increases fuel consumption and decreases traction. 
For practical linkages of reasonable complexity and cost, it is 
impossible to make the centers coincide over a full range of 
steering, but we can seek to determine the dimensions of a 
feasible rack-and-pinion system to reduce the absolute value 
of the steering radius error to the minimum possible and/or to 
allocate the error in a most favorable way over the full range 
of steering inputs. 

In Figs. l(a, b), the actual links are X(3), R1, and 7?2. 
However, the design can be specified in several ways, and the 
geometric relations are conveniently defined by .the variables 
X(i), / = 1,2,3,4. Using these variables and the steering input 
U as shown, the model equations for both designs are iden
tical, except for two sign changes. (Complete model equations 
are given in the Appendix.) In Fig. 1, trunnion width TR 
(slightly less than tread width) and wheelbase WB are vehicle 
size parameters. The vectors CXA and C2B are perpendicular 
to the respective steering angles and define the radii fo cur
vature as a function of [/and X. With no change in the actual 
model equations, the model and results can be generalized by 
dividing through by 77?. This results in a single vehicle size 
parameter WB/TR = WB' and nondimensional variables 
denoted by the lower case variables, viz., 

x: x(i)=X(i)/TR,i=l,2,3,4 

u=U/TR 
(1) 

Unless otherwise stated, these variables are used, and the 
corresponding results are "per unit 77?." 

For practical computational reasons, the steering inputs are 
specified at discrete points uy usually the range was 0.02 to 
0.08 in increments of 0.01. These correspond to actual 
movement of 2 to 12 cm, depending on TR. By symmetry, 

220 /Vol. 105, JUNE 1983 Transactions of the ASME 

Copyright © 1983 by ASME
  

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



L TRAILING LINK 

TR 

T 
X(4) 

- X ( 3 ) - Rl 

R2 
n X(2) 

1 
X(l) 

f i LEAH INS I TMK 

R2 

X(1) 

-X(3) 

- T R -

QaroBti.. _ 

X(l) 

X(2) 

"T 

C. TURNING GFOMETRY FOR MODEL 

h — TR-

rM-
WB 

Fig. 1 Steering linkages and turning geometry 

only the half-range need be considered explicitly. Errors for 
very small steering inputs are not particularly meaningful: for 
u <0.02 the radius of curvature is usually so large that 0, and 
02 in Fig. 1(c) are virtually identical; even though IP, - P 2 1 
may be fairly large, the actual amount of scrubbing or 
dragging of the tire as it is forced to move at an angle with 
respect to its normal rolling direction (i.e., side-slip) is very 
small. The maximum steering input u would be extended 
when a minimum turning radius was desired that could not be 

Table 1 Variable limits and initial values (standard): x3 

TRAILING LINK LEADING LINK 

x ( l ) 

x (2) 

x (3) 

x (4 ) 

LOU 

0.00 

0.10 

0.30 

0.08 

HIGH 

0.12 

0.20 

0.60 

0.20 

x° 

.04 

.15 

.45 

.14 

LOW 

.045 

.045 

.450 

.045 

HIGH 

.136 

.136 

.91 

.136 

x° 

.091 

.091 

.624 

.091 

satisfied in this range. (As u increases, turning radius 
decreases.) While turning radius may be a more physically 
satisfying independent parameter than w, w is more convenient 
at this stage of the modeling. Usually u (max) = 0.08 was 
sufficiently large to satisfy turning circle considerations. 

At any steering input w,-, the error (per unit TR) in the 
centers of curvature is (per Fig. 1(c)) 

e(uj) = IP, -P2 I at that «,- (2) 

For generality and for reasons to appear, the objective 
function is expressed here as 

minimizeE(x) = 2^ Qje(Uj) (3) 

by choice of x(i), i = 1,2,3,4. The qjt j = 1,2, . . . ,J are 
non-negative weightings on the error at each position e(uj). 
The Uj,j = 1,2, . . . ,/positions are specified. Accordingly, 
the objective is defined at the inputs for which the qt ^ 0 . In 
principle, the q, can be arbitrary, and several sets were 
considered, as discussed in a later section. 

