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the probability of the structure not buckling below some fixed load. The paper is a
sequel to an earlier study on cylindrical shells with axisymmetric imperfections. The
problem is solved by the Monte Carlo Method. The initial imperfection functions
are simulated via a numerical procedure, and the buckling load of each realization
of the simulated initial imperfections is found by the Multimode Analysis. It is
shown that the results of existing Initial Imperfection Data Banks can be directly

incorporated in the reliability analysis. Experimental information and the data
derived from it, rather than theoretical assumptions, is used for constructing the
reliability-based design curves for shell structures.

Introduction

It is now generally recognized that initial geometric im-
perfections play a dominant role in reducing the buckling load
of certain structures. As is well known, an axially compressed
thin shell is highly imperfection sensitive in this context (see,
for example, the surveys [1-3]).

This conclusion is mainly due to the work of a series of
investigators. [4-6], who arrived at it through recourse to
specialized: imperfections. However, despite the accepted
theoretical explanation of the buckling behavior of these
structures, the use of the concept of imperfection sensitivity in
engineering practice is still in the ad-hoc stage and engineers
prefer to rely on the ‘‘knockdown factor’ [7] chosen so that
its product with the classical buckling load yields a lower
bound to available experimental data for the configuration in
question. This apparent reluctance to take advantage of
theoretical findings stems from the fact that most im-
perfection studies are conditional on detailed advance
knowledge of the geometric imperfections of the particular
structure, which is rarely possible. In an ideal case the im-
perfections can be measured experimentally and incorporated
in the theoretical analysis to predict the buckling loads. This
approach, however, while justified for single prototype-like
structures, is impracticable as a general method of behavior
prediction. Information on the type and magnitude of im-
perfections of a particular structure would be too specific and
are not strictly valid for other realizations of the same
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structure even those obtained by the same manufacturing
process.

In the light of these considerations and bearing in mind the
scatter of the experimental results, it appears obvious that
practical applications of the imperfection-sensitivity theories
are conditional on their being combined with a statistical
analysis of the imperfections and critical loads. The notion of
randomness of the initial imperfections was given con-
siderable attention in the literature, and a bibliography can be
found in Amazigo’s paper [8]. For the single-mode solutions
the reader should consult Bolotin [9] (who pioneered the
probabilistic approach to buckling) and Roorda [10].

Recently, Elishakoff [11-13] suggested to utilize the Monte
Carlo Method for the solution of multimode problems in-
volving random initial imperfection sensitivity. This method
represents a logical remedy in view of the difficulties inherent
in purely analytical approaches (based on unnecessary and
often very restrictive assumptions on the properties of the
initial imperfections and/or using heavily simplified solution
procedures).

The first step of the Monte Carlo Method consists of
simulating the random initial imperfection profiles via a
special numerical procedure [14]; the second step comprises a
numerical solution of the buckling problem for every
realization of the initial imperfection profile; the third and
last step involves a statistical analysis of the buckling loads
(for a detailed description of the Monte Carlo Method see
reference [15]). The reliability is determined as the fraction of
an ensemble of shells of which the buckling loads exceed the
specified load. In a recent paper the present writers [16] have
applied the Monte Carlo Method to shells with random
axisymmetric imperfections. In this paper, the same method
will be applied to general nonsymmetric random im-
perfections.

To the best of our knowledge, there are three works that
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have been devoted to the analysis of cylindrical shells with
general nonsymmetric random imperfections. Makaroff [17],
at the Moscow Energetics Institute, carried out systematic
analysis of initial imperfections. He used series of 30 cylin-
drical shells made of sheets of electrical grade pressboard. The
initial imperfection was represented as a double Fourier series
and the coefficients were treated as random variables. The
analysis showed that the assumption of circumferential
homogeneity of the initial imperfections was satisfactory
(within the confidence limits used in the analysis), and the
normality of their Fourier coefficients did not conflict with
the experimental data. Makaroff also carried out a theoretical
analysis of the buckling of stochastically imperfect shells,
with the experimental data obtained earlier serving as the
input for the description of the imperfections. He found a
theoretical mean buckling load that exceeds its experimental
counterpart by a factor of 1.35.

