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Abstract

This paper considers the role of social networks in the non-market valuation of

public goods. In the model individuals derive utility from both their own direct enjoy-

ment of the public good as well as from the enjoyment of those in their network. We

find that network structure almost always matters, both for utility and for valuation.

The network increases aggregate valuation when it assigns higher importance, that

is, greater total weight, to individuals with higher private values for the public good.

The model provides a theoretical foundation for the idea of opinion leaders who have

disproportionate influence over their communities. Specifically, opinion leaders are in-

dividuals assigned high importance by the network, and projects favored by opinion

leaders tend to be favored by the network as a whole. The model can also guide future

empirical studies by enabling a more structural approach to non-market valuation in

a socially-connected group.
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1 Introduction

For the most part, the theoretical public good valuation literature considers decision-makers

in social isolation. There are two reasons why social structure might impact valuation. One

is that individuals may be altruistic and care about public goods that benefit their friends

even if they do not benefit themselves.1 For example, the presence of a park might not

generate any private utility for the indivudal, but if the park gives her friends utility and

she values those friends’ utility, she might have positive willingness to pay for the park due

to social utility.2 A second reason is that people might use the public good in groups.3

For example, someone might like going to a park, but not alone, so to get enjoyment from

the park her friends must also like the park. She gets utility from going to the park with

friends, but might also get utility from going with friends’ friends, and so on. Whichever

the channel, altruism or joint use, the utility that one gets from the public good may be

affected by friends’ utility. Furthermore, friends may behave in the same way and the utility

of friends of friends may affect friends’ utility. This leads to network effects.

The purpose of this paper is to construct a model of public good valuation that can

accommodate both of these network effects. As argued by Jackson (2009, pg. 491), “Many

economic interactions are embedded in networks of relationships and the structure of the

network plays an important role in governing the outcome.” As a result, network models

have been developed to explain a wide range of economic phenomena.4 Our primary result

links aggregate willingness-to-pay to network centrality. In particular, societies are willing

to pay more in aggregate for a public good when that public good provides more benefit to

people more central to the society. A straightforward implication is that public projects that

pass the cost-benefit test and ultimately receive funding tend to favor more central agents.

To capture network interactions we use the sociometric approach in which the interaction

patterns of agents are captured through the rows of a matrix (see DeGroot (1974) and

DeMarzo et al. (2003)). The matrix-based approach proves well-suited for the problem of

computing individuals’ valuations for a public good when their valuations depend on those

1This is consistent with the finding of directed altruism by Leider et al. (2009). In their field experiment
subjects allocate 52% more to close friends than to strangers in dictator games.

2As private utility we mean the direct (or own) utility that one receives from consuming a public good
in social isolation, i.e. ignoring social effects. Social utility is the overall (or total) utility from the public
good, which includes one’s private utility and (possibly) the social utility from friends.

3For instance, Morey and Kritzberg (2010) provide evidence that the presence of a companion changes
the willingness to pay for biking trails.

4Network models have been used to explain labor market outcomes (see Calvó-Armengol and Jackson
(2004, 2007)), risk sharing (see Fafchamps and Lund (2003) and Bramoullé and Kranton (2007b)), and
opinion formation (see DeGroot (1974), Friedkin and Johnsen (1990), DeMarzo et al. (2003), and Neilson
and Winter (2008)).
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of others in their social network.5 We assume that each individual has her own private value

of the public good, and this private value is the one that would pertain if the public good

were consumed in social isolation. Each individual’s social value of the public good may

depend on how much others in her social network enjoy it, though, and so the individual’s

social value of the public good may differ from her private value. We show that all network

effects, including feedback effects, can be captured by a single weighting matrix so that each

individual’s social value is a weighted average of the population private values. In particular,

each individual’s centrality to the network is captured by the relevant column sum of the

resulting weighting matrix. We refer to this column sum as an agent’s importance.

The thought exercise pursued in the paper involves a comparison between the valua-

tions assigned to a public good when individuals are socially isolated and the valuations

assigned when society has a network structure, holding the original vector of private val-

uations constant across the two settings. The paper concentrates on when, and how, the

network structure impacts the social value of the public good. For individual valuation of a

public good the requirement for a network effect is very weak: the individual’s social value

of the public good differs from her private value if she cares about at least one agent with

a different private value than her own. In other words, the structure of the network almost

always impacts an individual’s valuation for a public good. The paper also identifies when

the aggregate social value of the public good depends on the network, and this occurs if

agents in the population are not uniformly important. If more important agents have higher

private values of the public good, the population’s aggregate social valuation is higher.

The paper provides an economic foundation to a widely-used idea in the other social

sciences, that of an opinion leader whose position in a community makes him or her in-

strumental in affecting social change. This idea has been used, among other places, in such

diverse areas as agricultural development (Monge et al. (2008)), corporate training programs

(Lam and Schaubroeck (2000)), and microfinance diffusion (Banerjee et al. (2011)). Opinion

leadership is clearly tied to the idea of network centrality (see Katz (1953) and Friedkin

(1991)). However, the model in this paper ties opinion leadership directly to an influence on

others’ willingness to pay for a public good. The results show that this leadership is easily

identified with the agents whose columns have the largest sums in the social weighting ma-

trix. Furthermore, the paper establishes situations in which projects valued more by opinion

leaders are also valued more by the entire network.

The results have important implications for policy analysis. When the network matters,

5As discussed by Wasserman and Faust (1994, chap. 3), the graph-theoretic approach, common in the
work of Jackson and others (e.g. Jackson and Watts (2002), Jackson (2005), Jackson and Rogers (2007)),
proves to be beneficial for modeling networks with multiple relations. The sociometric notation is, however,
a simple way to model directed networks in which links between agents have different strength.
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sampling values from the population provides the right information for performing a cost-

benefit analysis for that population, but that same sample cannot be used as the basis for

cost-benefit analysis for a similar public project benefiting a different population. In other

words, even when two populations are very similar, e.g. they have similar distributions

of relevant socio-economic characteristics, benefit transfer cannot be done without placing

restrictions about the shape of the social networks. Because of the network, one population

might find it worthwhile to provide the public good while the other does not.6

The paper adds to the economics literature linking social preferences and public good

provision. A group of papers concentrates on whether social values should be considered in

cost-benefit analyses of public projects.7 Flores (2002) and Bergstrom (2006) demonstrate

that there are cases where welfare-improving public good projects would be rejected if cost-

benefit analysis were based only on private values as opposed to social values. Therefore,

with social preferences, a public project may be Pareto-enhancing even if the cost of the

project exceeds the sum of all agents’ private values.