Equations (2, 3) comprise a kinematic minimum error 
objective (as suggested above and in [2, 4]) but do not con
sider certain dynamical considerations such as generation of 
lateral forces and the accompanying tire distortion, nor other 
geometric problems of fitting the mechanism into the vehicle. 
The latter can be partially considered in establishing system 
constraints, for example, by simple limits on the variables: 

xl(i)zx{i)zxh{i),i=l,...A (4) 
The baseline values are given in Table 1 and are suggested by 
practical considerations; we shall also consider the effects of 
these limits. Since the model can be solved explicitly (Ap
pendix), there are no equality constraints. 

Two other constraints were imposed, as needed: (a) the real 
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= initial values of x 
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values for x 
= upper feasible 

values for x 
= approximate over

all center of cur
vature, (P, + 
P2)/2 

= angle determined 
by steering linkage 
geometry when 
turning, Fig. 1 
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Table 2 Optimal designs for discrete values of u; trailing-link 
mechanism: WB' = 1.85; error curves in Fig. 3 

OPTIMIZED x * : x ( l ) 
FOR x(2) 

u x (3) 
x (4 ) 

" 1 * 
R2* 

TURNING 
RADIUS 

AT 
u 

THEORETICAL 
LIMIT (BINDING) 

u 

.02(D 
.04445 
.13412 
.49732 
.15481 

.14129 

.20792 

.04446 

.13548 

.49228 

.15325 

.14258 3.7918 

.21017 

.04375 

.13684 

.48458 

.15170 

.14367 

.21447 

.04309 

.13892 

.47971 

.14942 

.14545 

.21730 
.07 

.04243 

.14102 

.46302 

.14637 

.14726 

.22612 

.04177 

.14389 

.45253 

.14266 

.14983 

.23197 

.04112 

.14756 

.44022 

.13905 

.15318 

.23892 

Note ( 1 ) : £„ - .04, .15, .45, .14 for u » .02 
Xn for u>.02 are_x* f o r proceeding u (see T e x t ) . 

TRAILING E(X°) 

LEADING E(XC) 

Fig. 2 Error curves when optimized for £ 1 , equation (7) for values of u 
= 0.02, 0.03 0.08; trailing link, WB' 
for trailing and leading link designs. 

1.85. Also shown are e(x ) 

kinematic limit that the system not bind; and (b) ability to 
achieve a given minimum turning radius. Turning radius is 
approximated by 

p=(Pi+P2)/2. 
Binding becomes a factor if extremely large steering inputs are 
required to achieve the desired turning radius; usually this 
gives an impractical design. If within the reasonable range of 
u the turning radius were inadequate, then (b) was imposed in 
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Fig. 3 Weightings for composite objective functions: E2 and £ 3 

a subsequent run. Usually, satisfactory turning radii could be 
achieved; 2 to 2.5* WB' is a typical minimum value. 

Three values of the vehicle size parameter WB' are con
sidered: 1.70, 1.85, and 2.00. These span the current range of 
short subcompacts through large cars. For discussion pur
poses, the baseline size is WB' = 1.85, which corresponds to 
a large number of the current generation of popular 
designs—domestic, Japanese, and European. Nominal values 
would be as follows: 

wheelbase (m) = 2.40 - 2.68 
track (m) =1.30-1.44 

Problem Solution 

The preciseness of modeling and computer solutions 
notwithstanding, at the outset one often is not sure as to the 
most representative objective function, which constraints are 
critical, and whether additional constraints may be desired or 
required. That is, a criterion could be verbalized and even 
expressed generally as in equations (2, 3), but the actual 
weights clearly determine different designs; it thus becomes 
necessary to evaluate the different results (a finite number!) 
and establish an objective function and constraint set which 
we would expect to "minimize steering radius error over the 
steering range." Thus, we need some insight into the 
"character" of the problem, one which (as it turns out) has 
multiple optima that depend upon the starting point as well as 
the objective function and constraints. Thus, this study 
presents a picture of what is often involved in such studies: the 
evolution and determination of the "most suitable" com
bination of model, constraints, and objective function. 
Selection among the several optima may involve more than 
merely identifying the smallest value of an objective function 
and may be difficult to quantify, but it is nevertheless a real 
part of all design activities. 

