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Abstract

We discuss some conceptual issues that any approach to quantum
gravity has to confront. In particular, it is argued that one has to find
a theory that can be interpreted in a realist manner, because theories
with an instrumentalist interpretation are problematic for several well-
known reasons. Since the Hilbert space formalism almost inevitably
forces an instrumentalist interpretation on us, we suggest that a the-
ory of quantum gravity should not be based on the Hilbert space
formalism. We briefly sketch the topos approach, which makes use of
the internal logic of a topos associated with a quantum system and
comes with a natural (neo-)realist interpretation. Finally, we make
some remarks on the relation between system logic and metalogic.

Should storms, as well may happen
Drive you to anchor a week

In some old harbour-city
Of Ionia, then speak

With her witty scholars, men
Who have proved there cannot be

Such a place as Atlantis:
Learn their logic, but notice

How its subtlety betrays
Their enormous simple grief;

Thus they shall teach you the ways
To doubt that you may believe.

W.H. Auden, from Atlantis (1941)
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“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.”

Ludwig Wittgenstein, Tractatus logico-philosophicus, Satz 5.6

1 Introduction

Doing research in quantum gravity is a profoundly strange endeavour: neither
the boundaries of the subject, nor the methods of inquiry, nor the goals of
the search, nor the criteria of success are commonly agreed upon. This
holds in particular when one considers not a specific approach with its often
formidable technical apparatus and mathematical difficulties, but conceptual
questions that are common to the various approaches.

There are no observable phenomena that unambiguously belong to the
realm of quantum gravity, so our search is neither data-driven, nor would a
successful theory of quantum gravity necessarily much expand the range of
natural phenomena we can explain (or at least describe) conceptually and
mathematically. A while ago, Chris Isham asked me rhetorically: “What if
someone came today, with a printout of three long articles in his or her hands,
and claimed that these articles contain the Theory of Quantum Gravity? How
would we judge if this person is right or wrong? Which criteria apply?”.

In this article, I will consider some very general conceptual questions on
the way to quantum gravity. Whilst these questions may seem metaphysical
(a word that is often used in a pejorative sense by working physicists), in
the end each technical approach will be confronted by such questions. I will
make some remarks on the following questions:

1. Is quantum theory necessarily quantum? Is it adequate to (try to)
expand concepts of quantum ideas to a theory of quantum gravity, with
the usual mathematical apparatus of quantum theory intact? Could
quantum gravity be an instrumentalist (or operational) theory, or does
it have to be a realist theory?

2. If we aim at a realist form of quantum theory and theories ‘beyond
quantum theory’ such as quantum gravity, what kind of logic could
we potentially use in the face of no-go theorems such as the Kochen-
Specker theorem?

3. In an encompassing theory of the whole universe, which rôle does the
physicist play – is she or he necessarily part of the description?

Of course, I cannot hope to give full answers to these questions; I can merely
sketch some ideas and recent technical developments using topos theory in
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physics which may become useful in finding answers to such questions.

In section 2, the well-known argument why instrumentalist interpretations
are problematic in quantum gravity is presented. Yet, the conclusion we
draw from this is non-standard: a theory of quantum gravity should not be
based on Hilbert spaces. Section 3 gives an outline of some basic structures
in the topos approach to the formulation of physical theories, leading to a
neo-realist interpretation of the new topos-based mathematical formalism
for quantum theory. The topos approach to the formulation of physical
theories was initiated by Isham [28] and Isham/Butterfield [29, 30, 31, 32],
was developed and substantially expanded by this author and Isham [16,
17, 18, 19, 6, 7, 8, 9, 20, 21, 10, 11, 12], and further developed by Heunen,
Landsman, Spitters and Wolters [25, 26, 39, 27, 40], Flori and collaborators
[23, 3, 4] and others [36, 37]. In section 4, we briefly argue about the relation
between ‘system logic’ and metalogic, and section 5 concludes.