Our contribution to this literature involves the use of a social network structure to explore

the differences between the private and social welfare generated by public good provision. In

doing so, our framework is similar to that of Bergstrom (1999) and Bramoullé (2001) in which

a weighting matrix distinguishes private values from social values. The paper differs from the

prior literature in the manner in which others’ utility impact own utility. Bergstrom (1999)

looks at a system of benevolent utility functions in which social connections automatically

add to an individual’s utility. Bramoullé (2001)’s treatment also involves adding friends’

social utility to an individual’s utility, however, he allows for individuals to be envious toward

other agents and, in this case, other agents’ social utilities are subtracted from own utility.

Our paper uses a different utility structure so that social connections neither automatically

add or automatically subtract welfare, thereby disentangling the effects of social preferences

and network structure.

The paper contrasts with the literature on local public goods in networks. In these

papers the public good has the same value to everyone, but individuals only obtain access

to the public good when they are connected directly to someone who provides it. Bramoullé

and Kranton (2007a) present the first model of such public goods. They show that there

always exists an equilibrium in which some agents free ride, and that in some cases the

most efficient equilibrium entails provision by the central agent in the network. Their model

concentrates on provision, which is made interesting by the localness of the public good,

6This result is in line with experimental evidence that social preferences are stronger towards socially
connected agents. For instance, Leider et al. (2009) distinguish baseline altruism towards strangers from
directed altruism that favors friends.

7See Bergstrom (2006) for a review of theoretical work.
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while ours concentrates on valuation for global public goods in the presence of networks.8

The joint-use interpretation of our model provides a theoretical foundation for the empir-

ical recreation-site choice literature. Using a choice experiment, Morey and Kritzberg (2010)

demonstrate that the presence of a companion can significantly change the value of mountain

bike trails. They take their large estimates of the effect of a companion on the value of trails

as evidence that real world site-choice data may be influenced by social interactions. Com-

mensurate with these findings, other empirical papers find significant effects of party size

on recreational values (see Kaoru et al. (1995) and Massey et al. (2006)). Along the same

lines, Timmins and Murdock (2007) find evidence that some congestion can be desirable.

Specifically, they estimate the value of a large recreational fishing site in Wisconsin (Lake

Winnebago) accounting for congestion effects, and conclude that ignoring congestion leads

to an understatement of the lake’s value by more than 50%. Although these papers do not

account for social networks explicitly, they provide some empirical support for our results

by showing that social interactions affect valuation. Our results also inform this literature

by suggesting that the strength of social ties to the companions, and not just the number of

companions, affect valuation.

The remainder of the paper is organized as follows. Section 2 presents the model. Section

3 analyzes social network effects on an individual’s utility and willingness to pay for public

projects. Section 4 investigates social network effects on welfare and aggregate non-market

valuation. Section 5 explores the role of opinion leaders in the choice among public projects.

Section 6 concludes.

2 The Model

A population consists of n ≥ 2 agents indexed by i = 1, ..., n. Agents obtain utility from the

consumption of a private good x and a public good g. Utility is assumed to be quasilinear.

Agent i’s overall utility is

Vi(xi, g) = xi + vi(g), (1)

where vi(g) is agent i’s social utility from the public good.

The public good g is exogenously provided to the entire population, without congestion,

such that every agent can benefit from its consumption. There are two channels through

8More recent research stemming from Bramoullé and Kranton (2007a) develops different network models
of public goods. Newton (2010) analyzes the effect of coalitional behavior on local public goods provision.
O’Dea (2010) examines the relationship between local public good provision and social network formation.
Cho (2010) studies endogenous formation of networks for local public goods in sequential bargaining games.
Chih (2010) incorporates interactive costs and social perception of free-rider behavior in a model of local
public goods and network formation.
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which the provision of g can affect i’s social utility vi(g). First, agent i obtains private utility

ui(g) from the consumption of g. This is the component of social utility that is obtained

from own consumption of g and is independent of social effects. Second, agent i may care

about the enjoyment of her friends and, as a result, may obtain social utility.9

Friendships are represented by a social network. Formally, let agent j be a friend of

agent i if j is directly connected to i.10 The social network is represented by the (possibly

asymmetric) row stochastic matrix A, with dimensions n× n. An element aij is positive if

j is a friend of i, and zero otherwise.11 The diagonal of A is equal to zero reflecting the fact

that an agent is not a friend of herself.

Social utility received from friends is assumed to be a weighted average of friends’ public

good utility v, with weights determined by the rows of A.12 Formally, agent i’s social utility

from the public good is defined as

vi(g) = (1− λi)ui(g) + λi
∑
j

aijvj(g), (2)

where λi ∈ [0, 1) is a parameter that reflects the extent to which social utility of friends is

relevant to agent i.

The term (1− λi) is the weight that agent i places on her own private enjoyment ui(g).

Hence, the parameter λi is intuitively denoted as i’s degree of social interaction in the

consumption of g. Agent i is said to be socially isolated if i’s social utility from the public

good is not influenced by the social utility of friends. Thus, when λi=0, agent i’s social

utility vi(g) is equal to i’s private utility ui(g). Social isolation shuts down the social channel

through which the provision of g affects i’s utility and the model simplifies to a standard

utility model without network effects.

Let v =
(
v1(g), ..., vn(g)

)′
denote the social utility profile of all agents. Using matrix

notation, v can be written as

v = (I−Λ)u + ΛAv, (3)

where I is the identity matrix, Λ is a diagonal matrix with λi in the i-th row, and u =(
u1(g), ..., un(g)

)′
is the population’s private utility profile. Bergstrom (1999) and Bramoullé

(2001) study systems of utility functions using a similar framework: v = u + Av. In

9As discussed in section ??, altruism or group consumption are two possible reasons for the influence of
friends on an individual’s social utility.

10In the network literature, connected agents are often referred to as neighbors.
11A row stochastic matrix is a square matrix of nonnegative real numbers, with each row summing to 1.

Therefore, we implicitly assume that every agent has at least one friend.
12From i’s perspective, the intensity of the friendship between i and j is captured by aij . The element

aij captures j’s influence on i’s social utility. The same friendship may have different intensity from j’s
perspective such that aij may be different from aji.
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Bergstrom (1999)’s treatment agents are benevolent, thus, A is a nonnegative matrix. In

Bramoullé (2001)’s formulation entries of A are either positive (if there is an altruistic social

connection) or negative (if the social connection is envious). Either way, adding a friend (or

enemy) to an agent’s network automatically increases (decreases) that agent’s utility. While

this might be realistic, it prohibits disentangling the impact of a change in size of a network

from a change in its shape. In equation (2) adding a friend for agent i requires reconfiguring

the i-th row of A, retaining the requirement that the row sum to one. Consequently adding

a friend does not automatically add to utility.13

The network component of (3) captures the social utility obtained by straight links

to friends’ social utility. The influence of friends’ social utility on own social utility is

determined by the matrix ΛA. Borrowing Bramoullé’s terminology we refer to ΛA as the

primary network. Rearranging (3) yields

v = (I−ΛA)−1(I−Λ)u. (4)

To simplify notation make W = (I −ΛA)−1(I −Λ). Again, borrowing Bramoullé’s termi-

nology, we refer to W as the induced network. Elements of W correspond to circuitous links

between agents emerging from links in the primary network. Links in the induced network

account for the impact of friends of i’s friends on i’s social utility, plus the impact of friends

of friends of i’s friends on i’s social utility, and so on. Mathematically, this arises from the

Neumann series approximation (I−ΛA)−1 =
(
I + (ΛA) + (ΛA)2 + (ΛA)3 + ...

