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Estimation of elastic parameters of porous rock like the compressibility of sandstone is scientifically important and yet an open
issue. This study illustrates the estimation of the elastic compressibility of sandstone (ECS) based on the assumption that the
ECS is determined closely by the mineral composition and microstructures. In this study, 37 samples are collected to evaluate
the estimations of the ECS obtained by different methods. The regression analysis is first implemented using the 37 samples. The
results show that ECS exhibits linear relations with the rockminerals, pores, and applied compressive stress.Then the support vector
machine (SVM) optimized by the particle swarm optimization algorithm (PSO) is examined to generate estimations of the ECS
based on themineral composition andmicrostructures.The SVM is trained with 30 samples to search for optimal parameters using
the PSO, and thus the estimation model is established. Afterwards, this model is validated to give predictions of the left 7 samples.
By comparison with the regression methods, the proposed strategy, that is, the PSO optimized SVM, performs much better on the
training samples and shows a good capability in generating estimations of the ECS of the 7 testing samples based on the mineral
composition and microstructures.

1. Introduction

The identification of elastic parameters of porous rock is one
of the major problems in rock mechanics and so far an open
issue. The elastic properties of porous rock show apparent
variability from one project to another in practice. In the
formulation of suitable constitutive models, the material
parameters should be determined first from relevant exper-
imental data in order to describe the mechanical behaviors
of rock materials under different engineering contexts [1].
Classical deterministic approaches [2–4] have been firstly
used to identify the physical properties of rock materials,
generally based on laboratory experiments [5–9] and in situ
tests [10, 11]. However, these tests sometimes are difficult to be
realized and may involve heavy costs. In this way, estimation
of the coefficients related to the physical properties has also
drawn much attention for feasibility and easiness in practice.

Approaching this issue, many techniques have been pro-
posed for the estimation of elastic parameters of porous rock
material [4, 12–18]. In these techniques, the elastic parameters

are thought to be closely related to someother indexes that are
easily to be determined. However, these conventional meth-
ods, for example, the empirical equations, have very poor
generalization ability in estimation.This is doomed due to the
insufficiency of these methods to account for the uncertain
relationships between the elastic parameters and the related
indexes such as the rock minerals and microstructures.

In order to better take into account the uncertainties in
the determination of elastic parameters of rock materials,
various soft computing methods have been introduced to
approach this problem in the past decades [19]. These meth-
ods provide a new way for the description of elastic parame-
ters of rock materials since with such approaches it becomes
possible to learn some disciplines among the related rock
parameters from the relevant data obtained. In this manner,
if similar positive results can be found, expensive experi-
mental identification procedures can be avoided. Towards
this issue, some valuable results have been obtained in some
previous works by using the neural networks and regression
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techniques [20–25]. In these works, both the laboratory tests
and field measurements have been used for estimating the
elastic parameters. However, there is a common shortcoming
for both the field tests and the laboratory tests. They cannot
consider all the physical and mineral parameters such as the
mineral composition, the particle size, and the distribution
of voids. And what is more, as mentioned above, they are
expensive to be realized in some cases. For the simple neural
networks, they have some shortcomings all the same, such
as the local solution, weak generalization ability, and high
computational expense. In this way, more effective methods
are still in need to approach the estimation of the elastic
parameters of the porous rock materials.

In this paper, we illustrate estimation of the elastic
parameters of sandstone (the one common material in
geotechnical engineering and earth science) according to
their mineral compositions and microstructural properties
using the SVM model [26, 27]. We apply the particle swarm
optimization algorithm (PSO) to optimize the SVM model
parameters which have been proved to have a significant
effect on the model performance [28]. We demonstrate the
applicability and reliability of this method noted as the PSO-
SVM for estimation of rock elastic compressibility based on
the experimental data of the rock mineral compositions and
microstructure features as well as the loading pressure. The
other elastic parameters of porous rock can be estimated
using the strategy in a similar way and are thus not discussed
in this paper.