2 Is quantum gravity necessarily quantum?

This question may seem trivial at first sight: since quantum gravity is sup-
posed to unify or reconcile quantum theory and general relativity, it will of
course be some sort of quantum theory (just as it will also be some sort of
theory of gravity). Yet, what is less clear is if a theory of quantum gravity
necessarily must be based on the Hilbert space formalism?

Ever since von Neumann gave quantum mechanics its mathematical form
in 1928, the Hilbert space formalism has been the mathematical underpinning
of quantum theory. Further developments like quantum field theories added
more mathematical structures, but the Hilbert space formalism remained the
core of the mathematical apparatus of quantum theory.

2.1 Interpretations of quantum theory

Quantum theory, like every physical theory, consists of a mathematical ap-
paratus and an interpretation that links the mathematics to physical entities
and processes. In the case of quantum theory, a plethora of interpretations
exists, and there is an ongoing debate about which of these interpretations
is to be preferred. Importantly, the debate is largely concerned with inter-
pretations of the Hilbert space formalism, while the Hilbert space formalism
itself is rarely questioned. Hence, the underlying mathematical apparatus of
quantum theory remains more-or-less fixed in this debate.

Instrumentalism. Most interpretations of quantum theory, in particu-
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lar the classical Copenhagen interpretation and operational interpretations,
which have become popular again recently, posit a fundamental distinction
between quantum system and observer. Measurements are primitive notions
and hence are not in need of a definition in such an interpretation. Neces-
sarily, observers and their measuring devices are not quantum systems, but
classical, which leads to many interpretational issues.

An instrumentalist interpretation does not give rise to a picture of re-
ality. It restricts itself to predicting outcomes of experiments (often in a
probabilistic sense) that an observer performs on the system. As such, an
instrumentalist interpretation does not tell us much about what the quan-
tum system ‘does’ or ‘is’ if we don’t measure. Given a closed system, an
instrumentalist view is not informative.

Realism. In contrast to an instrumentalist interpretation, a realist in-
terpretation does not fundamentally depend on observers and measurements.
Rather, such an interpretation gives a picture of reality, of ‘how things are’
and what ‘is actually going on’. In a realist interpretation, observers and
measurements are secondary concepts. Measurements can reveal what is
going on, but they are not fundamentally adding anything. Of course, we
idealise here and assume the case of non-disturbing measurements.

Yet, as is well known, it is very hard to come up with a realist interpreta-
tion of the Hilbert space formalism. The only two established examples are
the de Broglie-Bohm pilot wave formalism, which has massive problems with
the extension to special relativistic space-time, and the Everett many-worlds
interpretation. The latter posits that whenever a quantum experiment with
several possible outcomes is performed, all outcomes are realised and the uni-
verse splits up into corresponding branches. This (not very frugal) ontology
may be acceptable for some philosophers of physics, but it does not seem
attractive to us. What is ‘real’ in many-worlds is the wave function of the
universe, which of course is inaccessible in principle and does not undergo
measurement or collapse. It is doubtful if this can be seen as a ‘picture of
reality’ of the kind we are aiming at. An observer in many-worlds only has
experience of one branch, but we also have to take the god’s-eye view of the
wave function of the universe to make sense of the theory.

Born rule and instrumentalism. In fact, the Hilbert space formalism
almost forces an instrumentalist interpretation on us. A key aspect of the
Hilbert space formalism, and the link to observable phenomena, is the Born
rule that allows calculating expectation values of observables when the system
is in a given state. Of course, the concepts of expectation values and proba-
bilities presuppose the two-level ontology system-observer and are dependent
on (repeated) measurements. Hence, there is a direct link between the usual
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interpretation of the Born rule and instrumentalist interpretations of quan-
tum theory. It is much-debated whether a many-worlds interpretation, in
which every possible outcome occurs and is equally ‘real’, can reproduce the
probabilistic predictions of quantum theory.

Relativistic quantum field theories. It is commonly accepted that
the interpretational problems of non-relativistic quantum theory are not
solved by going to relativistic quantum field theory. Instead of expectation
values, one considers cross sections, scattering probabilities, etc., but also
these arise from experiments performed by classical observers. This means
that at least implicitly we use an instrumentalist interpretation also in QFT.