Fersht [18] generalized the method of truncated hierarchy,
used earlier by Amazigo [19] for axisymmetric random im-
perfections, to include the nonsymmetric case. It turned out
that for nonsymmetric imperfections a closed-form ex-
pression for the buckling load is unattainable and rather
cumbersome numerical integrations have to be performed.
Moreover, for the axisymmetric case, Fersht’s numerical
results do not agree with those of Amazigo [19].

Hansen [20] generalized his previous deterministic results of
reference [21]. The main conclusion was that the imperfection
parameters associated with the nonaxisymmetric modes
appear only in three separate summations and the behavior of
the system is governed by the values of these summations
rather than by the individual imperfection amplitudes. It was
assumed that the Fourier coefficients of the initial im-
perfections are jointly normal random variables with zero
mean, that they are statistically independent and are iden-
tically distributed. Then the Monte Carlo Method was ap-
plied. For each sample problem the buckling load was found
via the method of reference [21] and then the mean buckling
loads were calculated. The role of the nonaxisymmetric
imperfections turned out to be very important.

Probabilistic Properties and Simulation of the Initial
Imperfections for a Finite Shell

Let us represent the initial imperfection functions as the
following series
Ny N3
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wo(£,8) and Wy(£,0) are dimensional and nondimensional
initial imperfections; ¢, L, and R are the thickness, the length,
and the radius of the shell, respectively; x is the axial and y is
the circumferential coordinate. Notice that in equation (1) the
first sum represents the axisymmetric part of the initial im-
perfection profile, whereas the second, double sum is
associated with its nonsymmetric part. The axisymmetric part
is expressed in the half-range cosine series, whereas the
nonsymmetric part is represented by the half-range sine series,
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For the sake of simplicity we rewrite equation (1) in an
alternative way, replacing the double summation in equation
(1) by a single summation
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and N=N, X N;. The autocovariance function can be written
as

Cw, (£1,013£2,0,)

i) €O8 it cos jmwé,

e

+
1=
$
Iy

cos iwk| sin k,wé, cos 16,

=}
“
]

+
=z
2=
e
ol
P

cos iméy sin k,wé, sin /.6,

Il
<
=]

z i

+
=
B
0
b

; sin k, 7§, cos 1,0, cos jw§,

~
I
=]

+
=
=T
=
RS
S

; sin k,w¢, sin /6, cos jwk, 5)

.,
i
.
]
(=1

+
1=
=

S
(9]

R

sin k,w&, cos 1,6, sin k,wE, cos [0,

,
]
“
i

+
=
=

=
\“)
S

sin k, 7§, cos [0, sin kwé, sin /50,

,
]
n
it

MARCH 1985, Vol. 52/123

J
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



+
[N
M=

1l
“
it

Kp,c, sin k,m&, sin /.0, sin k,mk, cos /0,

+
(&8
=

i
@
Il

Kp,p, sin k,m&, sin 1,8, sin k,&, sin 16,

where the variance-covariance matrices K 4, Aj» - v o CIC. aArE

defined as follows:
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If the autocovariance function Cy, (&1, 01;€;, 6,) is known,
then these quantities can be obtained as follows:
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Fig. 1 Modified 15 modes imperfection model used for Monte Carlo
method

for any combination of indices, and moreover
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where §, , is a Kronecker delta, then the initial imperfection is
a weakly homogeneous function in the circumferential
direction. Under the conditions (8) and (9) the autocovariance
function takes the form

. Ny N

Civg (E1,01382,02)= ) ), Kaa; cos imky cos jmky

i=0 j=0

N N
+ El EIKCrCS sin k, 7§, sin k,mEs cos [, (8, —6,) (10)

r= §=
i.e., it depends on 8, — 8, rather than on 6, and 8, separately.
It can be shown that equations (8) and (9) represent not only
the sufficient conditions bui also the necessary ones. One
could argue, that for the closed, nominally circular, seamless
cylindrical shell the probabilistic properties would not be
affected by a shift of the origin of the coordinate axes in the
circumferential direction. Interestingly, in Makaroff’s ex-
periments [17] this weak homogeneity was preserved even for
the series of shells with pronounced seams. Due to the
frequent use of this property we will first show how to
simulate the initial imperfections possessing weak
homogeneity in the circumferential direction.