2. Material and Method

2.1. Rock Elastic Compressibility and Experimental Data.
Compressibility is a measure of the relative volume change
of material as a response to a stress (or hydrostatic pres-
sure) change under certain conditions. The measurement
of rock compressibility is accomplished through measuring
the change of pore volume versus pore pressure. The rock
compressibility usually has an unreasonable deviation from
its true value for the reason that the measurement is invisibly
affected by many uncertain parameters.

Rock compressibility is the volume shrunken feature of
rocks under pressure, and is reflected by the compressibility
coefficients. The compressibility coefficients of the rock are
closely related to the ambient pressure, as well as the fracture
distribution, themineral and its proportion, density, and void
ratio. The beginning work on rock compressibility that is
widely used today is done byHall [29] in 1953. He developed a
graph of the rock compressibility versus porosity by statistical
analysis of laboratory experiments, which is called Hall’s plot
today and simulated by some empirical formula. Then a
similar fundamental work has been done by Newman [30].
He obtained a similar trend of rock compressibility with
porosity toHall’s plot for both the consolidated sandstone and
limestone.

However, Hall’s plot, in some cases, shows a logically con-
fusion relation between the compressibility and porosity in
rocks. According to Hall’s plot, the compressibility decreases
as rock porosity increases. Extremely tight rocks have an
abnormally high compressibility [31]. In fact, tight rocks are

less compressible than loose rocks and should have a smaller
compressibility. Moreover, the rock compressibility by Hall’s
plot is usually larger than that of the reservoir liquids in the
normal range of reservoir porosity. Thus, Hall’s plot is not
sufficient enough in every case. Also, Hall’s plot gives the
same compressibility value for rocks of different lithology if
only they have the same porosity regardless of their different
rigidity.That is to say,Hall’s plot does not consider the effect of
rock lithology andminerals composing the rocks. Some other
discussions on the rock compressibility can also be found in
the pieces of literature [32–36].

Experiments have been done on sandstones for discover-
ing the relationships between the compressibility coefficients
and their mineral compositions, voids, and other parameters
[3]. As stated in thework, the samples used in the experiments
are mostly clean quartz arenites, subarkoses, and argillaceous
quartz arenites, in which kaolinite is the dominant pore-
filling mineral. Total porosity is divided into three types
which are the intergranular (equidimensional, size compara-
ble to grains), the connective (tabular or tubular shaped), and
the micro (less than a few microns in size) porosity on the
basis of point counting SEM images. The micro pores occur
within aggregates of clay. The ranges of porosity of samples
are total porosity, 5–31% of whole sample; intergranular
porosity, 24–76% of total porosity; connective porosity, 4–
25% of total porosity; microporosity, 10–63% of total porosity.
Empirical equations of calculating rock compressibility are
mainly based on the rock porosity and cannot take into
account the effects of all the associated parameters.

The experimental results are rearranged as shown in
Table 1 where the three coefficients 𝑎

𝐴
, 𝑎
𝐵
, and 𝑎

𝐶
are the

elastic linear compressibility measured by gauges settled in
three orthogonal directions. In all, 37 samples of sandstone
are used in this study and each sample has 11 features. The
box graph of each parameter of all the sandstone samples is
shown in Figure 1.

The parameter values of the samples are shown in two
subfigures (Figures 1(a) and 1(b)) in order to well illustrate
their statistical aspects due to the differences of their value
ranges. The horizontal axis of Figure 1 lists the parameter
names and the vertical axis denotes the parameter values
without units. The small circles (I) and the stars (∗) in
Figure 1 exhibit the “outliers” produced by the box graph
based on the statistical features of the dataset. The numbers
beside the circle and star markers are the sample numbers
listed in the first columnofTable 1.They are the test parameter
values which are not in the statistical range of the box graph.
In this manner, these “outliers” do not necessarily mean that
they are true outliers and should be removed from analysis
of the dataset. Nevertheless, the box graph manifests that
some parameters in the dataset have several “outliers” which
indicate the moderate quality of statistical consistency of the
dataset.

2.2. Support Vector Machine. The support vector machines,
also known as the support vector networks [26], are super-
vised learning models with associated learning algorithms
which deal with data and recognize patterns and are mainly
used for classification and regression analysis.