)
.14 More

intuitively, consider the three-person population with

Λ =

0.8 0 0

0 0.5 0

0 0 0.2

, and A =

0 0.5 0.5

1 0 0

1 0 0


Then

W =

0.28 0.28 0.44

0.14 0.64 0.22

0.06 0.06 0.88

.

From the matrix A we see that agent 1 is friends with agents 2 and 3 (because a12 and a13

are both positive) but agents 2 and 3 are not friends with each other (because a23 = a32 = 0).

Nevertheless, because agent 2 cares about agent 1’s utility which in turn depends on agent

13A second difference in our model is that network effects influence only one type of good (public good)
but not the other type of good (private good).

14See Meyer (2000).
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3’s utility, in the end agent 2 places weight on agent 3’s utility and w23 = 0.22 > 0. The

same reasoning explains why w32 > 0 even though a32 = 0. The rationale for w23 > w32 is

that λ2 > λ3, so that agent 2 places more weight on others’ well-being than agent 3 does.

It follows from (4) that agent i’s social utility can be expressed as a function of the

elements of the private utility profile u. The following expression represents the social utility

function of agent i and corresponds to the i-th row of system (4),

vi(g) =
∑
j

wijuj(g), (5)

where wij is an element of the square matrix W. Lemma 1 formally describes i’s social

utility function.

Lemma 1. Agent i’s social utility is a convex combination of the private utilities of all

agents, i.e. for all i and j, wij ∈ [0, 1] and
∑

j wij = 1.

Proof. All proofs are found in the Appendix.

Lemma 1 establishes that agent i’s social utility of the public good really is a weighted

average of the private utilities of the agents in the economy, that is, that the weights in (5)

are all nonnegative and sum to one. In addition, it implies that the primary network ΛA

contains all of the information needed to determine how much weight agent i places on j’s

private utility of g, accounting for all possible induced interactions among all agents.

Agent i’s overall utility function is obtained by plugging (5) into (1):

Vi(xi, g) = xi +
∑
j

wijuj(g). (6)

We use equation (6) to define agent i’s willingness to pay for an increase in the provision

of the public good accommodating possible network effects. Normalizing the price of the

private good, the compensating welfare measure associated with a discrete public project

that yields an increase in g from g0 to g1 is defined by Ci that solves

Vi(mi, g
0) = Vi(mi − Ci, g

1) (7)

where mi represents agent i’s income. Two compensating measures are defined. The first is

agent i’s willingness to pay under network interaction. It is defined by Cnetwork
i that solves

mi +
∑

j wijuj(g
0) = mi − Cnetwork

i +
∑

j wijuj(g
1)

or just,

Cnetwork
i = vi(g

1)− vi(g0). (8)
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The second is the traditional compensating welfare measure that only accounts for private

willingness to pay, that is, the measure that pertains if agent i is socially isolated (λi = 0).

With social isolation, the social utility vi simplifies to ui (see equation (2)), and therefore

private willingness to pay is defined as follows

Cprivate
i = ui(g

1)− ui(g0). (9)

Combining equations (5), (8), and (9) yields a relationship between the vectors Cnetwork and

Cprivate:

Cnetwork = WCprivate. (10)

The same induced network W determines both social utility and willingness to pay under

network interaction.

We can also use equation (6) to identify a single agent’s impact on society. The amount

w1juj measures j’s contribution to agent 1’s social utility, w2juj measures j’s contribution

to agent 2’s social utility, and so on. Agent j’s total contribution is then
∑

iwijuj(g). This

motivates the following definition.

Definition 1. Agent j’s importance is defined as δj =
∑

iwij.

Since W is a row normalized matrix, agent importance is the sum of the elements of the

j-th column of the induced network and can be intuitively thought as a measure of the

“popularity” of agent j. This measure of importance is closely related to a number of

measures of network centrality (see Friedkin (1991) and Opsahl et al. (2010)). The next

lemma further characterizes agent importance.

Lemma 2. Every agent in the network has positive importance, i.e. δi > 0 for all i.

The maximum value of δj approaches n and the minimum approaches 0. Consequently, every

agent has at least a little importance to society and no single agent is a dictator. Average

agent importance is 1.

3 Networks and Individual Valuation

This section analyzes the relationship between agent i’s social and private utility. We explore

differences between the traditional utility model in social isolation and our network model

by studying how the shape of the social network affects non-market values. We begin by

defining network neutrality.
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Definition 2. A network is neutral if, for the entire population, social utility is equal to

private utility, i.e. for every private utility profile (u1, ..., un) we have vi = ui ∀i.

Under network neutrality, the social structure imposed by the system of interdependent

utilities (4) is irrelevant. Stated differently, there are no network externalities as agents’

overall utilities are not affected by network interactions. Identification of situations that

lead to network neutrality becomes important because doing so also identifies situations

where the network does matter, and Proposition 1 presents conditions that lead to network

neutrality.15

Proposition 1. (Network neutrality). Network neutrality holds if and only if all

agents are socially isolated (i.e. λi = 0 ∀i).

Mathematically, network neutrality holds if and only if the primary network ΛA is a

matrix of zeros. If this is the case, the induced network does not contain any (direct or

indirect) connections between agents. In fact, W is the identity matrix.16 Network effects

are expected to be small if there are weak primary networks with little social interaction in

the consumption of the public good. For example, one would be hard pressed to argue that

λs are high when the public good in question is a sewer system. Of course altruism is always

a possible reason for the existence of social preferences. However, it is probably safe to

assume that a population’s average λ for a park (possibly a jointly consumed public good) is

higher than the average λ for a sewer system (a public good that is consumed individually).

It may be the case that social networks are neutral if the public good is a sewer system.

Importantly, though, Proposition 1 implies that when some agents care about friends’ utility

(so that λi > 0 for some agents) the shape of the network matters for social utility.

Proposition 1 implies that the network matters more when agents are more socially

connected (so that λs are high), and it also follows from the structure of the model that,

relative to a world of social isolation, network effects can significantly change individuals’

well-being in environments in which agents have large disparities in private utilities. On

the flip side, network effects are expected to be small if the population is homogeneous. For

instance, consider a group of peasants of a small village in a developing country. Assume they

are a very homogeneous group that obtains natural resources from a watershed. Despite the

15The network could also be irrelevant if all individuals have identical private tastes, that is, if ui(g) = uj(g)
∀i, j. The irrelevance of the network then follows because every agent’s social utility is a weighted average
of the private utilities, which in turn are all equal. It is also possible, but extremely unlikely, that for some
particular value of g the vectors of social and private values end up being identical. In real world applications,
with large social networks, a combination of values in ΛA such that vi = ui ∀i is essentially impossible.