To simulate the large number of initial imperfection
profiles needed for the Monte Carlo Method, first the mean
values and the variance-covariance matrices of the measured
initial imperfections must be determined. This involves the
evaluation of the following ensemble averages for a sample of
experimentally measured initial imperfections:

. 1 f: 1 f
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where M is the number of sample shells, and m is the serial
number of the shells. The variance-covariance matrices are
positive-semidefinite and can be uniquely decomposed in the
form
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where 7 means transpose and [G], [G’] are lower-triangular
matrices found by the Cholesky decomposition algorithm.
Now we form the random vectors { B} and { B’ }, the elements
of which are normally distributed, statistically independent
with zero means and unit variance. Then the vectors of the
Fourier coefficients of the initial imperfections are simulated
as follows: i

(A} =[GUB)+ (A}, (C)=[G'){B'}+({C®) (13)

Having the desired large number of realizations of the vectors
{B} and { B’} one obtains the same number of realizations of
{A} and {C}. The mean feature of this simulation technique
[14] is that it is applicable for homogeneous, as well as
nonhomogeneous random functions with given mean and
autocovariance functions.

Equation (13) represents the simulated vectors {A} and
{C} for the random imperfections, weakly homogeneous in
the circumferential direction. For the imperfections which
form a general nonhomogeneous random field, the refined
simulation procedure, developed in reference [22] has to be
utilized. The essence of this refinement is the replacement of
the multiple summations in equations (2) and (4) by a single
“‘string’’ and the dealing with the resultant mixed series (for
details see reference [22]).

Multimode Deterministic Analysis f(;r Each Realization
of Random Initial Imperfections

The buckling load for each created shell is then calculated
by the so-called Multimode analysis [23], which allows the
incorporation of imperfection shapes in the form of the
double Fourier series given in equation (1). By definition, the
value of the loading parameter A corresponding to the limit
point of the prebuckling states is the theoretical buckling
load. The number of modes of deformation included in the
analysis is limited by practical considerations, like the
available core size and the time required for obtaining the
solution. Thus, since the shell buckling load will be deter-
mined by solving the governing equations for a particular set
of modes, an attempt of optimizing the selection of these
modes must be made. That is, it is necessary to locate those
modes that dominate the prebuckling and buckling behavior
of the shell. Previous investigations by Arbocz and Babcock
[23, 24] have shown that to yield a noticeable decrease from
the buckling load of the perfect shell, the initial imperfection
harmonics used must include at least one mode with a
significant initial amplitude and an associated eigenvalue that
is close to the buckling load of the perfect shell. Furthermore,
if the modes are so selected that the nonlinear coupling
conditions are satisfied then the resulting buckling load of the
shell generally will be lower than the buckling loads obtained
with each mode considered separately.

Based on these considerations and the results published in
reference [24] the imperfection model shown in Fig. 1 was
selected for the Monte Carlo simulation. In this model 4,4
stands for a half-wave cosine axisymmetric Fourier coef-
ficient, with two half-waves in the axial direction and no
waves in the circumferential direction. On the other hand
C,,0 stands for an asymmetric Fourier coefficient with a
single half-wave in the axial direction and 10 full waves in the
circumferential direction.

As pointed out in reference [24] the chosen imperfection
model requires imperfection amplitudes at wave numbers that
were not measured. This is due to the fact that in the early
experimental work the mesh-spacing used was not sufficiently
close to resolve all the harmonic amplitudes of interest.
Therefore the Donnell-Imbert [25] imperfection model was
fitted over the wave numbers actually measured and then the
amplitudes of the harmonics of interest were obtained by
extrapolation. It should be stressed here that the averaged (in
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the axial direction short wavelength) modes of the im-
perfection model shown in Fig. 1 must be included in the
analysis in order to satisfy the nonlinear coupling conditions.
Their initial amplitudes are actually insignificant.

For the purpose of the Monte Carlo Method the MIUTAM
code [24] was incorporated into a new program, which then
one by one automatically starts the calculations for the
simulated imperfections and at the end lists all the buckling
loads obtained.