Advances in Materials Science and Engineering 3

Ta
bl
e
1:
C
om

pr
es
sio

n
ex
pe
rim

en
ta
lr
es
ul
ts
of

sa
nd

sto
ne
s.

Sa
m
pl
e

nu
m
be
r

M
in
er
al
og

y
(v
ol
%
)

Av
er
ag
ep

ar
tic
le

siz
e(
𝜇
m
)

D
en
sit
y

(g
⋅cm
−
3
)

Av
er
ag
ev

oi
d

ra
tio

(%
)

Po
re

di
st
rib

ut
io
n
(%

)
Pr
es
su
re

(M
Pa
)

C
om

pr
es
sib

ili
ty
co
effi

ci
en
ts

M
Pa
−
1
×
10

6

Q
ua
rt
z

Fe
ld
sp
ar

Sh
ar
d
cla

y
O
th
er
s

A
m
on

g
pa
rt
ic
le

Po
re

w
al
l

M
ic
ro

po
re

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

1
80

0
18

2
65

2.
01

24
.1

34
23

43
10

36
.2

43
.6

26
.0

2
85

8
7

0
17
5

1.9
8

23
.8

67
11

22
10
0

32
.7

24
.0

29
.3

3
70

15
12

3
90

2.
02

22
.7

35
14

51
30

42
.0

41
.8

43
.0

4
83

10
3

4
22
0

1.7
8

30
.5

72
4

24
50

43
.1

40
.8

35
.0

5
65

5
28

2
95

2.
00

23
.5

50
10

40
10

64
.8

94
.2

10
5.
0

6
65

5
28

2
95

2.
00

23
.5

50
10

40
50

44
.1

55
.2

54
.9

7
65

5
28

2
95

2.
00

23
.5

50
10

40
10
0

42
.0

51
.4

50
.1

8
80

9
4

7
80

2.
21

15
.6

57
26

17
30

25
.5

31
.8

45
.4

9
80

9
4

7
80

2.
21

15
.6

57
26

17
50

22
.6

26
.8

36
.5

10
80

9
4

7
80

2.
21

15
.6

57
26

17
10
0

20
.2

22
.9

30
.9

11
94

0
1

5
12
0

2.
14

17.
8

72
13

15
10

46
.1

54
.2

64
.0

12
94

0
1

5
12
0

2.
14

17.
8

72
13

15
30

28
.9

26
.8

32
.5

13
94

0
1

5
12
0

2.
14

17.
8

72
13

15
10
0

24
.0

22
.8

23
.1

14
95

3
2

0
17
0

2.
13

18
.1

76
14

10
10

40
.1

50
.5

34
.0

15
95

3
2

0
17
0

2.
13

18
.1

76
14

10
10
0

19
.9

21
.6

18
.5

16
95

0
5

0
13
0

2.
03

21
.7

76
10

14
30

32
.8

29
.0

30
.2

17
98

0
2

0
35
0

2.
33

10
.6

69
17

14
10

24
.3

27
.6

34
.1

18
98

0
2

0
35
0

2.
33

10
.6

69
17

14
50

14
.1

15
.6

15
.8

19
96

1
2

1
11
5

1.9
4

24
.1

70
14

16
30

33
.2

35
.9

35
.4

20
96

1
2

1
115

1.9
4

24
.1

70
14

16
10
0

25
.0

28
.8

26
.0

21
90

2
1

7
10
0

2.
18

16
.8

60
19

21
10

34
.3

26
.2

36
.8

22
90

2
1

7
10
0

2.
18

16
.8

60
19

21
50

21
.8

24
.0

23
.2

23
92

0
8

0
12
0

2.
42

8.
5

24
13

63
50

27
.5

22
.2

18
.9

24
92

0
8

0
12
0

2.
42

8.
5

24
13

63
30

36
.5

28
.5

22
.7

25
90

4
6

0
14
5

2.
01

23
.4

69
11

20
10

43
.4

44
.8

50
.0

26
70

15
12

3
90

2.
02

22
.7

35
14

51
10

86
.0

67
.2

86
.4

27
83

5
8

4
65

1.9
1

27
.3

68
10

22
10

63
.6

63
.8

65
.9

28
83

5
8

4
65

1.9
1

27
.3

68
10

22
30

48
.5

47
.2

53
.8

29
85

8
7

0
17
5

1.9
8

23
.8

67
11

22
30

49
.4

49
.8

55
.1

30
83

10
3

4
22
0

1.7
8

30
.5

72
4

24
10

46
.8

46
.4

38
.4

31
94

0
1

5
12
0

2.
41

17.
8

72
13

15
50

26