16Proposition 1 indicates that if Λ is a matrix of zeros, then the induced network is equal to the identity
matrix (W = I). There is no mathematical condition that imposed on A would lead to network neutrality.
In fact, mathematically, if A = I then W = I, regardless of Λ. However, this is ruled out by the model
construction as the diagonal of A has zeros reflecting the fact that agent i is not a friend of herself.
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fact that there may be strong social utility associated with the consumption of the watershed

(i.e. λs are not zero), one could imagine the private utilities from the watershed as being

the same for every peasant. In this case, any random peasant is a perfect representative

agent and the welfare generated by the watershed can be perfectly assessed by the welfare

of a single peasant. This is a case in which the social network is neutral for a specific public

good, but not in general.

The following corollary formalizes the obvious implication that when a network has no

impact on individuals’ social utility levels, that is, when network neutrality holds, it also has

no impact on individual willingness to pay. It does so by comparing the network compen-

sating measure Cnetwork
i to the private measure Cprivate

i .

Corollary 1. (Individual valuation neutrality). If network neutrality holds, the

willingness to pay measure Cnetwork
i is equal to the private measure Cprivate

i .

If the social network is not neutral, it may have a significant effect on non-market values.

A natural next step is to examine how the social network affects social utility. We now study

the setting in which agents have heterogeneous private utilities and are not socially isolated.

When network neutrality fails, the utility of g is determined by the social utility v, and it

is different from the private utility u. The next proposition characterizes how the shape of

the social network affects social utility and establishes the conditions in which the network

generates a positive externality such that the social utility vi is greater than the private

utility ui.

Proposition 2. (Network effects on utility). In non-neutral networks (i.e. wii 6= 1),

the network benefits agent i, i.e. vi(g) > ui(g), if and only if

ui(g) <

∑
j 6=iwijuj(g)∑

j 6=iwij

. (11)

The left-hand side of expression (11) is individual i’s own private utility, and the right-hand

side is the weighted average of her network’s private utilities. If her network values the

public good more than she does, on average, her social utility from the public good exceeds

her private utility. Conversely, if she values it more than her network does, on average, the

impact of the network is to reduce her social utility. So, for example, if i likes the beach

more than any of her friends do, i receives lower social utility from going to the beach than

she would if she were socially isolated.

As a consequence of proposition 2, willingness to pay under network interaction (Cnetwork
i )

is expected to be different from private willingness to pay in social isolation (Cprivate
i ). Corol-

lary 2 describes the circumstances in which the network generates higher valuations than

those generated under social isolation.
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Corollary 2. (Network effects on individual valuation). In non-neutral networks

(i.e. wii 6= 1), Cnetwork
i ≥ Cprivate

i if and only if
(
ui(g

1)− ui(g0)
)
≤
∑

j 6=i wij [uj(g
1)−uj(g

0)]∑
j 6=i wij

.

Corollary 2 demonstrates that for agents with small private willingness to pay the network

generates higher valuations than the ones in social isolation. In a social network environment,

low private valuation agents are willing to pay more for an increment in g because they

benefit from the gains of higher private valuation friends. To see this, consider the following

example. The induced network is given by

W =

0.5 0.1 0.4

0.2 0.6 0.2

0.3 0.3 0.4

,

and the three individuals in the society differ in how much they value the change in the

public good from g0 to g1. Let

u(g1)− u(g0) =

10

5

2

,

so that agent 1 has the highest private utility gain from the policy change and agent 3 has

the smallest. Restricting attention to agent 3, note that∑
j 6=i wij(uj(g

1)−uj(g
0))∑

j 6=i wij
= 0.3(u1(g1)−u1(g0))+0.3(u2(g1)−u2(g0))

0.6 = 7.5

which is larger than agent 3’s private value of the change, (u3(g
1)− u3(g0)) = 2. According

to the corollary, agent 3’s social value of the change should exceed her private value, and

this is indeed the case as can be observed when one computes the social values

W(u(g1)− u(g0)) =

6.3

5.4

5.3

.

The example highlights the importance of recognizing networks to study non-market

values that are influenced by social interactions between agents. When eliciting valuations

from a population, subjects naturally report their true values, which are their social values.

Part of the variation in these values arises from heterogeneous private values, which may be

correlated with individual characteristics. The variation in elicited values is also affected by

the shape of the network, though, and so studies that ignore the nature of the network may

be misspecified.
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4 Networks and Aggregate Valuation

This section investigates economic welfare generated by the provision of a public good. It

considers non-neutral networks in which at least one agent is not socially isolated (∃λi s.t.

λi > 0) and at least two agents have different private utility functions (∃{ui, uj} s.t. ui 6= uj

for i 6= j). The following definitions of welfare are discussed.

Definition 3.

A. Social network welfare is defined as
∑

i vi

B. Social isolation welfare is defined as
∑

i ui

C. Welfare neutrality is defined by
∑

i vi =
∑

i ui

In non-neutral networks, vi is typically different from ui.
17 However, this may or may not

have welfare implications. In some cases, network neutrality fails but welfare is unchanged

such that the social network welfare is equal to the social isolation welfare. Hence, the

existence of social network effects on the provision of public goods does not necessarily

affect the population’s welfare but may nevertheless reorganize the distribution of social

utility. Agent importance (δ, defined in section 2) is a fundamental concept for our network

welfare analysis. The following proposition characterizes welfare neutrality.

Proposition 3. (Welfare neutrality). If every agent in the network has the same

importance, then the social network welfare is equal to the social isolation welfare.

It is important to acknowledge that the social network may have relevant individual

welfare implications even in the environments covered by Proposition 3. The proposition

states that there are populations in which the aggregate welfare generated by the provision

of g is unaffected by the social structure. Under welfare neutrality, the social network acts

as a smoothing operator, re-distributing utility among agents and decreasing well-being

concentration. The following example provides an illustration.

Consider two separate populations of size n = 3 with identical private utility profies

for the public good but different networks. In both cases the private utility profile is u =

(5, 10, 15)′, for social isolation welfare, or aggregate private utility, of 30. The two different

social structures are given by the induced network matrices

W1 =

0.5 0.1 0.4

0.2 0.6 0.2

0.3 0.3 0.4

, and W2 =

0.5 0.3 0.2

0 0.6 0.4

0.5 0.1 0.4

.

17Recall that according to definition 2, network neutrality implies that vi = ui ∀i. Throughout this work,
we refer to non-neutral networks as the counterpart of the neutral networks presented in definition 2. Thus,
we use the term “neutral networks” to refer to definition 2, and not to welfare neutrality as in definition 3C.
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Both populations are welfare neutral because in each of them every column sums to one.