Solution Method. The algorithm used for optimization is 
the PATSH version of the Hooke-Jeeves pattern search [9, 10] 
with an exterior SLUMT type penalty function [11]. Ac
cordingly, we seek to minimize 

F(x,rk) =/(x) + \/rk (violated constraints)2 (6) 

by choice of x(i), i= 1,2,3,4 
for a specified sequence of rk, rx > r2 > . . . > 0. Typically, 
values of rk were 1.0, 0.01, 0.0001. 

Computational Experience: Evolution of Problem 
Statement. The initial studies and most of our experience were 
on the trailing-link design of Fig. 1(a) and led to our eventual 
complete problem statement for leading as well as trailing link 
designs. 

We began by generating optimal designs for specific 
steering inputs, viz., 
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Table 3 Dimensions of optimal solutions; objective function £ 4 of 
equation (9) 

m' 

1.70 

1.85 

2.00 

1.70 

1.85 

2.00 

x* :x( l ) 
- x(2) 

x(3) 
x(4) 

.05865 

.19782t 
,29979t 
.20078t 

.1064 

.20145t 

.60259t 

.07489 

.10735 

.2000 t 

.59441t 

.09 

.08284 

.18782t 

.40983 

.19723t 

.15215t 

.15375 

.41163 

.2184 t 

.16005t 

.15619 

.40988 

.22791t 

"Best" 
f(x>* 

Ri 
1*2 

.03869 

.20633 

.36012 

.03286 

.22782 

.15681 

.03490 

.22697 

.14564 

.05345 

.20527 

.29523 

.05432 

.21631 

.30121 

.05881 

.22363 

.30364 

Turning 
Radius 
f 9u 

3.565 9 .10 

5.088 P 1.25 

4.91 9 .125 

3.56 9 .10 

3.64 8 .11 

4.06 IS .11 

Binding 

9 u 

>.13 

>.125 

>.125 

>.13 

.13 

>.13 

Alternate-Better 
Constraint Satisfaction 

x* :x( l ) 
x(2) 
x(3) f (x*) 
x(4) 

.06221 .03117 

.19863t 
,18402t 
.2000 

essentially .03455 
the same as 
1.70 

.0622 .0378 

.1986t 

.20001 

.2000t 

.08216 .08049 

.11692 

.45 t 

.1361 t 

.05662 .08699 

.13230t 

.46 t 

.13693t 

.0583 

.13585t .09207 

.44926t 

.140161-

t At or exceed a l im i t . 

Ex = e (ttj), a specific Uj (7) 
then evaluating the errors at the other inputs and the feasible 
steering range. As might be expected, the error could be made 
zero at any given ujt but the errors at the other points could 
become quite large. This criterion was used in [2] for one 
position only. This can be seen in Fig. 2; the designs appear in 
Table 2. Values for the initial design vector x° are also shown 
in Fig. 2. In generating the optima, starting with x° for ux = 
0.02, each optimum served as the initial guess for the next 
position. The optima are denoted by x*. This yielded a 
"family" of designs, in which rather small changes in the 
design variables essentially translate a characteristic curve 
laterally. In this case, there are about 10 percent decreases in 
x(l), x(3), and x(4) and a comparable increase in x(2) for the 
optima at u = 0.02 and u = 0.08. 

This suggested that some composite objective function 
should give better overall results, hence the form of equation 
(3). The error form of equation (2) was retained throughout, 
since it is physically meaningful and should provide well-
defined optima (e.g., as compared to a quadratic error 
function). Examples of the weighting q, are shown in Fig. 3. 
Our initial logic suggested the weightings for the curve 
denoted "criterion E2"; it soon became apparent that most 
variants which penalized intermediate points any significant 
amount would result in error curves generally as shown in Fig. 
2: zero at some intermediate point and increasing in absolute 
value toward either end of the steering range. Hence, we 
essentially inverted this curve for the weights of curve denoted 
"criterion E3" in Fig. 3. £3 penalizes errors at the end points 
and gave greatly improved composite error curves, as will be 
discussed. Taking this "philosophy" to an extreme suggested 
that an objective function of the form 

E(\)=q,e(uloJ + qhe(uhigh) (8) 
would further "flatten" the error curve. However, equation 
(8) turned out to be bistable. "Poor" results were obtained 
for «high > 0.085. Since uh = 0.08 generally gave acceptable 

TRAILING LINK 

USING Ei, 

LEADING LINK 

\ / 

HB' 

1.70 
r 7 

V—\A 
1.85 X «C 
2.00 

"ALTERNATE DESIGNS" KITH E„ 

1.70 r 
\ r 

2.00 
7. 