24
.9

27
32

95
0

5
0

13
0

2.
03

21
.7

76
10

14
50

31
26
.4

27
.3

33
80

9
4

7
80

2.
21

15
.6

57
26

17
10

34
.4

48
.6

82
.9

34
96

1
2

1
11
5

1.9
4

24
.1

70
14

16
10

47
.8

50
.5

50
.4

35
90

4
6

0
14
5

2.
01

23
.4

69
11

20
10
0

29
24
.3

27
36

90
4

6
0

14
5

2.
01

23
.4

69
11

20
50

30
.5

27
.4

30
.9

37
75

9
15

1
85

2.
96

25
.9

40
16

44
30

58
.1

57
55
.1



4 Advances in Materials Science and Engineering

120

100

80

60

40

20

0

Quartz Pore among
particles

aA aB aC

1

24
23

26
5

5

26

(a)

60

40

20

0

Feldspar Others Density Average
void ratio

6 7
5

1

37

9 33
10 8

37 1
6 5

26
3

2423

Shard
clay

Pore
wall

Micro
pore

∗

∗

∗

(b)
Figure 1: Box graph of the properties of sandstone experiment data (without unit).

Given the 30 training samples in Table 1 denoted by
(𝑋, 𝑌) = (𝑥

𝑖
, 𝑦
𝑖
)
𝑛

𝑖=1
, here 𝑥

𝑖
is the 𝑖th sample with 11 param-

eters values (e.g., the mineral type and the density); 𝑦
𝑖
is the

three compressibility coefficients (𝑎
𝐴
, 𝑎
𝐵
, and 𝑎

𝐶
) of the 𝑖th

sample; 𝑛 is the sample number (𝑛 = 30). The SVMs make a
mapping of the samples with a linear regression function

𝑦 = 𝑓 (𝑥) = 𝑤 ⋅ 𝜙 (𝑥) + 𝑏, (1)
where 𝑤 is the weight vector, 𝑏 is bias, and 𝜙(𝑥) is the
nonlinear mapping from the input space to output space.The
SVMs can efficiently performnonlinearmappings usingwhat
is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.

Suppose that all the samples can be mapped well with
a linear function with precision 𝜀. Considering the true
mapping errors, the nonnegative slack variables 𝜉

𝑖
and 𝜉∗
𝑖
can

be introduced. Thus, the problem can be transformed with
the inequalities

𝑦
𝑖
− 𝑤𝜙 (𝑥

𝑖
) − 𝑏 ≤ 𝜀 + 𝜉

𝑖
,

𝜙 (𝑥
𝑖
) 𝑤 + 𝑏 − 𝑦

𝑖
≤ 𝜀 + 𝜉

∗

𝑖
, 𝑖 = 1, 2, 𝐿, 𝑛.

(2)

Thepurpose of SVM training is tominimize the following
function:

𝜙 (𝑤, 𝜉
𝑖
, 𝜉
∗

𝑖
) =

1

2

(𝑤𝑤
𝑇
) + 𝐶

𝑛

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
) , (3)

where the constant 𝐶 > 0 is the penalty parameter
denoting the punishing level of the samples with errors over
𝜀. Therefore, the problem can be rewritten as

max
{

{

{

1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝛼
𝑖
− 𝛼
∗

𝑖
) (𝛼
𝑗
− 𝛼
∗

𝑗
)𝐾 (𝑥

𝑖
, 𝑥
𝑗
)

−𝜀

𝑛

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
) +

𝑛

∑

𝑖=1

𝑦
𝑖
(𝛼
𝑖
− 𝛼
∗

𝑖
)

}

}

}

,

S.t.
𝑛

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
) = 0 (𝛼

𝑖
, 𝛼
∗

𝑖
∈ [0, 𝑐]) ,

(4)

where𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝜙(𝑥

𝑖
)𝜙(𝑥
𝑗
) is the kernel function.There are

many commonly used kernel functions, like the multinomial
kernel, the sigmoid kernel, and the RBF kernel.