For the private utility profile u given above, the resulting social utility profiles are v1 =

(9.5, 10.0, 10.5)′ and v2 = (8.5, 12.0, 9.5)′. Both of these have the same social network welfare,

or aggregate social utility, of 30. This demonstrates welfare neutrality. Network neutrality

does not hold, however, as can be seen by the fact that in both populations agent 1’s social

utility exceeds her private utility, and in both cases agent 3’s private utility exceeds her

social utility. Furthermore, even though the presence of welfare neutral network effects does

not change the average utility of the group, it changes the distribution of utilities in a variety

of ways. Network W1 preserves the median utility level at 10, but network W2 reduces the

median to 9.5. This second network also changes the ordering of who gains the most utility,

with agent 3 having the highest private utility level but agent 2 having the highest social

utility level. Finally, the second network obviously generates a larger standard deviation of

social utility than the first network, and both of these standard deviations are smaller than

in the private utility profile.

The following definitions are used to discuss the aggregate value of public projects.

Definition 4.

A. Aggregate network value is defined as Cnetwork =
∑

iC
network
i

B. Aggregate private value is defined as Cprivate =
∑

iC
private
i

C. Aggregate valuation neutrality is defined by Cnetwork = Cprivate

As a consequence of proposition 3, valuation of public projects is independent of social

structure when the population has a social network that is welfare neutral. The next corollary

formalizes this result.

Corollary 3. (Aggregate valuation neutrality). If welfare neutrality holds, then

Cnetwork = Cprivate.

Corollary 3 provides sufficient conditions for aggregate valuation neutrality. It implies

that in networks in which agents have the same importance, i.e. δ1 = ... = δn = 1, the

aggregate value of a public good can be measured by either Cnetwork or Cprivate. Aggregate

valuation neutrality does not require individual valuation neutrality. In fact, in non-neutral

networks, Cnetwork
i is typically different from Cprivate

i even when Cnetwork is equivalent to

Cprivate. Therefore, standard non-market valuation measures can be used if: i) welfare

neutrality holds, and ii) the objective is to obtain a measure of aggregate willingness to pay

or mean willingness to pay and not median willingness to pay. This can be highlighted with

an example similar to the one above. Let

W =

0.5 0.3 0.2

0 0.6 0.4

0.5 0.1 0.4

.
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This is the same as induced network W2 in the previous example. Let u(g1) − u(g0) =

(4, 12, 16)′. Then v(g1) − v(g0) = (8.8, 13.6, 9.6)′. The aggregate network value and the

aggregate private value are equal at 32, but every agent’s valuation changes. Importantly, the

median social valuation of 9.6 is lower than the median private valuation of 12, demonstrating

that welfare neutral networks can change the quantiles of the valuation distribution even

though they do not change the mean valuation.

The preceding results highlight when a network does or does not impact welfare, but

they do not address how the network impacts aggregate welfare and aggregate valuation. To

this end, we define welfare-increasing social networks as follows.

Definition 5. A social network is welfare-increasing if
∑

i vi >
∑

i ui.

To facilitate welfare comparisons, it is useful to write the social network welfare as a

weighted sum of the private utilities of all agents with weights determined by the importance

of agents as defined in Section 2: ∑
j δjuj,

where δj is agent j’s importance as presented in Definition 1, i.e. δj =
∑

iwij. Index agents

by increasing values of private utility such that agent 1 is the lowest private utility agent

and agent n is the highest private utility agent. Hence, u = (u1, ..., un)′ is a sorted private

utility profile such that u1 ≤ u2 ≤ ... ≤ un. It is now easy to see that social network welfare

increases as the importance of high private utility agents increases and, as a consequence,

the importance of low private utility agents decreases. To formalize this intuition, define

the distribution of importance as the vector (δ1/n, ..., δn/n). This is a distribution because,

recalling that 0 < δi < n for each i, every element in the distribution of importance lies

between zero and one. With this in mind, the next proposition formalizes the idea that the

network increases social welfare by shifting improtance to agents with higher private values

of the public good.

Proposition 4. (Welfare-increasing networks). For all sorted private utility profiles

u, if the distribution of importance of a network W first order stochastically dominates

(FOSD) that of the social isolation case, then W is a welfare-increasing network.

Under social isolation, the induced network W is equal to the identity matrix. As a

result, every agent in the network has the same importance δ = 1. Thus, if the network’s

distribution of importance FOSD the (social isolation) uniform distribution of importance,

then the provision of a public good in the network will generate welfare greater than the sum

of the private values. Proposition 4 has important implications as the welfare generated by
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the provision of a public good can be enhanced or diminished by social networks with the

outcome depending on the distribution of importance.

One implication is that public goods policy should target high importance individuals.

This view provides new insights to questions like “Should the government fund fine arts?”.

A traditional approach to this problem would consider the potentially high costs associated

with benefits to a select group of individuals with significant high utility from fine arts.

However, if these individuals are important (or popular) individuals in the social network,

the positive externalities generated from these policies may justify such public investments.

Accordingly, Proposition 4 provides structure to the idea of opinion leadership, that

is, the existence of agents who can facilitate change. For a given population governed by

a given network, projects valued more highly by agents with higher importance tend to

be the projects valued by the entire population. In extreme cases, efforts to undertake

projects valued highly by the single individual with the greatest importance tend to be more

successful than those valued negatively by that same individual. Thus, opinion leadership

and importance are linked in our framework. This is consonant with the conclusions from

Flores (2002) and Bergstrom (2006), highlighting the fact that social utility can play an

important role in cost-benefit analysis. A public project may be Pareto improving even

though the sum of private values is not large enough to justify the public investments.

That Pareto improvement comes from the high private values of highly important agents, or

opinion leaders.18

If the social network is capable of generating striking changes in social welfare, it is

important to understand which types of network are more desirable. This is formalized in

the next proposition that facilitates comparisons of networks focusing on social welfare.

Proposition 5. (Network welfare comparisons). For all sorted private utility profiles

u, if the distribution of importance of a network W FOSD that of another network W’, then

W generates greater social network welfare than W’.

According to Proposition 5, a network that favors high private utility agents generates

greater social network welfare than one that favors low private utility agents. The following

example stresses the relevance of this result. Consider two geographically separated popu-

lations of same size, with separated social networks but with identical private utility profile

u. Assume that a central planner has the resources to implement a public project in one of

the two populations. In which population should the project be implemented? If the cost of

implementation is the same in both populations, private benefit-cost analysis would indicate

18These ideas in turn provide an intuitive rationale why, for example, the United Nations
might name a Hollywood actress such as Angelina Jolie as a Goodwill Ambassador. Refer to
http://www.unhcr.org/pages/49c3646c56.html. Accessed on October 26, 2011.
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that the central planner should be indifferent between the two options. Social benefit-cost

analysis leads to a different conclusion. Considering definition 3A of social network welfare,

if the two populations have different social networks, the project should be implemented

in the network that places more weight on agents with higher private utility. Corollary 4

considers network effects on aggregate valuation.

