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Vibration signals resulting from railway rolling bearings are nonstationary by nature; this paper proposes a hybrid approach for
the fault diagnosis of railway rolling bearings using segment threshold wavelet denoising (STWD), empirical mode decomposition
(EMD), genetic algorithm (GA), and least squares support vector machine (LSSVM). The original signal is first denoised using
STWD as a prefilter, which improves the subsequent decomposition into a number of intrinsic mode functions (IMFs) using EMD.
Secondly, the IMF energy-torques are extracted as feature parameters. Concurrently, a GA is employed to optimize the LSSVM to
improve the classification accuracy. Finally, the extracted features are used as inputs for classification by the GA-LSSVM. Actual
railway rolling bearing vibration signals are used to experimentally verify the effectiveness of the proposed method. The results
show that the novel method is effective and accurate for fault diagnosis of railway rolling bearings.

1. Introduction

Rolling bearings are one of the crucial components used
in the railway sector, and bearing failure generally leads to
serious damage for the railway. Hence, the fault diagnosis of
railway rolling bearings is of great significance [1]. In fault
diagnosis, themost important aspect is the feature extraction,
which is employed to characterize the operating status of
railway rolling bearings. Accurate and effective features can
be easily used for automatic fault diagnosis in tandem with
a neural network [2] or a relevance vector machine [3].
However, the nonlinear and nonstationary nature of acquired
railway rolling bearing vibration signals and the existence
of interferences caused by external factors both increase the
difficulty of extracting features from the complex vibration
signal. Over the last two decades, numerous fault diagnosis
methods have been developed such as envelope analysis,
short-time Fourier transform (STFT) [4], principal compo-
nent analysis (PCA) [5], artificial neural network (ANN)
[6], and genetic algorithm (GA) [7]. In this paper, a hybrid
method for the fault diagnosis of railway rolling bearings is

presented. The vibration signal from a bearing at an early
stage of defect development is often masked by machine
noise, making it difficult to detect the fault by vibration
analysis techniques [8]; therefore, segment threshold wavelet
denoising (STWD) is used as a prefilter for denoising. The
vibration signal is then decomposed via empirical mode
decomposition (EMD), which is a very reasonable approach
for nonstationary signal analysis. EMD is used to extract the
energy-torques of the intrinsic mode functions (IMFs) as
feature parameters to be input into a least squares support
vectormachine (LSSVM) for classification. AGA is employed
to search for optimal LSSVM parameters to ensure optimal
adaptation in its global scope. Actual railway rolling bearing
vibration signals are used to experimentally verify the effec-
tiveness of the proposed method. The results show that the
proposed method is effective and achieves a high recognition
rate for fault diagnosis of railway rolling bearings.

The remainder of this paper is organized as follows.
EMD and energy-torque feature extraction are discussed in
Section 2. GA-LSSVM is described in Section 3. In Section 4,
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the method is validated experimentally. Finally, conclusions
are drawn in Section 5.

2. EMD and Energy-Torque Feature Extraction

2.1. EMD. The EMD method proposed by Huang et al. [9]
decomposes a signal into a number of IMFs and a single
residue. Each IMF must satisfy the following conditions:

(1) Over the entire dataset, the number of extrema and
the number of zero-crossings must either be equal or
differ at most by one.

(2) At any point, themean values of the envelopes defined
by local maxima and by local minima are zero.

In accordance with this definition, any signal 𝑥(𝑡) can be
decomposed as follows [10].

Step 1. Define 𝑥(𝑡) = 𝑥
0
(𝑡) and 𝑟

0
(𝑡) = 𝑥

0
(𝑡).

Step 2. Define the maximum number of extracted IMFs.

Step 3. Identify all the local extrema of 𝑥(𝑡).

Step 4. Connect all local maxima and minima by a cubic
spine as the upper envelope 𝐸max(𝑡) and the lower envelope
𝐸min(𝑡), respectively.

Step 5. Construct the mean of the upper and lower envelopes
𝑚(𝑡) = 0.5(𝐸max(𝑡) + 𝐸min(𝑡)).

Step 6. Define the detail (proto-IMF) as 𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡),
and replace 𝑥(𝑡) by 𝑑(𝑡).

Step 7. Repeat Steps 3–6 until 𝑑(𝑡) meets IMF conditions (1)
and (2) and the stoppage criterion of the sifting process is
fulfilled; then derive the 𝑖th IMF (𝑐

𝑖
(𝑡)) from 𝑑(𝑡) and replace

𝑥(𝑡) by 𝑟
𝑖
(𝑡) = 𝑟

𝑖−1
(𝑡) − 𝑑(𝑡).