In this way, the prediction model of the SVMs can be
obtained as follows:

𝑓 (𝑥) =

𝑛

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
)𝐾 (𝑥

𝑖
, 𝑥) + 𝑏. (5)

2.3. Particle Swarm Optimization. The particle swarm opti-
mization (PSO) algorithm is proposed for searching the
optimal solution in complex space by the collaboration and
competition among particle individuals. It is a population
based stochastic optimization technique inspired by social
behavior of bird flocking or fish schooling, developed by
Eberhart and Kennedy in 1995 [37]. The PSO simulates the
foraging behavior of birds. Each solution in the optimizing
problem is looked as a bird or a particle in the algorithm in the
searching space.The goodness of a particle is evaluated by the
value of the fitness function. Each particle keeps track of its
coordinates in the problem space which are associated with
the best solution (fitness) it has achieved so far. The fitness
value is also stored. This value is called 𝑃best. Another “best”
value that is tracked by the particle swarm optimizer is the
best value, obtained so far by any particle in the neighbors
of the particle. This location is called 𝐿best. The best value is
a global best and is called 𝐺best when a particle takes all the
population as its topological neighbors.

The velocity of the particle 𝑖 in the 𝑛 dimensional space is
denoted as V

𝑖
= {V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑛
}. The corresponding location

is 𝑥
𝑖
= {𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
}; the best solution of the particle is

𝑃best = {𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑛}; the global best solution is 𝐺best =
{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
}.

The particle swarm optimization concept consists in, at
each time step, changing the velocity of (accelerating) each
particle toward its 𝑃best and 𝐿best locations (local version
of PSO). Acceleration is weighted by a random term, with
separate random numbers being generated for acceleration
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Table 2: Model summary of stepwise regression for 𝑎
𝐴
.

Model R R square Adjusted R square Std. error of the estimate Change statistics
R square change F change 𝑑𝑓1 𝑑𝑓2 Sig. F change

1 .542a .294 .274 12.53587 .294 14.560 1 35 .001
2 .713b .509 .480 10.60497 .215 14.906 1 34 .000
3 .834c .695 .668 8.47732 .186 20.208 1 33 .000
aPredictor: (constant) quartz; bpredictor: (constant) quartz, pressure; cpredictor: (constant), quartz, Pressure, and pore wall; ddependent variable: 𝑎𝐴.

toward 𝑃best and 𝐿best locations. PSO updates the velocity and
location of the particles with the following equation:

V𝑘+1
𝑖
= 𝑤V𝑘
𝑖
+ 𝑐
1
𝑟 (⋅) (𝑃best − 𝑥

𝑘

𝑖
) + 𝑐
2
𝑟 (⋅) (𝐺best − 𝑥

𝑘

𝑖
) ,

𝑥
𝑘+1

𝑖
= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖
,

(6)

where 𝑘 is the iteration number;𝑤 is the inertia weight; 𝑟(⋅) is
a randomconstant uniformly distributed in the interval (0, 1);
𝑐
1
and 𝑐
2
are the learning coefficients.

2.4. PSO Optimized SVM. The values of the penalty param-
eter 𝐶 and the kernel parameters affect directly the model
performance in the SVM modeling. Due to the fast and
global optimizing features of PSO, it is applied to optimize
the parameters in the SVMmodeling.The implementation is
done in the following steps.

(a) Initialize the parameters in PSO, including the par-
ticle size, the iteration number, the inertia weight 𝑤,
and the learning coefficients 𝑐

1
and 𝑐
2
.

(b) Determine the range of the optimized parameters and
specify 𝑃best and 𝐺best.

(c) Define the fitness function

𝑓 (𝑥) =

𝑛

∑

𝑖=1





𝑢
𝑖
− 𝑢
∗

𝑖






𝑢
𝑖

, (7)

where 𝑢
𝑖
is the observed value of the ith sample; 𝑢∗

𝑖

is the predicted value of SVM; 𝑖 = 1, 2, . . . , 𝑛 is the
sample numbers.

