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Abstract

The jumbo squid Dosidicus gigas plays an important role in marine food webs both as predator and prey. We investigated
the ontogenetic and spatiotemporal variability of the diet composition of jumbo squid in the northern Humboldt Current
system. For that purpose we applied several statistical methods to an extensive dataset of 3,618 jumbo squid non empty
stomachs collected off Peru from 2004 to 2011. A total of 55 prey taxa was identified that we aggregated into eleven
groups. Our results evidenced a large variability in prey composition as already observed in other systems. However, our
data do not support the hypothesis that jumbo squids select the most abundant or energetic taxon in a prey assemblage,
neglecting the other available prey. Indeed, multinomial model predictions showed that stomach fullness increased with
the number of prey taxa, while most stomachs with low contents contained one or two prey taxa only. Our results therefore
question the common hypothesis that predators seek locally dense aggregations of monospecific prey. In addition D. gigas
consumes very few anchovy Engraulis ringens in Peru, whereas a tremendous biomass of anchovy is potentially available. It
seems that D. gigas cannot reach the oxygen unsaturated waters very close to the coast, where the bulk of anchovy occurs.
Indeed, even if jumbo squid can forage in hypoxic deep waters during the day, surface normoxic waters are then required to
recover its maintenance respiration (or energy?). Oxygen concentration could thus limit the co-occurrence of both species
and then preclude predator-prey interactions. Finally we propose a conceptual model illustrating the opportunistic foraging
behaviour of jumbo squid impacted by ontogenetic migration and potentially constrained by oxygen saturation in surface
waters.
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Introduction

The ommastrephid jumbo squid Dosidicus gigas is the most

abundant nektonic squid in the surface waters of the world ocean

[1,2] and supports the largest cephalopod fishery. This squid,

endemic to the Eastern Tropical Pacific, is mainly distributed in

the oceanic domain [3] over a wide bathymetric range [4]. D. gigas

is a large squid with high fecundity [2], a rapid growth rate and a

short life span (up to ,32 months [5,6]). The tolerance of this

species to a wide range of environmental factors (temperature and

oxygen) facilitates its geographic expansion [7–9], such as the

recent invasion into California waters [4,10].

D. gigas plays an important role in marine food webs both as

predator and prey [11]. This abundant and voracious squid

forages on a large variety of prey using prehensile arms and

tentacles coupled with an efficient sensory system [12,13]. The

impact on exploited marine resources can be strong [4] and the

broad trophic niche of jumbo squid is enhanced further by

physiological abilities. This squid can undertake extensive vertical

migrations, up to 1200 m, foraging on deep, mid-water and

surface organisms [2,7,14,15]. In addition, its presence within

anoxic or hypoxic waters was validated by tagging experiments in

the Californian Current System [15,16]. Indeed, the eastern

tropical Pacific is characterised by the presence of an oxygen

minimum zone (OMZ) [17] and D. gigas is a part-time resident of

the OMZ thanks to adapted behavior and specific metabolic

characteristics [18,19]. Jumbo squid vertical migrations impact the

vertical energy flow, providing an efficient energy transport from

the surface to deeper waters [7,15].

Previous studies showed that the feeding ecology of jumbo squid

is highly variable in time and space [20,21]. The feeding ecology

of jumbo squid was investigated in the eastern Pacific from

stomach content [22–25] and stable isotopes [26–29]. By

investigating stable isotope signatures along gladius, [28] showed

that jumbo squids living in the same environment at a given time

can have different historical backgrounds. These differences in life

history strategies, illustrating a high plasticity, were confirmed by

[29] who analysed carbon and nitrogen stable isotopes of

individuals collected during 2008–2010. Here, we used an
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extensive dataset of more than 4000 stomachs sampled between

2004 and 2011 in the northern Humboldt Current to provide new

insight on the size-related and spatiotemporal variability of feeding

habits of D. gigas. We also decipher one paradox in the jumbo

squid diet: why do they hardly forage on the tremendous biomass

of anchovy Engraulis ringens distributed off coastal Peru? We show

that the shallow OMZ in this area could hamper the co-

occurrence of jumbo squids and anchovies, impacting jumbo

squid foraging behaviour. We finally propose a conceptual model

of jumbo squid trophic ecology including the ontogenetic cycle,

oxygen conditions and prey availability.