USING E, 

\ r 
(V- O 

1.35 J b 
( c f . TABLE 4 ) 

X 
Fig. 4 Optimal designs and selected alternates (to scale) 

VALUES OF KB 

ALTERNATES" 

Fig. 5 Error curves for trailing link optimal designs according to E 4 

minimum turning radii this value was used for Mhigh I U\0VI = 
0.02, per previous discussion. Using these, another "switch" 
between two different sets of solutions occurred around q, = 
2qh. In all cases, the better solutions occurred when qh < qt. 

A further "flattening" of the error characteristic was 
obtained by introducing an additional constraint on the errors 
at specified design points, typically the two end points, viz. 

Ie(0.02)-e(0.08)l<0.01 (9) 
As a consequence of this experience, consistently "good" 

results were obtained with the constraints of equations (4) and 
(8), ad hoc imposition of the binding and turning radius 
constraints, and an objective function of 

£4=£(0.02) + e(0.08) (10) 
This combination usually resulted in lower errors throughout 
the included steering range than did the composite objective 
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Table 4 Comparisons of objective function results WB' = 1.85 

Objec t i ve 
Funct ion 

e ( . 05 ) 

Ei ' e ( .06 ) 

E2 opt imal 

E2 a l t e r n a t e 

T r a i l i n g L ink 
x*:x(l) 
" x(2) 

x (3 ) f ( x * ) 

" ( 4 ) 

.04309 

.13892 

.47971 

.14942 

.04243 

.14102 

.46302 

.14637 

.1064 

.20145* 

.60257* 

.07467 

.06221 

.19863* 

.18402 

.2000* 

.0504 

.1892 

.6000* 

.1871 

.0544 

.1977* 

.602* 

.204* 

Leading L ink 
: x ( l ) 
x (2) 
x(3) f ( x * ) 
x (4 ) 

.1064 

.20145 

.60257 

.07469 

.15215 

.15375 
.41163 
.2184 

.0454 

.1290 

.8324 

.1352 

.0869 

.0835 

.8291 

.1175 

* Var iab les at a l i m i t , u s u a l l y upper 

functions. The range of 0.2 
required turning range. 

Results 

u < 0.08 generally spanned the 

For all objectives, the results showed some dependence on 
the starting point and to a lesser extent the variable limits, 
both of which are somewhat arbitrary. Often the initial guess 
was suggested by a previous solution, as above. The variable 
limits of equation (4) and Table 1 are largely practical, and 
therefore some violation is of little real consequence. 
Similarly, equation (9) was almost never satisfied, but it did 
tend to reduce the errors. Indeed, when a solution was in-
feasible, successive SLUMT stages might or might not give 
poorer answers (increased errors) as the solution was forced to 
meet the constraints. The limits were adjusted in a few studies 
to satisfy some extreme requirements—usually minimum 
steering radius without binding—or just to see what hap
pened. 

In presenting the results, generally the signed value of the 
error is plotted versus decreasing turning radius which 
corresponds to increasing input u, since the radius of turn is 
probably a more physically satisfying parameter. For con
venience, the criteria are identified as follows: 

1. E\ optimized for a specific input position, equation (7) 

2. E, equation (3), weighting of curve Ei, Fig. 3 

3. E, equation (3), weighting of curve £3 , Fig. 3 

4. E. equation (10) 

With criteria 2, 3, 4 the constraint set included equation (9). 
One selection of the "best" criterion and then the "best" 
design was to plot the range steering error for each computer-
generated optimal design: criterion EA consistently produced 
the least magnitude error from u = 0.02 to u = 0.08; these u 
typically gave p > 15 and p < 4, respectively. These designs 
are given in Table 3, and shown schematically in Fig. 4; the 