(d) Calculate the fitness value of every particle and
compare this valuewith the𝑃best (the best fitness value
of its ever best location 𝐿best). If this value is better
than 𝑃best, then update 𝐿best with the new location.

(e) Compare 𝑃best with 𝐺best. If 𝑃best is better than 𝐺best,
then renew 𝐺best with 𝑃best.

(f) Check whether the fitness value or the iteration
number is satisfied with the end condition of the
algorithm. If not, update the location and velocity of
the particle with (6) or exit and output the results of
the coefficients.

(g) Set up the optimized SVMmodel for modeling in (5)
with the optimized parameters.

The implementation of the estimation is given in Figure 2.

3. Results and Discussions

3.1. Regression Analysis. We first apply the linear stepwise
regression method [38] to analyze the problem. In the step-
wise linear regression, the forward method is used to remove
the variables in the regression models. The stepping method
criteria are the probability 𝑃(𝐹 to remove𝑋

𝑘
) > 0.10 to

determinewhether a parameter𝑋
𝑘
is removed. If the inequal-

ity does not hold, no variable is removed from the model.
If there are no independent variables currently entered in
the model or if no entered variable is to be removed, choose
𝑋
𝑘
such that 𝑃(𝐹 to remove𝑋

𝑘
) is maximum. A parameter

𝑋
𝑘
is entered if 𝑃(𝐹 to remove𝑋

𝑘
) < 0.05. If the inequality

does not hold, no variable is entered. At each step, all eligible
variables are considered for removal and entry [39].

The results of the stepwise regression models are sum-
marized in Table 2 to Table 4, respectively, for the three
coefficients 𝑎

𝐴
, 𝑎
𝐵
, and 𝑎

𝐶
. Three predictors are generalized

for each coefficient in the regression. It is obvious that
the predictor 𝑎 and predictor 𝑏 in each model are not
physically meaningful at all because the two predictors only
retain no more than two potential parameters to explain the
compressive coefficients, which is obviously unmeaning. The
𝑅 square and adjusted𝑅 square values are all less than 0.70 for
model 3(predictor 𝑐) in Table 2 to Table 4. This implies that
the compressive coefficients donot have a strict linear relation
to the associated parameters. The value “sig. 𝐹 change” in
Tables 2, 3, and 4 shows that the derived regressionmodels are
statistically significant (less than 0.005). In short, the stepwise
regression can only perform moderately in modeling these
sand rock samples.

The remaining parameters are the mineral quartz, the
pressure, and the pore wall for the coefficients 𝑎

𝐴
and 𝑎

𝐵
in

predictor 𝑐. For the coefficient 𝑎
𝐶
, the remaining parameters

are quartz, the pressure and the pore among particles in
Predictor 𝑐. That is to say those parameters related to the
rock minerals, applied pressure, and pores are remained
exclusively in the stepwise regression results. At this point,
the rock compressibility coefficients can be thought to have
linear relations with the rock minerals, loading pressure, and
pores which can be used to interpret the characteristics of the
rock compressibility coefficients.

3.2. PSO-SVM Analysis. According to the experimental
results, we assume that the minerals of the rock, average size
of crystalline particle, interspace distribution, average void
ratio, the density of rock, and the pressure of the test specimen
are the potential influencing parameters for compressibility
coefficients of sand rock materials. We utilize the PSO-SVM
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Figure 2: Implementation of estimation of rock elastic compressibility using PSO-SVM.

Table 3: Model summary of stepwise regression for 𝑎
𝐵
.

Model R R square Adjusted R square Std. error of the estimate Change statistics
R square change F change 𝑑𝑓1 𝑑𝑓2 Sig. F change

1 .608a .369 .351 13.44219 .369 20.485 1 35 .000
2 .756b .571 .546 11.24635 .202 16.002 1 34 .000
3 .825c .680 .651 9.85276 .109 11.298 1 33 .002
aPredictor: (constant), quartz; bpredictor: (constant), quartz, pressure; cpredictor: (constant), quartz, pressure, and pore wall; ddependent variable: 𝑎𝐵.