Materials and Methods

Sample Collection
A total of 5320 stomachs were collected from jumbo squids

caught between 2004 and 2011 by the authorized industrial

jigging fishery off Peru (3uS–17uS - from the coastal area to

605 km from the coast) (Fig. 1). No animals (squids i.e.

invertebrates) were killed specifically for this research. Samples

were collected by technicians of the Peruvian Sea Institute

(IMARPE) aboard fishing vessels according to standard protocols.

In each fishing set, 20 individuals were randomly sampled,

covering the captured size range. On board or in the laboratory,

length (mantle length ML, in cm) and total weight (in g) were

measured and sex and maturity stages (I: immature; II: in

maturing; III: mature; and IV: spawning) were determined

according to [1,29] and validated by [30]. Each fishing set was

characterized according to the distance to the shelf break (negative

to the continental shelf and positive towards offshore, in km), the

season (austral summer, fall, winter and spring) and the diel

period. Sea surface temperature anomalies (SSTA, in uC) were

used as a proxy of environmental conditions.

Stomach Content Analysis
All stomach contents were washed through a sieve mesh of

500 mm in order to retain prey remains and diagnostic hard parts

(fish otoliths, cephalopod beaks, crustacean exoskeleton). Stomach

contents were weighed and the different items constituting a single

taxon were sorted, counted and weighed. Jigging vessels use 2 kW

lights (no use of bait) to attract jumbo squids. Biases can be

associated with fishing gear and tactic but jigging is recommended

Figure 1. Location (black dots) of the sampling points of jumbo squids collected from the industrial jig fleet between 2004 and
2011.
doi:10.1371/journal.pone.0085919.g001
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for diet studies [21]. Jigging avoids overestimating the occurrence

of target commercial species in the stomach contents of jumbo

squids that can feed after capture. Light is a powerful stimulus that

attracts individuals independently of their satiety. In addition

jumbo squids are known to be extremely voracious and thus can

continue to feed once their stomachs are full. However, this fishing

tactic and the squid voracity artificially increase the proportion of

cannibalized jumbo squids in the stomach contents [31,32]. To

remove this unnatural feeding, the easily identifiable fresh jumbo

squid portions were systematically eliminated from the stomach

contents. Even after this procedure, jumbo squid was still by far

the dominant prey by wet weight and reached 75%, indicating

that fishery-induced cannibalism was not fully eliminated. This

high rate was mainly due to 859 stomachs containing D. gigas only.

We were therefore not able to precisely estimate the importance of

natural cannibalism with our dataset that was still blurred by

artificially induced cannibalized conspecifics. We thus removed

these 859 stomachs and worked with the remaining 4461 (83.9%),

from which 3618 were not empty (68% of the total number of

stomachs) (Table 1). We probably eliminated some samples that

were not affected by the fishing tactic but this protocol clearly

allowed us to improve the relevance of the results.

Identifiable fresh remains and diagnostic hard parts were used

to determine the number of each prey item. For fish otoliths and

cephalopod beaks, the maximum number of left or right otoliths

and the greatest number of either upper or lower beaks were used

to estimate the number of fish and cephalopods, respectively. Prey

items were identified to the most precise possible taxonomic level

using keys and descriptions for fish [33,34], crustaceans [35,36]

cephalopods [37], and other molluscs [38]. The degree of

digestion of the stomach contents can preclude the identification

of all prey remains. However, fresh remains made up the largest

percentage of our stomach content samples. The meticulous

analyses of the stomach contents performed in our laboratory

allowed us to divide into broad prey classes (Cephalopods n/i,

Teleosteii n/i, Crustacea n/i) the unidentified remains (see Table

S1). A total of 55 prey taxa were identified at different taxonomic

levels (see Tables S1 and S2). Prey were quantified by frequency of

occurrence, numbers and wet weight. Mean percentages by

number (%N) and by weight (%W) were computed by averaging

the percentages of each prey taxon found in the individual

stomachs. We thus treated individual squid as the sampling unit,

allowing us to compute standard deviations [39]. As the

identification level was not homogeneous during the 2004–2011

period, we aggregated prey in eleven groups based on their

consistency and their ecological importance in the Humboldt

Current system (Table S1).