Numerical Results and Discussion

The procedure described in the previous sections was ap-
plied to the group of shells, referred in reference [26] as B-
shells. These shells were originally cut from thickwalled
seamless brass tubing; the pieces were mounted on a mandrel
and the outer surface was machined to the desired dimen-
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Table1 Fouarier coefficients of B-shells

Shell Mean
B-1 B2 B-3 B-4
Coefficients values
Aag ~0.0108 ~0.0272 —~0.0899 ~0.0176 —~0.0364
Ao 0.0226 -0.0078 —0.0255 —0.0096 —0.0050
Ci 0.417 0.393 0.741 0.223 0.4435
Ci's —0.078 —0.143 0.017 0.078 -~0.0315
Ci's —0.264 —0.009 0.112 0.102 ~0.0148
Ciho 0.037 0.044 —0.246 ~0.009 ~0.0435
Css -0.101 0.034 —0.065 —0.002 —~0.0335
Can 0.010 —0.009 ~0.028 0.014 —~0.0033
D1, 0.024 —0.203 0.147 0.029 —0.0008
Di's ~0.390 0.058 0.128 ~0.248 ~0.1130
Di'g -0.029 0.087 0.185 ~0.050 0.0483
Do -0.013 0.039 ~0.031 -0.051 —0.0140
D33 —0.070 —0.047 0.040 -0.015 —~0.0230
Dan 0.013 -0.018 ~0.004 0.002 ~0.0018
For the group of B-shells:
R=101.6 mm, {=0.2050 mm, L = 196.85 mm,
E=1.065x10°N/mm?, »=0.3.
Note: Here wo™ is positive outward.
Table2 Variance-covariance matrices K¢, c and Kp p_
1,2 1,6 1,8 1,10 2,3 2,11
0.46861 ~ ! —-0.87197 3 0.61544 72 —-0.24776 ~! —0.59778 2 ~0.37388 72 7 1,2
-0.87197 * 0.96697 ~* 0.99562 2 —0.65293 2 -0.83271 3 0.20500 3 1,6
Kec =
s 0.61544 ~2 0.99562 ~2 0.30567 ' -0.13717 7! 0.56447 ~2 ~0.14967 ~2 1,8
—0.24776 ~! ~0.65293 ~2 —-0.13717 ! 0.18684 ~! 0.26231 ~2 0.20676 ~2 1,10
-0.59778 2 —-0.83271 73 0.56447 ~2 0.26231 ~2 0.37104 72 0.21989 ~* 2,3
| —0.37388 ~2 0.20500 ~* —0.14967 72 0.20676 2 0.21989 74 03685273 | 2,11
1,2 1,6 1,8 1,10 2,3 2,11
[ 0.21394 ! —-0.33159 2 0.24798 ~2 ~0.47927 72 0.43517 2 01177372 7 1,2
-0.33159 ~? 0.60673 7! 0.24746 ~! 10.32506 2 0.76675 ~2 ~0.26069 ~2 1,6
Kp.p =
s 0.24798 ~2 0.24746 ~! 0.11956 ~! 0.11053 ~2 0.35032 2 —0.80206 3 1,8
~0.47927 ~* 0.32506 ~ 2 0.11053 2 0.14992 ~2 —0.88147 3 —0.32594 73 1,10
0.43517 2 0.76675 ~* 0.35032 ~2 -0.88147 73 0.22434 72 ~0.12750 3 2,3
| 0.11773 72 —0.26069 "2 —0.80206 3 —0.32594 73 -0.12750 ~* 01671973 | 2,11

sions. The geometric and material properties of the B-shells
are summarized in Table 1.

As is seen from Fig. 1, the simulation procedure was ap-
plied only to the eight lower order modes, namely A,
A40,C12, C16> Crg, Cr105 Co3, and Cyp;. The remaining
seven higher-order modes, namely A6, C243,C24,11> Cas.2,
and Cy ;0 were obtained by extrapolation from the
corresponding Donnell-Imbert imperfection model [24, 25].

Figure 2 shows the elements of the variance-covariance
matrices K A4 and the corresponding part of the variance,

denoted by 0% ,(£)

Ny
ENGED YD) K 4,4, 8y cosmit cosmjg (15)

i=0 j=0

For fixed £, this part of the variance is constant, since
equation (15) is associated with the axisymmetric part of the
imperfections.