Table 4: Model summary of stepwise regression for 𝑎
𝐶
.

Model R R square Adjusted R square Std. error of the estimate Change statistics
R square change F change 𝑑𝑓1 𝑑𝑓2 Sig. F change

1 .627a .393 .375 15.82344 .393 22.641 1 35 .000
2 .777b .604 .581 12.95912 .212 18.182 1 34 .000
3 .816c .667 .636 12.07530 .062 6.159 1 33 .018
aPredictor: (constant), quartz; bpredictor: (constant), quartz, pressure; cpredictor: (constant), quartz, pressure, and pore among particles; ddependent variable:
𝑎𝐶.

to map the relations between the compressibility coefficients
and their potential influencing parameters and compare the
results with those of the (ANN) [20] and simple SVMmodels.
The first 30 samples listed in Table 1 are used as training
samples to establish themodels and the last 7 samples are used
for testing generalization ability of produced models. The
structures of SVM are shown in Figure 2 for the estimation
of elastic compressibility of sandstone.

The predicted rock compressibility coefficients of the
tested samples are shown in Table 5 for all the introduced
techniques. Based on these results, the predictive perfor-
mance of these approaches is illustrated in Figure 3 to Figure 5
for 𝑎
𝐴
, 𝑎
𝐵
, and 𝑎

𝐶
, respectively. The linear trend lines in the

figures show the correlation between the observed value and
predicted value.The results of different approaches are shown
with different markers and different colors. The 𝑅2 values
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Table 5: Measured and predicted rock compressibility coefficients.

Sample number Measured ANN prediction SVM prediction PSO-SVM prediction
𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

1 26.0 24.9 27.0 25.0 25.2 24.3 23.2 23.9 24.8 27.1 24.6 28.5
2 31.0 26.4 27.3 30.0 29.4 25.6 26.8 23.4 25.0 32.1 27.9 28.0
3 34.4 48.6 82.9 59.9 65.1 87.0 30.5 34.1 49.8 42.2 54.4 79.6
4 47.8 50.5 50.4 41.9 39.7 43.9 41.4 43.8 43.8 41.9 55.2 57.7
5 29.0 24.3 27.0 28.1 26.8 24.1 27.5 22.8 25.6 30.1 26.1 26.5
6 30.5 27.4 30.9 34.8 33.0 32.3 33.3 29.6 35.6 31.2 31.5 32.1
7 58.1 57 55.1 54.9 61.6 69.9 40.2 43.8 43 55.1 60.6 62.9
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Figure 3: Predictive performance of 𝑎
𝐴
.

imply directly the predictive performances. The larger the
𝑅
2 value is, the better the corresponding approach performs.

It is obvious that the PSO-SVM approach performs best
among these techniques regarding the prediction of these
three coefficients. Also, the 𝑅2 value in Figure 3 is much
smaller than that in Figures 4 and 5, which indicates that these
approaches cannot generate as good results of 𝑎

𝐴
as those of

𝑎
𝐵
or 𝑎
𝐶
.

3.3. Predicted Error Comparison. In order to evaluate the
model performance, the absolute error function and relative
error function are used to compare the predictive results
of the various methods used for modeling the sand rock
samples. Consider

Absolute error = |Predicted value − observed value| ,

Relative error

=

|Predicted value − observed value|
Observed value

× 100%.

(8)
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Figure 4: Predictive performance of 𝑎
𝐵
.

The absolute prediction errors (AE) and relative prediction
errors (RE) are given in Table 6, respectively. The average
prediction errors of all the approaches are shown in Figure 6
for the three rock compressibility coefficients. From these
results, it is interesting to see that the prediction errors of
the test samples 3, 4, and 7 are much larger than those of
the other test samples in all the used techniques. Generally,
the prediction errors of ANN approach are the biggest
and that of the PSO-SVM approach is the smallest. The
average prediction error bar in Figure 6 has shown this more
apparently.