2.2 Instrumentalism in quantum gravity?

It is obvious that a formulation of quantum gravity based on Hilbert spaces
would inherit the interpretational problems associated with instrumentalism,
since a mathematical apparatus based on Hilbert spaces most naturally com-
bines with an instrumentalist interpretation to give a physical theory. Yet,
there are strong reasons to doubt the usefulness of instrumentalist interpre-
tations in quantum gravity.

Problems with instrumentalism in quantum gravity. Firstly, if
we assume that quantum gravity, like its classical counterpart, is a theory
of the whole universe, then there is no external observer who could perform
measurements on this system. As mentioned above, instrumentalist interpre-
tations are not very useful for closed systems. The universe is the ultimate
(and only true) closed system.

A second reason to doubt the usefulness of instrumentalist interpretations
in quantum gravity is that the concept of measurements seems to presuppose
a space-time background, since measurements take place at some location at
some point (or during some period) in time. It has often been argued that
quantum gravity should be formulated in a background-independent way,
but measurement does not seem to be background-free notion. In a theory
of quantum gravity, presumably space and time will be treated as quantum
objects, whatever that will mean in detail. What could a measurement of
quantum space or quantum time mean – where and when would such a
measurement take place?

Quantum gravity without Hilbert spaces. These issues seem seri-
ous enough to doubt that any instrumentalist (or operational) interpretation
could be useful in quantum gravity. If, moreover, we take into account the
fact that any theory based on the mathematical apparatus of Hilbert spaces
practically forces an instrumentalist interpretation on us, we come to the
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following conclusion:

The mathematical apparatus of a future theory of quantum gravity should
not be based on Hilbert spaces and hence should not be a quantum theory in

the standard sense.

Instead, we should try to formulate a theory of quantum gravity in such a
way that the mathematical apparatus can be combined with a realist inter-
pretation, avoiding the serious conceptual issues with instrumentalist inter-
pretations sketched above. This means we should strive for a mathematically
and conceptually new form of theory of quantum gravity, departing from the
paradigm of Hilbert spaces.

Naturally, a good starting point for such a project is not quantum grav-
ity, but much more modest non-relativistic quantum theory. What kind of
mathematical apparatus, replacing the Hilbert space formalism, is there that
would allow a realist interpretation in a natural manner? We emphasise that
this is not asking for yet another interpretation of the established formalism,
but much more radically for a mathematical re-formulation of quantum the-
ory, together with a conceptually new, realist kind of interpretation of this
new mathematical formalism.

The topos approach. The topos approach to the formulation of physi-
cal theories, and in particular to quantum theory [20], is an attempt to pro-
vide such a mathematical reformulation of quantum theory, together with
a new, realist interpretation. The technical details are involved and can be
found elsewhere. Here, we focus on some conceptual ingredients and partic-
ularly focus on some logical aspects.

3 What logic for a realist form of quantum

theory?

3.1 Realism in classical physics

If we aim to be realists, the first question is: realists about what? The pro-
totype of a realist theory is classical mechanics. At a very basic level, this
is a theory based on a state space, a space of values of physical quantities
(which is the real numbers), and physical quantities as maps from the state
space to the space of values. A physical quantity A, for example position, is
represented by a real-valued function fA from the state space, given mathe-
matically by some set S (typically a symplectic or Poisson manifold), to the
space of values, given mathematically by the real numbers R.
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If we consider a subset ∆ of the real line, then f−1
A (∆) is a subset of the

state space S. This subset represents a proposition “Aε∆”, that is, “the
physical quantity A has a value in the set ∆ ⊆ R”. The subset f−1

A (∆)
consists of all those states, i.e., elements of the state space S, for which the
proposition is true. If the state s of the classical system is contained in
f−1
A (S), then the physical quantity A has a value in the set ∆. Otherwise, if
s /∈ f−1

A (∆), then A does not have a value in ∆, and the proposition “Aε∆”
is false.