A stomach fullness weight index (FWI, in %) was calculated

[40]:

FWI~
SCW|100

BW{SCW

where SCW is the wet weight of the stomach content (g) and BW

the body wet weight of the individual (g).

Data Analyses
A clear relationship exists between squid size and maturity

stages (Fig. S1) indicating that size is, to some extent, a proxy for

ontogenetic processes. Therefore we used size to investigate life

cycle effect on jumbo squid diet. Jumbo squid diet did not

significantly vary with sex (results not shown). This factor was thus

not taken into account in further analyses. Jumbo squid were

generally captured by jigging after dusk and therefore night

samples (62%) dominated the dataset. Preliminary analyses were

performed on night data and on the whole data set. Results were

similar and we therefore reported results with the complete set of

data only.

In order to analyse the potential effects of explanatory variables

on the number of taxa per stomach, a proportional-odds model for

ordinal response [41] was fitted to the vector of prey richness, i.e.

the number of different taxa recovered in each stomach (yi)i$1 that

was assumed to be a realization of a random variable Y. Y takes its

values in the set E = {1, 2, …, S} with S equals the maximum

observed richness in the 3618 non empty stomachs. The model

was written in terms of the cumulative probability function of Y,

conditional on three continuous exogenous covariates (size,

stomach fullness index and distance to the shelf break). The

logistic form was chosen to predict the probabilities of observing

different prey richness as a function of the covariates of interest.

The potential effects of explanatory variables (mantle length,

season, distance to the shelf break, SSTA) on stomach fullness

index and diet of jumbo squid were first investigated using

Kruskal-Wallis (KW) non-parametric tests. This preliminary

approach allowed us to perform an initial inspection of the

dataset. Length, distance to the shelf break and SSTA were then

each divided in four ordered categories, according to their

ecological interpretation (the number of stomachs is given for

each category); for mantle length: less than 40 cm (559), 41–60 cm

(1553), 61–80 cm (934), over 80 cm (572); for distance to the shelf:

less than 50 km (840), 51–75 km (682), 76–130 km (829), over

Table 1. Overall description of sampled jumbo squid stomachs during 2004–2011.

2004 2005 2006 2007 2008 2009 2010 2011 Total

Nu Dietary groups 27 23 24 18 24 30 33 29 55

Nu Stomachs 650 283 589 320 657 922 603 437 4461

Nu Non-empty stomachs 520 224 479 239 542 740 523 351 3618

% Non-empty stomachs 80 79.2 81.3 74.7 82.5 80.3 86.7 80.3 81.1

Size range (cm) 21.0–104.5 28.7–91.0 27.4–98.0 28.3–109.5 14.3–112.5 23.6–111.5 16.8–108.6 24.5–114.2 14.3–114.2

Latitude range (uS) 5.0–15.5 4.7–15.2 5.7–15.2 4.3–10.7 5.1–17.6 3.7–16.0 4.8–17.6 4.0–16.2 3.7–17.6

Longitude range (uW) 75.8–82.3 76.6–82.6 76.3–81.9 79.2–83.8 74.6–83.0 76.0–84.0 75.0–82.8 77.0–84.2 74.6–84.2

Distance to the shelf break range (km) 210.4–210 215.4–245.8 5.7–218.6 15.5–260.2 23.5–254.5 16.1–342.4 20.6–553.9 62.1–330.8 215.4–553.9

Distance to the coast range (km) 39.8–300.2 73.8–357.1 70.4–347.8 37.3–271.3 48.9–261.4 40.3–390.6 40.9–604.7 77.3–363.8 37.3–604.7

doi:10.1371/journal.pone.0085919.t001
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130 km (1267); for SSTA: less than 21.5uC (616), 21.49 to

20.5uC (899), 20.49 to 0.5uC (1299), over 0.5uC (804). Stomach

numbers for the four seasons were: summer (690 stomachs), fall

(1068), winter (997) and spring (863). However this approach did

not account for dependence and interactions between explanatory

variables, and then did not elucidate the complex relationships

between the type of prey and the environmental factors. In

addition the sampling scheme was very unbalanced in space and

time. To cope with these issues, we ran a classification and

regression tree (CART) analysis proposed by [42] and adapted to

diet data by [43]. Classification tree was used here as a tool to

identify the relationships between explanatory variables and the

distribution of prey groupings. This non-parametric method gives

a clear picture of the structure of the data, and allows an intuitive

interpretation of the interactions between variables. The classifi-

cation tree uses a partitioning algorithm to estimate a series of

binary decision rules that divide the data into smaller homoge-

neous subgroups in an optimal way. The whole dataset is

represented by a single node at the top of the tree. Then the

tree is built by repeatedly splitting the data. Each split is defined by

a simple rule based on a single explanatory variable. Splits are

chosen to maximize the homogeneity of the resulting two nodes.