Corollary 4. (Network effects on aggregate valuation). Cnetwork ≥ Cprivate if

and only if
∑

i

(
δi − 1

)[
(ui(g

1)− ui(g0)
]
≥ 0.

The corollary indicates that a social network has positive effects on aggregate valuation

when the weighted sum of private willingness to pay is positive, with the weights determined

by deviations from the mean importance. Intuitively, the more the distribution of importance

favors agents with high private valuation, the greater is the aggregate network valuation.

This result has important implications.

For example, suppose the public project is one that targets the improvement of attributes

of a beach frequented by n residents of a certain neighborhood. Suppose few residents are

surfers. As committed surfers, they love to be at the beach and have high private willingness

to pay for an increase in beach quality. Now suppose that these few surfers have several

friends and, as a result, are very popular residents of this neighborhood. Moreover, assume

that this is a high enough combination of popularity and private valuation such that corol-

lary 4 holds. The consequence is that these few surfer residents may be responsible for a

significant boost in the value of the public project making Cnetwork > Cprivate. Now imagine

that the surfers leave the neighborhood. Clearly, if high valuation agents are not consid-

ered, the aggregate value of the public project decreases. However, because of the network

structure, the aggregate value may drop further. Shocks in the network can make second-

order valuation effects (network effects) larger than first-order effects. As a consequence, the

condition in corollary 4 may be no longer satisfied in a neighborhood without surfers. The

example emphasizes how sensitive aggregate valuation can be to changes in social structure.

5 Project Choice and Opinion Leadership

Sections 3 and 4 concerned how the characteristics of the network affect individual and

aggregate valuation, respectively, for a given public project. In this section we turn to the

issue of project choice. In some instances policy-makers consider a number of public projects

simultaneously, but can only provide one. This section illustrates how the characteristics of

the network impact the decision of which project to undertake.

To isolate the effects of network structure, consider the case of a policy-maker decid-

ing between two public projects, g and g∗, that generate private utility profiles u and
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u∗, respectively. Assume that both projects generate the same aggregate private utility:∑
i ui =

∑
i u
∗
i . Are there characteristics of the network that would lead the policy-maker

to prefer one of the projects to the other, that is, that would make one project have higher

aggregate social utility than the other?

The answer relates to how the distribution of private utilities relates to the distribution of

importance. In particular, as the next proposition shows, if the project g∗ shifts private utility

from a less-important to a more-important individual, then g∗ generates higher aggregate

social network welfare than g does.

Proposition 6. (Agent-to-agent benefit transfers). A public project that transfers

ε > 0 private utility from an agent to another constitutes a Kaldor-Hicks improvement if and

only if the project transfers private utility from a less important agent to a more important

agent.

In our model, a Kaldor-Hicks improvement is simply an increase in social network welfare,

so that
∑

i v
∗
i ≥

∑
i vi. The if-and-only-if nature of the proposition says that, when filtered

through the network, a transfer of private utility from a less-important to a more-important

agent increases social network welfare, while a transfer from a more-important to a less-

important agent reduces social network welfare. Thus, the proposition corroborates the

overall theme of the paper that social welfare is determined by the correlation between

private utility and network importance.

The proposition also suggests a special role for the most important agent. Let ∆i =

{δ|δi > δj for all j 6= i}, where δ is an importance vector. Consequently, ∆i is the set of all

importance vectors that assign the highest importance to agent i. The following proposition

links social network welfare to the private benefits accruing to the network’s most important

agent.

Proposition 7. (Opinion leaders and public projects). A public project that trans-

fers ε > 0 private utility from each of n−1 agents to the remaining agent constitutes a strict

Kaldor-Hicks improvement for every δ ∈ ∆i if and only if the recipient is agent i.

This proposition further highlights the special role that an opinion leader, or the most

important agent, plays in the provision of a public good. Proposition 5 explored the impact

of changing the network structure while holding the underlying private utility vector con-

stant, and stated that network changes that shift importance toward those who are already

important increases the value of the public project. Proposition 7, in contrast, holds the

network fixed and looks at changes in the distribution of private utilities. Holding aggregate

private utility fixed, a project that shifts private utility to the most important person nec-

essarily increases aggregate welfare. Tellingly, a project that shifts private utility to anyone
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else might reduce aggregate welfare, so that the opinion leader is the only member of the

network who has the following distinction: projects that are valued more by the opinion

leader are valued more by the entire network.

Proposition 7 also allows for the possibility of a lower information requirement for a policy

maker who wants to take advantage of the network. Rather than identifying the entire

importance vector, the policy maker could instead identify the most important member

of the network, the opinion leader. The proposition shows that aggregate-private-utility

redistributions favoring the opinion leader are welfare improving, so the policy maker can

simply target this one individual when selecting the public project. Of course, this under-

identification of the network might lead to mistakes if the projects yield different levels of

aggregate private utility, but targeting the opinion leader remains a viable strategy for some

project choices.

The role of opinion leaders was early-on recognized in other disciplines such as marketing

and sociology. In marketing, the literature focuses on the effect of leadership on opinion

formation and the diffusion of innovations.19 Recent research investigate these topics in the

context of social networks. van Eck et al. (2011) use simulations to show that in networks

with active opinion leaders, information spreads faster, the product diffuses faster, and the

adoption percentage is significantly higher than in a network without opinion leaders. Other

papers empirically investigate leadership effects using real-world social network data. Nair

et al. (2010) find an opinion leader effect on physician prescription behavior. Iyengar et al.

(2011) find that both sociometric and self-reported opinion leadership affect the adoption of

a new drug by physicians.20 Aral and Walker (2012) use a randomized field experiment in a

large sample of Facebook users to study the adoption of a product. They detect highly influ-

ential individuals and conclude that these individuals may be instrumental in the spread of

a product in a network. In sociology, the literature has studied how opinion leaders influence

mass communications (see Katz and Lazarsfeld (1955)), voting behavior (see Berelson et al.

(1954)), and discrimination (see Dean and Rosen (1955)), to name a few examples.

Our paper contributes to the non-market valuation literature by introducing the notion of

opinion leadership to a valuation model of public goods in social networks. Opinion leaders

are important in choosing among projects because they disproportionately influence the

aggregate value of public goods. In our model, leadership is easily identified through δ, i.e.

the importance of agents. Our results have important consequences for the design of public

projects. In practice, policy makers use behavioral data (revealed preference) or survey data

19Refer to Watts and Dodds (2007) for a brief review.
20As discussed by Iyengar et al. (2011), sociometric opinion leadership measures are obtained through

sociometric techniques, i.e. network centrality scores. Self-reported opinion leadership measures are directly
obtained through surveys.
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(stated preference) to learn how different project characteristics and socio-economic variables

affect the distribution of non-market values. Information about social networks and opinion

leaders are not traditionally used in these studies. Our paper indicates, however, that this

type of information may enable policy makers to design better public projects, and may be a

valuable resource in settings in which tight budget constraints make an increase in aggregate

private benefits unfeasible.