Different propositions such as “Aε∆”, “BεΓ”, “CεΞ” about the val-
ues of physical quantities correspond to (generally) different subsets f−1

A (∆),
f−1
B (Γ), f−1

C (Ξ) of the state space S. The conjunction “Aε∆ and BεΓ” corre-
sponds to the intersection f−1

A (∆) ∩ f−1
B (Γ), the disjunction “Aε∆ or BεΓ”

corresponds to the union f−1
A (∆) ∪ f−1

B (Γ), and the negation “not Aε∆”
corresponds to the complement S\f−1

A (∆).

Hence, in classical physics there is an algebra of propositions, with con-
junction, disjunction and negation, and this algebra is represented math-
ematically by the Boolean algebra P(S) of subsets of the state space S.
Moreover, states act as models for this propositional theory, i.e., they assign
truth values to propositions. Mathematically, each point s of the state space
gives a map

ts : P(S) −→ (false, true) (1)

X 7−→

{

true if s ∈ X
false if s /∈ X .

(2)

Clearly, (false, true) is a Boolean algebra itself, and ts is a morphism of
Boolean algebras, that is, ts(X ∩ Y ) = ts(X) ∧ ts(Y ) etc.

Classical physics is a realist theory in the sense that

(a) There is a space of states S whose subsets are interpreted as represen-
tatives of propositions of the form “Aε∆”.

(b) The subsets of S form a Boolean algebra P(S). The algebraic oper-
ations ∩,∪ and S\ represent the logical operations of conjunctions,
disjunctions and negations of propositions.

(c) States s ∈ S provide models of the propositional theory represented
by P(S), i.e., they are Boolean algebra morphisms from P(S) to the
Boolean algebra (false, true) of truth values.

(d) Every proposition X ⊆ P(S) has a truth value ts(X) in every given
state s ∈ S, and every physical quantity A has a value fA(s) ∈ R in a
given state s.
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Classical physics is realist about propositions and their truth values. There
is a ‘way things are’, independent from observers and measurements. We
want to take this as the model for more general realist theories.

Yet, the Kochen-Specker theorem [34, 5] seems to pose a strict limitation
on any attempt at providing a realist form of quantum theory in this sense: it
shows that under weak and natural assumptions, there is no way of assigning
truth values to all propositions like “Aε∆” in a consistent way. Mathemat-
ically, there is no way of embedding the algebra representing propositions
about a quantum system into a Boolean algebra.

3.2 The topos approach: from sets to presheaves, from

Boolean logic to intuitionistic logic

The Kochen-Specker no-go theorem can be circumvented by relaxing the
assumptions we make. In particular, we can (a) allow the representatives of
propositions to form a weaker structure than a Boolean algebra, (b) allow
more truth values than just true and false, and (c) allow more general maps
than Boolean algebra morphisms as states or models of our propositional
theory.

If, after relaxing assumptions in this way, we have a theory in which all
propositions have truth values in all given states, then we still regard this
as a mathematical formalism that can be interpreted in a realist way. Of
course, we have to show that quantum theory can be re-formulated in such
a way.

Some ingredients of the topos approach to quantum theory. As
mentioned above, the topos approach to quantum theory provides such a
mathematical reformulation of quantum theory, together with a realist in-
terpretation. We briefly sketch the main ingredients of the mathematical
apparatus.

The topos approach gives a state space picture of quantum theory in
strong analogy to the state space picture of classical physics. First of all,
there is a notion of state space. Yet, this object is not assumed to be a set,
but is a more general kind of object. Concretely, we use a presheaf, i.e., a
varying set, as will be explained in more detail below. Also the space of values
is a presheaf (of real intervals), not just the set of real numbers as in classical
physics. In analogy to classical physics, physical quantities are represented
by maps from the state presheaf to the value presheaf. These maps are
not mere functions, but maps between presheaves (natural transformations).
Moreover, propositions such as “Aε∆” are represented by sub‘sets’ (in fact,
subpresheaves) of the state presheaf. Finally, states are not represented by
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points of the state presheaf – it turns out the state presheaf has no points
at all in a suitable technical sense! This is exactly equivalent to the Kochen-
Specker theorem. Instead of points, one uses certain minimal (i.e., small)
subobjects of the spectral presheaf to represent pure states.