Step 8. If the stoppage criterion of the signal’s decomposition
is fulfilled, then finish the decomposition process; otherwise,
go to Step 3.

2.2. Energy-Torque Feature Extraction. The steps for energy-
torque feature extraction are as follows.

Step 1. STWD is used to filter the railway rolling bearing
signals.

Step 2. The denoised vibration signals are decomposed into
some number of IMFs via EMD, and the first 𝑛 IMFs, that is,
𝑐
𝑖
(𝑡), 𝑖 = 1, 2, 3, . . . , 𝑛, which include the most dominant fault

energy, are chosen to extract the features.

Step 3. Calculate the energy-torque of every small time block,
which, for a discrete signal, is given as

𝐸
𝑖
=

𝑚

∑

𝑘=1

(𝑘 ⋅ Δ𝑡)
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑘 ⋅ Δ𝑡)

󵄨
󵄨
󵄨
󵄨

2
, (1)

where𝑚 is the total number of sampling points 𝑘 andΔ𝑡 is the
sampling period. Calculate the energy-torques 𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛

for all respective 𝑐
𝑖
(𝑡), 𝑖 = 1, 2, 3, . . . , 𝑛, based on (1).

Step 4. Construct the feature vector T from 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
:

T = [𝐸1
𝐸
2

⋅ ⋅ ⋅ 𝐸
𝑛] . (2)

When 𝐸
𝑖
become large, normalize T as follows:

T󸀠 = [

𝐸
1

𝐸

,

𝐸
2

𝐸

, . . . ,

𝐸
𝑛

𝐸

] , (3)

where

𝐸 = (

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝐸
𝑖

󵄨
󵄨
󵄨
󵄨

2
)

1/2

. (4)

The 𝑖th IMF energy-torque is then calculated as follows [11]:

𝐸
𝑖
= ∫

+∞

−∞

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡. (5)

3. GA-LSSVM Algorithm

3.1. GA. GA is a method proposed by Holland [12] for pro-
viding solutions to optimization and learning problems and
is based freely on several features of biological evolution [13].
The algorithm begins with the initialization of a population
of candidate solutions of which each is comprised of alterable
properties denoted as chromosomes or a genotype. The
initialized population is then evolved using genetic operators,
giving, as in nature, more reproductive opportunities to
the most highly fit chromosomes (i.e., those providing the
best solution to the problem considered based on a fitness
function) [14]. The GA applies selection, crossover, and
mutation operators to construct fitter solutions and further
processes the population by replacing unsuitable candidates
according to the fitness function.

(1) Initialization of Population. Set the population scale and
generate initial population including individuals with the
number 𝑁. Set the range of data and select linear interpo-
lation function [15] to generate real vectors as the individuals
of GA.

(2) Determination of Fitness Function. Fitness function is a
good standard which will effectively evaluate the adaptability
to environment of individuals in population.

(3) Selection. The paper uses roulette wheel selection [16] to
determine the probability by which the individual will be
selected. The roulette wheel selection is a kind of selecting
strategy for individual based on the fitness proportion. The
formula of selection probability is shown as follows:

𝑝
𝑖
=

𝑓
𝑖

∑
𝑁

𝑖=1
𝑓
𝑖

, 𝑖 = 1, 2, . . . , 𝑁, (6)

where 𝑁 is the population scale and 𝑓
𝑖
is the reciprocal of

individual fitness.

(4) Crossover and Mutation. To generate new population,
GA takes the operations of crossover and mutation to deal
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with current population. As a consequence, probabilities of
crossover and mutation are two important parameters which
will have a great effect on the performance and property of
convergence of GA. Different from traditional algorithm, this
paper proposes the adaptive genetic algorithm [17], in which
probabilities of crossover andmutation can change adaptively
according to individual fitness. The adaptive change will
maintain the diversity of population, improve the capability
of global search, and avoid individual being mature earlier,

𝑃
𝑐
=

{
{

{
{

{

𝑃
𝑐1

−

(𝑃
𝑐1

− 𝑃
𝑐2
) (𝑓
󸀠
− 𝑓avg)

𝑓max − 𝑓avg
, 𝑓
󸀠
≥ 𝑓avg,

𝑃
𝑐1
, 𝑓

󸀠
< 𝑓avg,

𝑃
𝑚

=

{
{

{
{

{

𝑃
𝑚1

−

(𝑃
𝑚1

− 𝑃
𝑚2

) (𝑓 − 𝑓avg)

𝑓max − 𝑓avg
, 𝑓 ≥ 𝑓avg,

𝑃
𝑚1

, 𝑓 < 𝑓avg,

(7)

where 𝑃
𝑐
is the crossover probability, 𝑃

𝑚
is the mutation

probability,𝑓max is themaximumfitness of population,𝑓avg is
the average fitness,𝑓󸀠 is the larger fitness of two individuals in
crossover, and𝑓 is the fitness of individual inmutation. Based
on repeated experiments and former experience, the paper
chooses 𝑃

𝑐1
= 0.9, 𝑃

𝑐2
= 0.7, 𝑃

𝑚1
= 0.1, and 𝑃

𝑚2
= 0.002.