6 Conclusion

Directed altruism towards friends or joint consumption of public goods with friends are pos-

sibly two important reasons to consider social structure in non-market valuation approaches.

The paper builds a network model for analyzing provisions of public goods accounting for

the presence of social utility operating through social connections. The model assumes that

individuals’ private values are the ones that pertain in the absence of social network effects

while social values weight own private utility and social utilities of friends. This framework

allows us to study the effects of the shape of the connections on non-market values, holding

constant the effect of network size.

Current research on public goods in networks study environments in which links are

used to share non-excludable goods, i.e. local public goods. Differently, the focus of our

research is not to study incentives problems related to the production of local public goods.

Instead, we present a valuation model in social networks. The model delivers two measures

of willingness to pay for an increase in the provision of public goods: willingness to pay

under network interaction, a measure that accounts for the influence of connected friends

and feedback effects; and standard willingness to pay in social isolation, a special case of the

model that arises when the network structure is neutral.

By comparing these two measures, the paper demonstrates that non-market values can

significantly be affected by social networks. For example, if the network is such that connec-

tions with high private utility agents are more intense, private willingness to pay understates

the true value of non-market goods. However, if agents are equally “popular” in the social

network, i.e. all agents receive the same amount of attention from their friends, the social

structure may affect individual values but the overall welfare generated by the provision of

the public good is the same of that generated in an environment of complete social isolation.

We demonstrate that social welfare changes as a function of the distribution of popularity of

agents in the network. When popular agents have high private valuation, the second-order

(networks) effects have high impact on aggregate valuation.

The network model presented in this research can potentially guide empirical work. If

20



the underlying consumption decisions involve considerations about the well-being of socially

connected agents, conventional non-market valuation approaches may mislead econometric

identification by not taking into account an important source of variation in the willingness

to pay of agents: the social network. With network interaction, the value an individual

attributes to a public good is a function of the values that friends attribute to the public

good, and the value that friends attribute to the public good is a function of the individual’s

valuation. Manski (1993, 2000) refers to this as the reflection problem. If this is the case,

the estimation of non-market values becomes even more challenging.21

Future empirical research should focus on the development of econometric models and

survey techniques to facilitate estimation of non-market values accounting for the possible

social network effects demonstrated in this paper. Future theoretical work should focus on

generalizations of the analyzes developed in this research. These may include, for instance,

the study of environments with multiple (substitute or complementary) public goods or the

investigation of congestion effects.

21Readers interested in econometric identification of peer effects through social networks should refer to
Bramoullé et al. (2009).
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Appendix

Lemma 1. Agent i’s social utility is a convex combination of the private utilities of all

agents, i.e. for all i and j, wij ∈ [0, 1] and
∑

j wij = 1.

Proof. First notice that (I−ΛA) is a strictly diagonally dominant matrix and, by the Levy-

Desplanques theorem, cannot be singular (see Taussky (1949), Theorem I). Hence W always

exists. (I − ΛA)−1 is a nonnegative matrix. To see this, note that the matrix (I − ΛA)−1

can be written as the Neumann series (I + (ΛA) + (ΛA)2 + (ΛA)3 + ...), i.e. a sum of

nonnegative matrices. Since (I − Λ) is a nonnegative matrix, W = (I − ΛA)−1(I − Λ) is

also a nonnegative matrix. To prove lemma 1 it must be demonstrated that t, the row sum

vector of the matrix W, is a vector whose entries are all 1. The row sum vector of a matrix

can be obtain by pos-multiplying the matrix by a column vector i whose entries are all 1.

Thus, t can be written as

t = (I−ΛA)−1(I−Λ)i (A1)

By construction, (I − ΛA) and (I − Λ) have the same row sum column vector r, with the

i-th entry equal to 1− λi. As a consequence,

(I−ΛA)i = r (A2)

(I−Λ)i = r (A3)

Plugging (A3) into (A1) yields to

t = (I−ΛA)−1r

According to (A2), i = (I−ΛA)−1r. Thus, t = i.

Lemma 2. Every agent in the network has positive importance, i.e. δi > 0 for all i.

Proof. Rewrite W = (I−ΛA)−1(I−Λ) as W = XY. Notice that an element of W can be

written as wii = xi1y1i + xi2y2i + ... + xiiyii + ... + xinyni, where xij and yij are elements of

X and Y, respectively. Also, notice that xii ≥ 1. To see this, recall that X can be written

as the Neumann series (I + (ΛA) + (ΛA)2 + (ΛA)3 + ...), which is a sum of the identity

matrix with nonnegative matrices. Moreover, 0 ≤ λi < 1 =⇒ 0 < yii ≤ 1. Therefore,

since X and Y are nonnegative matrices, and xiiyii > 0, it follows that wii > 0 for all i, thus

δj =
∑

iwij > 0.
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Proposition 1. (Network neutrality). Network neutrality holds if

A. all agents are socially isolated, or

B. all agents have the same private utility level.

Proof. 1A. If agent i is socially isolated, by construction, λi = 0. According to equation (2),

vi = (1− λi)ui + λi
∑

j aijvj. Hence, if λi = 0, then vi = ui. 1B. If u1 = u2 = ... = un = ū,

a constant utility level, vi can be written as vi =
∑

j wijū = ū
∑

j wij. According to lemma

1,
∑

j wij = 1. Hence, vi = ū = ui

Corollary 1. (Individual valuation neutrality). If network neutrality holds, the

willingness to pay measure Cnetwork
i is equal to the private measure Cprivate

i .

Proof. Cnetwork
i =

∑
j wijuj(g

1)−
∑

j wijuj(g
0) (see equation (8)), or just Cnetwork

i = vi(g
1)−

vi(g
0). If the network is neutral, vi(g) = ui(g). It follows that Cnetwork

i = ui(g
1)− ui(g0) =

Cprivate
i (see equation (9)).

Proposition 2. (Network benefits on utility). For wii 6= 1, the network benefits

agent i, i.e. vi(g) > ui(g), if and only if ui(g) <

∑
j 6=i wijuj(g)∑

j 6=i wij
.

Proof. vi(g) > ui(g) ⇐⇒
∑

j wijuj(g) > ui(g) ⇐⇒ wiiui(g)+
∑

j 6=iwijuj(g) > ui(g) ⇐⇒∑
j 6=iwijuj(g) > (1− wii)ui(g) ⇐⇒

∑
j 6=i wijuj(g)∑

j 6=i wij
> ui(g).

According to lemma 1,
∑

j 6=iwij = (1− wii). Thus, for wii 6= 1,
∑

j 6=iwij > 0.