Figures 3 and 4 show the elements of the variance-
covariance matrices K¢ ¢ and K, p_, respectively, and the

126/ Vol. 52, MARCH 1985

associated parts of the variance, denoted by o (£,6) and
020(5,9)3

N N
Pe(E0) =) Y Kee,

r=1 s=1
xsin k, 7€ sin k 7 cos {6 cos [0 (16)
N N
p(E0= ), EKDrDS
r=1 s=1
X sin k,wé sin kg mé sin 7,0 sin [0 17)

Figure 5 portrays the probabilistic characteristics of the 500 -
simulated shells. Figure 5(a) shows the mean imperfection
function, whereas Fig. 5(b) displays the variance. As is seen
from Fig. 5 neither the mean function nor the variance are
constant in the circumferential direction, implying that the
random imperfections do not constitute a circumferentially
homogeneous field. This conclusion can also be deduced from
Table 2, which lists the values of K¢  and Kp p . An
examination of this table reveals that the corresponding
elements of these matrices not only do not coincide, but a
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Fig. 4 (a) Elements of cross-correlation matrix KDrDs for simulated
group of 500 B-shells, and (b) corresponding part of variance
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Fig. 5 Probabilistic characteristics of the simulated group of 500 B-
shells. (a) mean function, and (b) variance.

ratio between them may well exceed 10. Thus the homogeneity
assumption adopted in reference [8] turns out to be un-
justifiable even for seamless shells.

To calculate the reliability functions shown in Fig. 6 the
following dimensions corresponding to shell B-1 [26] were
used: length of 196.85 mm, radius of 101.60 mm, and
thickness of 0.205 mm. In addition, for the buckling load
calculations of shells with axisymmetric imperfections the
one-sided transfer-function shown in Fig. 7 was chosen. This
was done due to the fact [27], that for a finite length shell the
buckling load is sensitive only to those axisymmetric im-
perfections that point inward at the mid-plane of the shell (at
x=L/2).

In Fig. 6, curve 1 represents the reliability function for the
case of purely axisymmetric imperfections (with an estimated
mean buckling load of 0.935), whereas curve 2 shows the
reliability function for the 15-modes nonsymmetric im-
perfection mode (with an estimated mean buckling load of
0.739). As can be seen, the reliability estimate depends
strongly on the number of terms taken into account, i.e., it is

Journal of Applied Mechanics
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Fig.6 Reliability functions for simulated group of 500 B-shells
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Fig. 7 One-sided transfer function used for axisymmetric im-
perfections only [27]

sensitive to the adequacy of the underlying deterministic
model. As a check on the correctness of the simulated results
the 15-modes imperfection model shown in Fig. 1 was used to
calculate the collapse loads of the original four B-shells in-
volved, using the experimentally measured initial im-
perfections in place of the simulated random variables. These
computations yielded for the shells B-1, B-2, B-3, and B4,
respectively, the following collapse loads 0.751, 0.746, 0.740,
and 0.781 with a mean of 0.756. Closeness to the simulated
results is remarkable. It should also be mentioned here that
the theoretical collapse load of p, =0.66, reported in reference
[24] for the shell B-1, was entirely based on the Donnell-
Imbert [25] imperfection model. Considering the results
shown in Fig. 6 further, one sees that the inclusion of some
asymmetric imperfection components has reduced the
estimate of the mean buckling load considerably, though it is
still higher than the experimental mean buckling load for the
group of B-shells of 0.592 [26]. However, as work currently in
progress has shown, further refinements in the nonsymmetric
random imperfection model will lead to lower simulated
buckling loads.

Conclusions
One can summarize the results obtained so far as follows:
1 It has been demonstrated that the Monte Carlo Method

can be used successfully to obtain reliability functions for
shells with axisymmetric as well as asymmetric imperfections.

2 It has been found that for finite shells, nonstationary
statistic must be used (thus ergodicity is strictly speaking not
applicable).

3 Using the simulation procedure developed by Elishakoff
11, 22] the measured initial imperfections have been used
directly to generate input for the Monte Carlo Method.

It is hoped that these preliminary results will encourage
many investigators all over the world to compile extensive
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experimental information on initial imperfections classified
according to the manufacturing procedures. The existence of
these Initial Imperfection Data Banks will make it possible to
associate statistical measures with the different methods of
fabrication. As outlined in this paper, the variance-covariance
matrices and the mean vectors can be used effectively to
generate input for the Monte Carlo Method, which in turn
yields the reliability functions associated with the different
manufacturing processes. It is felt that by this means the
imperfection sensitivity concept can be finally introduced
routinely into the design procedures since the Monte Carlo
Method described in this paper seems to offer the means of
combining the Lower Bound Design Philosophy with the
notion of Goodness Classes. Thus shells manufactured by a
process, which produces inherently a less damaging initial
imperfection distribution, will not be penalized because of the
low experimental results obtained with shells produced by
another process, which generates a more damaging charac-
teristic initial imperfection distribution.
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