Contexts and partial world views. A fundamental feature of quan-
tum theory is that experimentally, we only have partial access to the system
in the sense that only certain, compatible physical quantities can be mea-
sured simultaneously. Mathematically, these are represented by commuting
self-adjoint operators, forming a commutative subalgebra of the algebra of
physical quantities. Such a subalgebra, and the partial perspective on the
quantum system that it describes, is called a context.

It was Bohr’s doctrinal view that one should only speak about quantum
systems in classical terms. This basically amounts to picking out a single
context by a measurement setup, after which it becomes impossible to speak
meaningfully about the values of physical quantities not contained in this
context. We follow a radically different route here: instead of singling out a
particular context, we consider all of them simultaneously and treat them on
equal footing. We collect all the partial perspectives on a quantum system.
Mathematically, we consider the set of all commutative subalgebras of a
noncommutative algebra N of physical quantities, and we partially order
this set by inclusion. This poset (partially ordered set) is called the context
category and is denoted V(N ).

While it may look very simple-minded to cut a noncommutative algebra
into commutative pieces, the context category contains a surprising amount
of information about the original noncommutative algebra: for the case of
a von Neumann algebra N , one can show that the context category V(N )
determines the original algebra up to Jordan isomorphisms [24]. The formal-
ism becomes powerful because we keep track of how contexts overlap, i.e.,
intersect.

The spectral presheaf, subobjects and propositions. The state
object for quantum theory is the so-called spectral presheaf Σ. This is a
varying set over the context category V(N ). To each context V ∈ V(N ), we
assign the Gelfand spectrum ΣV of the algebra, which is a compact Hausdorff
space. This space can be seen as a ‘local state space’ for the physical quan-
tities contained in the context V , where ‘local’ means ‘at this context within
the global noncommutative algebra’. If V ′ ⊂ V is a smaller context, then
there is a canonical continuous, surjective function from ΣV , the Gelfand
spectrum of the bigger algebra, to ΣV ′, the spectrum of the smaller algebra.
In this way, we ‘glue together’ all the local state spaces into a global object
Σ, the spectral presheaf, which is the state object for quantum theory. One
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can show that the spectral presheaf has no global elements [29, 31, 5], which
are the presheaf analogues of points. This lack of points is equivalent to the
Kochen-Specker theorem.

Being a presheaf, Σ is an object in the topos SetV(N )op of presheaves over
V(N ). By a standard result, the subobjects, that is, subpresheaves, of any
object in a topos form a Heyting algebra. Just as Boolean algebras mathe-
matically represent classical Boolean propositional logics, Heyting algebras
represent intuitionistic logics, which are more general than Boolean logics,
because the law of the excluded middle need not hold.

In particular, the subobjects of the spectral presheaf Σ form a Heyting
algebra, and we use this structure to represent propositions about the values
of physical quantities of our quantum system. There is a map from propo-
sitions of the form “Aε∆” to subobjects of the spectral presheaf, called
daseinisation of projections that was discussed in detail in [17, 9].

The value presheaf and representation of physical quantities. In
the topos approach, physical quantities do not take values in the usual real
numbers (which would run into trouble with the Kochen-Specker theorem).
Instead, we allow more general, ‘unsharp’ values in the form of real intervals.
The value presheaf is denoted R

↔.

Physical quantities are represented by arrows (natural transformations)
from Σ to R

↔. The eigenstate-eigenvalue link is preserved in the sense that
if one has an eigenstate of some physical quantity A, the value assigned
to this physical quantity at all contexts that contain A is the one-point
interval [a, a] that just contains the eigenvalue a. Details can be found in
[18, 9, 13]. In order to represent propositions such as “Aε∆”, instead of using
daseinisation of projections, one can also consider inverse images (technically,
pullbacks along arrows in the topos) of subobjects of the presheaf R↔ to
obtain subobjects of the spectral presheaf Σ, see sections 13.8.7–8 in [20].
This is structurally analogous to the situation in classical physics, where a
proposition “Aε∆” is represented by the subset f−1

A (∆) of the state space.