Fig. 6 Comparison of errors achieved for optima according to several 
objectives and at successive SLUMT stages; trailing link, WB' = 1.85 

Family of optima: trailing link, WB' = 1.85; Ef minimized 
starting at x = x* of £4 

error characteristics are shown in Figs. 5, 7, and 8. A sub
jective decision addressed the resulting linkage geometry and 
provides the reasons for also showing a slightly less optimal 
design, at least according to the mathematical criteria; these 
are discussed in the following sections. For comparison, 
designs and error curves for WB' = 1.85 (our typical car) for 
all criteria are given in Table 4 for both designs and in Fig. 6 
for the trailing link design. 

Note that the errors (abscissae) of curves 4-8 are one-tenth 
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ALTERNATES" 

Fig. 8 Errors for opt imal leading link designs using H 4 

those of the initial guesses and the exploratory single-position 
optima (Fig. 2). 

Trailing Link Designs. With E4 and the same standard x°, 
the optimum design for WB' = 1.70 is substantially different 
than those for WB' = 1.85 and 2.00, which are essentially the 
same, per Fig. 4. This is true for the "best" leading link 
design, also. The latter designs will tend to induce large forces 
in the connecting arms, so we sought to find alternate optima 
using the optimal x, i.e., x*, for WB' = 1.70 as the initial 
guess for WB' = 1.85 and 2.00. The result is the alternate 
design shown in Table 4; while quite good, the solutions show 
slightly larger errors than the previously found optima. For 
WB' = 1.70, the alternate actually appeared as a con
sequence of the successive SLUMT minimizations. The 
alternate designs for WB' = 1.85 and 2.00 never appeared at 
any SLUMT stage from the standard initial guess unless 
guided as above. All the alternate designs (for x* for WB' — 
1.70) are feasible; x* for WB' = 1.85 and 2.00 give 42)* and 
43)* at the upper limit. 

Criteria E2 and E3 yield optima similar to the alternate, 
except that the connecting link x(3) is longer (at the upper 
limit), as seen in Table 4 for WB' = 1.85. The results for E2, 
E3, and E4 emphasize that weighting intermediate positions 
mainly penalizes points which will tend to have smaller errors 
than at the extremes. For example, designs for £(0.05), 
£(0.06), E2, and E3 are more similar to each other than to E4. 
Even though these are all "optimal designs" clearly E4 op
tima and the alternatives yield less error over the widest range. 
E3 is the next best, per Fig. 6. However, despite the 
significantly different linkage, the actual error curves are not 
all that different: The alternate error curves are translated to 
the right. A further advantage of the alternate designs is the 
shorter turning radius for a given u. All of the alternate 
designs look very similar for the various WB', Principally, 
the longer WB' tend to increase the errors at the extremes. 

What we apparently are seeing are multiple op
tima—"dips" in the design objective surface. As in the earlier 
study of the one-input-position optima (Table 2, Fig. 3 of 
which the results were distinctly suboptimal, relatively), we 
can generate families of optimal designs using the x* of E4 as 
starting points of a minimization for E\ (u). This was done 
for WB' = 1.85. Starting with x° = (0.110, 0.199, 0.590, 

- • . 0 6 

•P -

LEADING* 

ALTERNATE 

Fig. 9 Grouping error characterist ics of opt imal designs: leading and 
trail ing link mechanism according to £ 4 

0.081) = x* for E4, 41), 42), and 43) were essentially un
changed while the setback x(4) increased from 0.0811 for u = 
0.02 to 0.0949 for u = 0.08; errors were zero at the respective 
u. The error curves are shown in Fig. 7. Clearly this particular 
design is quite sensitive to 44). 

Leading Link Design. The properties and evolution for this 
arrangement are generally similar to the foregoing; one 
difference in the soluton process is that significantly different 
designs were found with successive SLUMT optimizations. 
Here, satisfaction of the constraints resulted in quite different 
designs, albeit with significantly larger values of E4. In Fig. 4, 
the smallest error designs were substantially bowed and would 
probably interfere with the tires, especially for the longer 
WB'. The error curves of Fig. 8 are clearly grouped according 
to the specific design. The leading link designs are somewhat 
sharper-turning than the trailing-link designs. 