The prediction errors of the PSO-SVMs are nearly half
of those of the ANNs. Despite this, it does not necessarily
mean that the ANNs are not suitable for estimating the
rock compressibility coefficients. In the modeling of ANNs
approach, only a pair of initialized parameter values of the
networks is given and no optimization techniques are applied
to find optical parameters. In the simple SVM modeling,
again, no optimizing algorithms are applied to obtain the
optical penalty parameter and kernel parameters. While in
the PSO-SVM modeling, the parameters in the SVM model
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Table 6: Relative prediction error of different models for the test samples.

Test sample no.
ANN prediction SVM prediction PSO-SVM prediction

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

𝑎
𝐴

𝑎
𝐵

𝑎
𝐶

AE RE AE RE AE RE AE RE AE RE AE RE AE RE AE RE AE RE
1 1.0 3.8 0.3 1.2 2.7 10.0 2.8 10.8 1.0 4.0 2.2 8.1 1.1 4.2 0.3 1.2 1.5 5.6
2 1.0 3.2 3.0 11.4 1.7 6.2 4.2 13.5 3.0 11.4 2.3 8.4 1.1 3.5 1.5 5.7 0.7 2.6
3 25.5 74.1 16.5 34.0 4.1 4.9 3.9 11.3 14.5 29.8 33.1 39.9 7.8 22.7 5.8 11.9 3.3 4.0
4 5.9 12.3 10.8 21.4 6.5 12.9 6.4 13.4 6.7 13.3 6.6 13.1 5.9 12.3 4.7 9.3 7.3 14.5
5 0.9 3.1 2.5 10.3 2.9 10.7 1.5 5.2 1.5 6.2 1.4 5.2 1.1 3.8 1.8 7.4 0.5 1.9
6 4.3 14.1 5.6 20.4 1.4 4.5 2.8 9.2 2.2 8.0 4.7 15.2 0.7 2.3 4.1 15.0 1.2 3.9
7 3.2 5.5 4.6 8.1 14.8 26.9 17.9 30.8 13.2 23.2 12.1 22.0 3.0 5.2 3.6 6.3 7.8 14.2
Ave. 5.97 16.61 6.19 15.24 4.87 10.89 5.64 13.46 6.01 13.69 8.91 15.99 2.96 7.72 3.11 8.12 3.19 6.64
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Figure 5: Predictive performance of 𝑎
𝐶
.

are optimized by PSO algorithm and then a very good
predictive performance is obtained. Therefore, optimization
of the parameters in SVM is critical to give a good predictive
performance. And the PSO-SVM is proven to performmuch
better than the ANN and simple SVM in the estimation of
ELC of sandstone.

As mention above, doing such fundamental experiments
will cost too much and sometimes even quite difficult. The
introduced methods for determining the elastic parameters
of porous rock materials can in some sense be appropriate to
obtain such parameter as the elastic compressibility values.
If a certain number of samples have been done, then it is
only needed to measure some related physical features and
parameters that are easily tested. The elastic compressibility
can be estimated with good accuracy using the PSO-SVM
method. Therefore, this technique is feasible and could
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Figure 6: Average predictive errors of the models.

be used as a potential tool for the estimation of elastic
parameters of porous rock.

4. Conclusions

Based on the results obtained, conclusions can be made as
follows.

(1) The elastic compressibility of sandstone is found to
have linear relations with the rock minerals, applied
pressure, and pores by a linear regression analysis.
Other parameters are excluded by the stepwise regres-
sion and thus can be considered not vulnerable in the
estimation.

(2) The predictive performances obtained by the ANN,
SVM, and PSO-SVM prove that these techniques
are feasible and appropriate for the estimation elastic
compressibility of sandstone and can be applied to
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the estimation of other elastic parameters of porous
rock material based on the mineral compositions and
microstructural features.

(3) The PSO-SVM is found to have the best predictive
performance among the applied models in the esti-
mation. It can be used as an alternative potential
tool for evaluation of many other parameters of rock
materials.

Nevertheless, this approach is developed and imple-
mented based on the collected data samples. The more the
samples collected are themore accurate results this technique
will produce. In future, this approach is to be validated
by more data samples with variability features to show its
generalization ability in the estimation of elastic parameters
of porous rocks.
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