Topos logic and neo-realism. Crucially, every topos comes with a
built-in logic. This is a higher-order, typed, intuitionistic logic, often multi-
valued. For the general theory, see [35, 33].

In our case, the topos associated with a quantum system is SetV(N )op ,
presheaves over the context category. The available truth values in the logic
of this topos are lower sets in the context category V(N ): subsets T ⊆ V(N )
such that if V ∈ T and V ′ ⊂ V , then V ′ ∈ T . There are uncountably many
truth values available instead of just true and false, and the truth values
form a Heyting algebra themselves.

Recall that in classical physics, a proposition “Aε∆” is represented by
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a subset f−1
A (∆) of the state space S, and a state is represented by a point

s ∈ S. The truth value of the proposition in the state is the truth value of a
the Boolean formula s ∈ f−1

A (∆), that is,

v(“Aε∆”; s) = (s ∈ f−1
A (∆)) ∈ (false, true). (3)

In the topos approach, a proposition “Aε∆” is represented by a subobject
δo(P̂ ) of the state object, the spectral presheaf Σ. A pure state |ψ〉 is rep-
resented not by a point of Σ (there are none), but by a certain minimal
subobject wψ. We can interpret the formula w

ψ ∈ δo(P̂ ) in the internal logic
of our topos using the so-called Mitchell-Benabou language, which gives a
truth value,

v(“Aε∆”;wψ) = (wψ ∈ δo(P̂ )). (4)

In the classical case, a point s either lies in a subset f−1
A (∆) (giving true

globally) or not (giving false globally). In the topos, we do not just get a
single true or false, but one such truth value for each context V ∈ V(N ).
The actual topos truth value is the collection of all these ‘local’ truth values.
It is easy to show that if we have true at V and V ′ ⊂ V , then we also get
true at V ′. Globally, we get a lower set in V(N ) and hence a truth value in
the intuitionistic, contextual and multi-valued logic of our topos.

Just as in classical physics, every proposition has a truth value in any
given state. There is no fundamental reference to observers, measurements
or other instrumentalist concepts. The topos approach provides a mathe-
matical formalism for quantum theory that can naturally be given a realist
interpretation. The price to pay is that the logic employed is not classical
two-valued Boolean logic, but the intuitionistic, multi-valued logic provided
by the topos of presheaves. For this reason, we usually speak of a neo-realist
interpretation.

Many other aspects of quantum theory can be described in the new topos-
based mathematical formalism, such as mixed states [6, 8], time evolution
[12], probabilities and the Born rule [6, 21, 22], etc.

Extending to field theories and beyond. Whilst we have considered
only non-relativistic systems described by an noncommutative algebra of
physical quantities, the general scheme can be extended straightforwardly to
other kinds of theories. For example, instead of just taking the poset V(N )
of contexts, one can also consider systems where subalgebras of observables
are attached to space-time regions, as in algebraic quantum field theory. A
suitable context category would then also carry additional space-time labels.
First steps in this direction were taken by Joost Nuiten in [37].
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Even more generally, the basic scheme of a state space, a space of values
and physical quantities as maps between them is so general that it applies
virtually to all physical theories. By modelling state spaces and spaces of
values as objects in a topos, e.g. as presheaves or sheaves, and physical
quantities as arrows in the topos between them, many generalisations beyond
the usual set-based and Hilbert space-based mathematics become available.
In each case, the topos comes with a built-in intuitionistic logic, and logical
formulas (e.g. about the values of physical quantities in a given state) can be
interpreted within the logic of the topos, in a manner completely analogous
to the one sketched above for quantum theory.