Discussion 

Comparison of Leading and Trailing Link Designs. In all 
cases, the alternate designs (and the optima for WB' = 1.70) 
offer practical advantages, for example, less likelihood of 
interference, lower internal forces, and shorter turning radius. 
While we have presented the results versus turning radius, if 
presented versus u it is seen that the various curves are 
essentially coincident, per Fig. 9. The minimum error point is 
usually at high u, due to the increasing slope of the error curve 
with u. 

While the optimal and alternate trailing-link designs yield 
lower errors in the design range, sales-literature and parking-
lot surveys indicated that the leading link designs predominate 
in recent vehicles, especially among the front-wheel drive 
vehicles. Incidentally, the leading link x° for this study was 
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based on a very popular subcompact import. This design 
shows virtually constant and large error when evaluated in 
this model, per Fig. 2, "Leading £'(x0)" curve. 

Overall System Design Perspective. In order to concentrate 
on the reduction of errors in the location of the turning center 
of the wheels of a vehicle, some important aspects of the 
steering problem have been disregarded or simplified, and it is 
important to recognize the limitations of such a design 
procedure. 

First, the steering mechanism is part of a total design. It 
must fit into and around the dimensions of the vehicle-
wheelbase, track width of the front tires, chassis or subframe, 
front suspension, and the engine space requirements. Clearly, 
these restrict the locations of steering linkage parts. Next, the 
linkage must not interfere with the suspension and its 
movements; note that the vertical movement of the suspension 
can induce a steering effect depending on the relative 
positions of the linkages. If the pivot points of the upper and 
lower suspension arms and the steering connecting rod are not 
aligned, the connecting rod would "push" or "pull" the 
wheel when the suspension moves, causing a steering effect. 
Other arrangements are possible with different amounts of 
suspension-induced steering. To some extent, the kingpin 
angle and the effective tire pivot point determine the true 
trunnion location, rather than the kinematic location. A 
dynamical consideration is the need for tire side forces to 
control turning; because of frictional effects these can alter 
the true center of curvature from the theoretical values 
calculated here. Some of these effects could be directly in
corporated into the model or constraint set, although in the 
present study, we have imposed these "after the fact" i.e., by 
dismissing unacceptable designs. Inclusion might cause the 
results (designs) to change, but the approach and general 
tendencies should remain much the same. 

Closure 

Our purposes here are to demonstrate the evolution of a 
suitable "complete" problem formulation including con
straints and objective and then to illustrate the character of 
the design results. We have shown that multiple optima can be 
identified, but that these too can be preferentially evaluated. 
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A P P E N D I X 

Model (Ref. Figures 1) 
Centered Position 

i?,=VX(l)2+X(2)2 

ST=(TR-X(i))/2 

R2=-J(ST*X(1))2+(X(2)-X(4))2 

B4 = arctan (X(4)/ST) 

D2=ST2+X(4)2 

A4 = arccos (R^-R^ + D2)/(2*Rl *D)) 

ANGI=y44+54 

Right Turn: Input t/as Shown in Figs. l(a, b) 

Right Side 

DX, =ST+U 

Left Side 

Dl=^/DX]
2+X(4)2 

Bi= arctan {X{4)/DXi) 

At = arccos({R{
2 -R2

2 +D{
2)/(2*R{*A)) 

fl^ANGI-^+tf,) 

DX2 = ST-U 

D2=slDX2
2+X(A)2 

B2 = arctan (X{4)/DX2) 

A2 =arccos ((fl,2 -R2
2 +D2

2/(2*Rl *D2)) 

62=(A2+B2) - ANGI 

ERROR 

E(u) = \Pi - P21, where 
Pi = ±TR+WB/im(9l) 

P2 = WB/t<m (62) 

Upper sign for trailing-link, lower for leading 
Left turn is symmetric. 
With TR = I, all variables are normalized per text 
equation (1). 
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