Corollary 2. (Network effects on individual valuation). In non-neutral networks

with wii 6= 1, Cnetwork
i ≥ Cprivate

i if and only if
(
ui(g

1)− ui(g0)
)
≤
∑

j 6=i wij(uj(g
1)−uj(g

0))∑
j 6=i wij

.

Proof. Cnetwork
i > Cprivate

i ⇐⇒ vi(g
1) − vi(g

0) > ui(g
1) − ui(g

0) ⇐⇒
∑

j wijuj(g
1) −∑

j wijuj(g
0) > ui(g

1) − ui(g0) ⇐⇒ (1 − wii)ui(g
1) − (1 − wii)ui(g

0) <
∑

j 6=iwijuj(g
1) −∑

j 6=iwijuj(g
0) ⇐⇒

(
ui(g

1)− ui(g0)
)
<

∑
j 6=i wij(uj(g

1)−uj(g
0))∑

j 6=i wij
.

According to lemma 1,
∑

j 6=iwij = (1− wii). Thus, for wii 6= 1,
∑

j 6=iwij > 0.
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Proposition 3. (Welfare neutrality). If every agent in the network has the same

importance, then the social network welfare is equal to the social isolation welfare.

Proof.
∑

i vi = u1
∑

j wj1 + u2
∑

j wj2 + ... + un
∑

j wjn =
∑

i

∑
j wjiui. When agents have

the same importance, the columns of the induced network sum to one, i.e.,
∑

j wji = 1. To

see this, note that since the rows of W sum to 1, i.e.
∑

j wij = 1 (see lemma 1), the sum

of all entries in W is equal to
∑

i

∑
j wij = n. If all agents have the same importance, the

importance of a single agent is obtained by dividing n evenly among the n columns of W. If

this is the case, the column sum vector of W is a vector of ones. Hence, equality of agents’

importance implies
∑

j wji = 1. Therefore,
∑

i vi =
∑

i

∑
j wjiui =

∑
i ui.

Corollary 3. (Aggregate valuation neutrality). If welfare neutrality holds, then

Cnetwork = Cprivate.

Proof. Cnetwork =
∑

iC
network
i =

∑
i vi(g

1)−
∑

i vi(g
0) . If welfare neutrality holds,

∑
i vi(g) =∑

i ui(g). Then, Cnetwork =
∑

i ui(g
1)−

∑
i ui(g

0) = Cprivate.

Proposition 4. (Welfare increasing networks). For all sorted private utility profiles

u, if the distribution of importance of a network W first order stochastically dominates

(FOSD) that of the social isolation case, then W is a welfare increasing network.

Proof. See proposition 5 with W’ equal to the identity matrix.

Proposition 5. (Network welfare comparisons). For all sorted private utility profiles

u, if the distribution of importance of a network W FOSD that of another network W’, then

W generates greater social network welfare than W’.

Proof. It will be shown that, for all sorted private utility profile, if distribution of impor-

tance of a network W FOSD that of another network W’, then W generates greater social

network welfare than W’. Hence, it must be demonstrated that,
∑k

i=1 δi ≤
∑k

i=1 δ
′
i implies∑n

i=1 δiui ≥
∑n

i=1 δ
′
iui, for all sorted private utility profile u.

W generates greater social network welfare than W’ when∑
i

δiui >
∑
i

δ′iui (A4)
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(see proof of Proposition 3). Construct pi = δi/n and re-write (A4) as∑
i

piui >
∑
i

p′iui. (A5)

Since p = (p1, ..., pn) represents a probability vector, Ui =
∑

i piui is a expected utility

function. Let P (k) =
∑k

i=1 pi be the cdf that governs the probability vector p. If P (k)

FOSD P ′(k), i.e.
∑k

i=1 pi ≤
∑k

i=1 p
′
i for all k, then the expected utility under P is greater

than the expected utility under P ′, Ui > U ′i , as in (A5).

Corollary 4. (Network effects on aggregate valuation). Cnetwork ≥ Cprivate if

and only if
∑

i

(
δi − 1

)(
(ui(g

1)− ui(g0)
)
≥ 0.

Proof. Cnetwork ≥ Cprivate ⇐⇒
∑

iC
network
i ≥

∑
iC

private
i ⇐⇒

∑
i vi(g

1) −
∑

i vi(g
0) ≥∑

i ui(g
1) −

∑
i ui(g

0) ⇐⇒
∑

i δiui(g
1) −

∑
i ui(g

1) −
∑

i δiui(g
0) +

∑
i ui(g

0) ≥ 0 ⇐⇒∑
i

(
δi − 1

)(
(ui(g

1)− ui(g0)
)
≥ 0.

Proposition 6. (Agent-to-agent benefit transfers). A public project that transfers

ε > 0 private utility from an agent to another constitutes a Kaldor-Hicks improvement if and

only if the project transfers private utility from a less important agent to a more important

agent.

Proof. Let k index the agent that receives ε > 0 private utility from agent j. The welfare

impact of the policy change is

εδk − εδj = ε(δk − δj).

Clearly, the policy change strictly increases aggregate welfare if and only if δk > δj.

Proposition 7. (Opinion leaders and public projects). A public project that trans-

fers ε > 0 private utility from each of n−1 agents to the remaining agent constitutes a strict

Kaldor-Hicks improvement for every δ ∈ ∆i if and only if the recipient is agent i.

Proof. Consider a policy change that increases private utility by (n−1)ε for agent k = i and

reduces private utility by ε for each of the other agents. The welfare impact of the policy

change is

(n− 1)εδi − ε
∑
j 6=i

δj =
[
(n− 1)δi −

∑
j 6=i

δj

]
ε.
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By construction, δi +
∑

j 6=i δj = n. Hence, the welfare impact of the policy can be re-written

as [
(n− 1)δi − (n− δi)

]
ε = n(δi − 1)ε > 0,

which is strictly positive because δi > 1. To see this, notice that average importance is 1

and δ ∈ ∆i assigns higher importance to agent i. Hence, δi is above average. Therefore, the

policy change increases aggregate welfare.

For the other direction, choose any δ ∈ ∆i such that δi > n− 1. Since δi +
∑

j 6=i δj = n,

it follows that δj < 1 for all j 6= i. Consider a policy change that increases private utility by

(n − 1)ε for agent k 6= i and reduces private utility by ε for each of the other agents. The

welfare impact of the policy change is

(n− 1)εδk − ε
∑
j 6=k

δj =
[
(n− 1)δk −

∑
j 6=k,i

δj − δi
]
ε.

Note that δj > 0 for all j, and that δk < 1 and δi > n− 1 by construction. Consequently,

(n− 1)δk −
∑
j 6=k,i

δj − δi < (n− 1) · 1−
∑
j 6=k,i

0− (n− 1) = 0

and the policy change reduces aggregate welfare.
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