Crucially, all propositions have truth values in any given state, without
the need to invoke observers or measurements – there is a natural neo-realist
interpretation of the topos formalism, no matter what the specific topos is
and what the choices of the state object and value object are. In this way,
the topos approach to the formulation of physical theories avoids the seri-
ous interpretational issues that instrumentalist interpretations of the Hilbert
space formalism have.

4 A logic for physical systems and a meta-

logic for physics

In this short section, I present some quite speculative thoughts on the rôles of
the topos-internal logic and the topos-external metalogic in which we define
the topos and structures within it.

The internal logic of a topos generally is intuitionistic (only in particular
cases, it is Boolean), which means that the law of the excluded middle does
not hold. A topos can be seen as a generalised universe of sets and hence as
an arena to do mathematics. Proofs in a topos with an intuitionistic internal
logic must necessarily be constructive, since proof by contradiction is not
available. Moreover, typically the axiom of choice is not available in a given
topos, though weaker forms like countable choice may hold.

If we use a topos and its internal logic to argue about physical systems,
it seems that we commit ourselves to using constructive mathematics. There
is interesting work along these lines by Heunen, Landsman, Spitters [25, 26,
39, 27] and Fauser, Raynaud and Vickers [22].

Yet, when we do physics, we necessarily have to separate ourselves from
the system to be described. We do not aim at providing some sort of inclu-
sive report, but rather try to give an objective or at least inter-subjective
description of some system or phenomenon outside of us. There may well be
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a logic adequate to the system in itself, but this system logic is not the logic
in which we are thinking and arguing about the system. For this, we use a
metalogic, typically Boolean, in which we define the mathematical structures
to describe the system. For this reason, in our description and mathematical
arguments about the system we are free to use the metalogic. Of course,
we must take care not to mix metalogical arguments about the system with
arguments within the logic of the system.

In the topos approach, we define a topos and certain mathematical struc-
tures in it, e.g. the state object. This definition takes place in a (typically
Boolean) metalogic about which we do not reflect very much. As we showed,
the internal logic of the topos is useful in quantum theory, in the sense that
propositions about the values of physical quantities can be assigned truth
values using this ‘system logic’. We cannot use the Boolean metalogic to
do this assignment of truth values, but we have to reflect about the physical
interpretation of such truth values from the external, metalogical perspective.

In short, our metalogic for doing physics is not the same as the system
logic provided by the topos in which we describe a given physical system
mathematically.

This even applies if the physical system we consider is the whole universe,
as in a theory of quantum gravity: if we argue physically, then we are outside
of the system we describe. Of course, even if we argue about the whole
universe, we actually only consider a very small number of degrees of freedom.
There is no (meta)logical contradiction arising, we can describe the whole
universe but still ‘step out’ of it when doing so, since our description is very
far from complete.

5 Conclusion

In this contribution, we gave some conceptual arguments concerning the
‘logical shape’ of a future theory of quantum gravity. We first presented
the well-known argument that quantum gravity will not be a theory whose
mathematical apparatus comes with an instrumentalist interpretation, since
such an interpretation makes no sense for closed systems with no external
observers. Moreover, we argued that any theory based on Hilbert spaces
almost automatically comes with an instrumentalist interpretation, which
led us to the radical conclusion that a theory of quantum gravity should not
be based on Hilbert spaces.

Instead, we suggest to use a form of theory that is based on a state space
picture, generalising from classical physics. Such theories more naturally lend
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themselves to realist interpretations. We sketched some aspects of the topos
approach to quantum theory and argued that by going from sets to presheaves
and from Boolean logic to intuitionistic logic, we arrive at a mathematical
formalism for quantum theory that has a natural neo-realist interpretation.
Moreover, the underlying scheme is general enough to allow generalisations
to field theories and beyond. Needless to say, much work remains to be done.