3.2. LSSVM Algorithm. LSSVM was proposed by Suykens et
al. [18] to train an SVM by solving a set of linear equations.
The primary differences between LSSVM and SVM are that
LSSVM transforms the inequality constraints into equality
constraints and employs a square instead of the empirical risk
quadratic. LSSVM can be written as follows [19]:

min
𝑤,𝑏,𝑒

𝐽 (𝑤, 𝑒) =

1

2

(𝑤
𝑇
𝑤) +

1

2

𝐶(

𝑛

∑

𝑖=1

𝑒
2

𝑖
)

S.T. 𝑦
𝑖
= 𝑤
𝑇
𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
.

(8)

Here, 𝑤𝑇𝜙(𝑥
𝑖
) is the linear classifier in the feature space, 𝑏 is

the bias parameter, 𝑒
𝑖
is the error of the 𝑖th training example,

such that ∑𝑛
𝑖=1

𝑒
2

𝑖
is the empirical risk, and ∑

𝑛

𝑖=1
𝑒
2

𝑖
represents

the penalty factor.We can then acquire the Lagrange function

𝐿 (𝑤, 𝑏, 𝑒, 𝑎) = 𝐽 (𝑤, 𝑒)

−

𝑛

∑

𝑖=1

𝑎
𝑖
{𝑤
𝑇
𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
} ,

(9)

where 𝑎
𝑖
is the Lagrange multipliers.

The following are established according to the Karush-
Kuhn-Tucker (KKT) condition:

𝜕𝐿

𝜕𝑤

= 0 󳨀→ 𝑤 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) ,

𝜕𝐿

𝜕𝑏

= 0 󳨀→

𝑛

∑

𝑖=1

𝛼
𝑖
= 0,

𝜕𝐿

𝜕𝑒
𝑖

= 0 󳨀→ 𝛼
𝑖
= 𝐶𝑒
𝑖
,

𝜕𝐿

𝜕𝑎
𝑖

= 0 󳨀→ 𝑦
𝑖
= 𝑤
𝑇
𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
.

(10)

By eliminating the parameters 𝑒 and 𝑤 in (10), the equation
can be rewritten as

𝑔 (𝑥) =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝑑 (𝑥
𝑖
, 𝑥) + 𝑏. (11)

The kernel function in this paper adopts the radial basis
function

𝑑 (𝑥
𝑖
, 𝑥) = exp(−

󵄩
󵄩
󵄩
󵄩
𝑋 − 𝑋

𝐾

󵄩
󵄩
󵄩
󵄩

2

2𝜎
2

) , (12)

where 𝜎 is the kernel width.

3.3. Selection of LSSVM Parameters by GA. After building
the LSSVM model, GA is carefully designed to optimize the
penalty factor and kernel parameters of LSSVM, avoiding
premature convergence and permutation problems. The GA-
LSSVM involves several steps as follows.

Step 1 (encoding and initialization). Free parameters 𝑐 and 𝜎

are represented by a chromosome comprised of two genes.

Step 2 (calculating fitness function). A fitness function is
used to assess the quality of a solution.

Step 3 (parent selection). Two chromosomes with higher
fitness values are selected from the parent population.

Step 4 (crossover and mutation). Crossover randomly
exchanges genes between two chromosomes, and the
mutation operator occasionally converts a “1” bit into a “0”
bit or vice versa within a candidate solution’s genes.

Based on the algorithm elements described above, a
flowchart of the proposed method for railway rolling bearing
fault diagnosis using STWD-EMD-GA-LSSVM is presented
in Figure 1. As shown in the flowchart, the raw vibration
signal is denoised by STWD, EMD is used to decompose the
denoised signal into a number of IMFs, and the IMF energy-
torques are calculated. The GA is then used to optimize the
LSSVM, and, finally, the GA-LSSVM is used for classification
of the feature parameters.
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Initial population

Calculate fitness

Selection

Crossover and mutation

Is it meeting the 
termination criterion?

New populations

Stop GA training

LSSVM

Output the result

End

Yes

No

Raw vibration signal

Signal noise reduction by 
STWD

EMD decomposition

IMF energy-torques

Figure 1: Flowchart of the novel intelligent fault diagnosis model.