Finally, we briefly argued that even when we commit ourselves to de-
scribing the whole universe using structures in a topos, and if we use the
internal logic of the topos to assign truth values to propositions etc., we do
not have to do all our proofs and mathematical arguments internally in the
topos, i.e., constructively. Doing physics necessarily means to separate one-
self from the system to be described, even if this system is the whole universe.
Since we have to ‘step out’ of the system, we have to argue using the (typ-
ically Boolean) metalogic in which we define the mathematical structures,
e.g. topoi and state objects, that we use in the mathematical description of
the system at hand. It is this Boolean metalogic in which we do physics.
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[19] A. Döring, C.J. Isham, “A topos foundation for theories of physics: IV.
Categories of systems”, J. Math. Phys. 49, Issue 5, 053518 (2008).
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[24] J. Harding, A. Döring, “Abelian subalgebras and the Jordan structure
of a von Neumann algebra”, arXiv:1009.4945 (2010).

[25] C. Heunen, N.P. Landsman, B. Spitters, “A topos for algebraic quantum
theory”, Comm. Math. Phys. 291, 63–110 (2009).

[26] C. Heunen, N.P. Landsman, B. Spitters, “Bohrification of von Neumann
algebras and quantum logic”, Synthese, online first, DOI: 10.1007/s11229-
011-9918-4 (2011).

[27] C. Heunen, N.P. Landsman, B. Spitters, “Bohrification”, in Deep
Beauty, ed. H. Halvorson, Cambridge University Press, 271–313 (2011).

[28] C.J. Isham, “Topos theory and consistent histories: The internal logic
of the set of all consistent sets”, Int. J. Theor. Phys., 36, 785–814 (1997).

[29] C.J. Isham, J. Butterfield, “A topos perspective on the Kochen-Specker
theorem: I. Quantum states as generalised valuations”, Int. J. Theor.
Phys. 37, 2669–2733 (1998).

16



[30] C.J. Isham and J. Butterfield, “A topos perspective on the Kochen-
Specker theorem: II. Conceptual aspects, and classical analogues”, Int.
J. Theor. Phys. 38, 827–859 (1999).

[31] C.J. Isham, J. Hamilton, J. Butterfield, “A topos perspective on the
Kochen-Specker theorem: III. Von Neumann algebras as the base cate-
gory”, Int. J. Theor. Phys. 39, 1413–1436 (2000).

[32] C.J. Isham, J. Butterfield, “A topos perspective on the Kochen-Specker
theorem: IV. Interval valuations”, Int. J. Theor. Phys 41, 613–639
(2002).

[33] P.T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium,
Vols. 1&2, Oxford Logic Guides 43&44, Oxford University Press, Oxford
(2002/03).

[34] S. Kochen, E.P. Specker, “The problem of hidden variables in quantum
mechanics”, Journal of Mathematics and Mechanics 17, 59–87 (1967).

[35] S. MacLane, I. Moerdijk, Sheaves in Geometry and Logic: A First Intro-
duction to Topos Theory, Springer, New York, Berlin, Heidelberg (1992).

[36] K. Nakayama, “Sheaves in Quantum Topos Induced by Quantization”,
arXiv:1109.1192v2 (2011).

[37] J. Nuiten, “Bohrification of local nets of observables”, Bachelor thesis,
Radboud University Nijmegen, arXiv:1109:1397 (2011).

[38] L. Wittgenstein, Tractatus logico-philosophicus: Logisch-philosophische
Abhandlung, Suhrkamp (1963)

[39] S. Wolters, “A Comparison of Two Topos-Theoretic Approaches to
Quantum Theory”, arXiv:1010.2031v2 (version 2 from 3. August 2011).

[40] T. Woodhouse, “Time Evolution in Quantum Theory and Quantum
Information, A Topos Theoretic Perspective”, MSc thesis, University of
Oxford (2011).

17


	1 Introduction
	2 Is quantum gravity necessarily quantum?
	2.1 Interpretations of quantum theory
	2.2 Instrumentalism in quantum gravity?

	3 What logic for a realist form of quantum theory?
	3.1 Realism in classical physics
	3.2 The topos approach: from sets to presheaves, from Boolean logic to intuitionistic logic

	4 A logic for physical systems and a metalogic for physics
	5 Conclusion