4. Experimental Results

4.1. Experimental Setup. Theexperiments were performed on
a SpectraQuest, Inc., machinery fault simulator capable of
simulating a range of machine faults such as gearbox, shaft
misalignment, rolling element bearing, and resonance and
reciprocating mechanism effects and the experimental setup
is shown in Figure 2. It consists of a variable speed drive,
a parallel shaft gearbox with rolling bearings, and a pro-
grammable magnetic brake (for gearbox loading). Vibration
signals were collected with 12 kHz sampling rate for three
different conditions under a given motor loading: (1) normal;
(2) outer race fault (ORF); and (3) inner race fault (IRF).

4.2. Application. The time domain signals of theORF are pre-
sented in Figure 3, whereas Figure 4 displays the denoised sig-
nals. Equidistant impulses are clearly observable in Figure 4,

Figure 2: Experimental setup for bearing fault diagnosis.

in contrast to the signal given in Figure 3. Figure 5 presents
5 IMFs derived by EMD from the railway rolling bearing
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Figure 3: The time domain of the outer ring fault signal.
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Figure 4: The denoised outer ring fault signal.

vibration signals. The energy-torque feature parameters were
divided into a training group and a testing group. A total of
20 experimental datasets were obtained for each operational
condition, and 15 datasets were employed for training and the
remaining 5 datasets were used to test the recognition rate
of the proposed method. A portion of the operational data
employed for training is presented in Table 1, and a portion of
the operational data used for testing is presented in Table 2.
Finally, the energy-torque feature parameters are applied as
input vectors of GA-LSSVM for classification, and the results
are shown in Figure 7.

From Figures 6 and 7, the hybrid GA-LSSVM model
obtains a higher detection rate than LSSVM for fault recog-
nition of railway rolling bearings. The experimental results
verify that the proposed STWD-EMD-GA-LSSVM method
is useful for classifying the railway rolling bearings faults
considered.
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Figure 5: The outer ring fault signal decomposed into 5 IMFs by
EMD.
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Table 1: A portion of the bearing operational data employed for training.

𝐸
1

𝐸
2

𝐸
3

𝐸
4

𝐸
5

Fault status Fault vector
1 0.9766 0.1272 0.0991 0.122 0.0737 Normal signal 1
2 0.9596 0.148 0.077 0.209 0.0873 Normal signal 1
3 0.9562 0.1429 0.0679 0.2365 0.0678 Normal signal 1
4 0.8743 0.4503 0.113 0.0959 0.1043 Inner ring fault signal 2
5 0.8929 0.4201 0.0986 0.1107 0.0649 Inner ring fault signal 2
6 0.8792 0.4137 0.188 0.1122 0.0892 Inner ring fault signal 2
7 0.9711 0.1659 0.0222 0.0346 0.1667 Outer ring fault signal 3
8 0.9631 0.1525 0.1587 0.0216 0.1532 Outer ring fault signal 3
9 0.951 0.2013 0.2162 0.0186 0.0895 Outer ring fault signal 3

Table 2: A portion of the bearing operational data used for testing.

𝐸
1

𝐸
2

𝐸
3

𝐸
4

𝐸
5

Fault status Fault vector
1 0.9772 0.1131 0.1109 0.1171 0.079 Normal signal 1
2 0.9745 0.1355 0.0859 0.1415 0.067 Normal signal 1
3 0.9682 0.1313 0.1311 0.1566 0.0605 Normal signal 1
4 0.8771 0.421 0.1522 0.1472 0.0926 Inner ring fault signal 2
5 0.9034 0.3704 0.1352 0.1479 0.0806 Inner ring fault signal 2
6 0.7942 0.5615 0.1654 0.099 0.1296 Inner ring fault signal 2
7 0.9446 0.2831 0.0192 0.0163 0.1642 Outer ring fault signal 3
8 0.9476 0.1171 0.272 0.0159 0.119 Outer ring fault signal 3
9 0.9443 0.1283 0.2912 0.0493 0.068 Outer ring fault signal 3

5. Conclusions

To improve the signal-to-noise ratio, a novel method for
the fault diagnosis of railway rolling bearings using STWD-
EMD-GA-LSSVM was presented. Firstly, the raw vibration
signal was denoised using STWD. Then, EMD was used
to decompose the signal, and the IMF energy-torques were
extracted as feature parameters. A GAwas carefully designed
to optimize the LSSVM, avoiding premature convergence and
permutation problems. Finally, fault samples of IMF energy-
torques were used as LSSVM input parameters to realize
intelligent fault diagnosis. The testing results show that the
proposed approach can effectively and accurately diagnose
railway rolling bearing faults.
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