We followed the approach of [43] and transformed the diet data as

follows: each row represents a unique predator-prey combination,

where the proportion by wet weight of one of the eleven prey taxa

potentially present in the stomach of a predator is used as a case

weight for the classification tree. As the splitting procedure grows

an overlarge tree, we applied a prune back procedure to keep the

tree reasonably small to focus on the first most informative splits.

Each terminal node (or leaf) of the final tree is characterized by a

predicted prey distribution (percentage by weight of 11 groups),

given three explanatory continuous variables (stomach fullness

index, distance to the shelf break and SSTA) and two categorical

variables (season: summer, fall, winter and spring; and individual

size (cm) divided into four ordered categories). Year effect was also

tested but this factor had no significant effect on the pruned tree

and was removed from the final model (Table S2 for detailed data

per year).

Analyses were conducted using the statistical open source R

software (R Core Team 2013), with the MASS package for the

proportional odds-model [44] and the rpart package for the

classification tree.

Figure 2. Distribution of the logarithm of the Fullness Weight Index (log(FWI)) according to the individual size (A), the season (B),
the distance to the shelf-break (C), and the Sea Surface Temperature Anomaly (SSTA) (D).
doi:10.1371/journal.pone.0085919.g002
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Results

Overall Diet Description
The size of the 4461 selected squids ranged from 14.3 to

114.2 cm ML (Table 1). Overall, 19% of the stomachs were

empty. For the 3618 non-empty ones, stomach fullness weight

index (see Fig. S2 for details on FWI distribution) decreased

significantly with size (Fig. 2A; KW, H = 499.6, df = 3, P,0.01)

and increased significantly with distance to the shelf (Fig. 2C; KW,

H = 177.8, df = 3, P,0.01). On the opposite, effect of SSTA was

not significant (Fig. 2D; KW, H = 8.5, df = 3, P.0.05), but slightly

higher values of stomach fullness weight index occurred in spring

(Fig. 2B; KW, H = 93.8, df = 3, P,0.01).

Cephalopoda (Dosidicus gigas and other Cephalopoda) were the

dominant food source in %O, %N and %W (Table 2). Both taxa

were observed in 13.2 and 44% of the stomachs, respectively, and

contributed together 40% by weight and 30% by number. The

Phosichthyidae Vinciguerria lucetia occurred frequently in the

stomach contents (36%), representing an average percentage of

nearly 20% by weight and 25% by number. The three

Myctophidae taxa (Myctophum spp., Lampanyctus sp. and other

Myctophidae) occurred in 1577 samples (8.4, 13.6 and 21.7%

respectively), and contributed 15% by weight and 18.3% by

number. Teleosteii were frequent in the stomachs (21.7%) and

represented 12.7% by weight and 11.7% by number.

The diet composition of jumbo squid in weight varied according

to size (Fig. 3A). The main pattern was the steady increase of the

percentage of cephalopods with size: D. gigas and other Cepha-

lopoda accounted for 24.3% of the diet of small squids

(ML,40 cm) and reached 43.2% for large squids with

ML.80 cm. The percentage of Euphausiidae also increased

significantly (Table S3) with size, except for the smallest squids:

6% for the size class under 40 cm, 3.5% in individuals between 40

and 60 cm, 8.4% in individuals between 60 and 80 cm, and

12.4% in individuals larger than 80 cm. On the opposite, the

importance of V. lucetia (21% to 5.6%) and Myctophum sp. (7.2% to

1.3%) decreased significantly while jumbo squid increased in size

(Table S3).

No clear tendency appeared with the season (Fig. 3B), except a

significantly higher percentage of V. lucetia (32%) in spring and less

Cephalopoda (26%), Euphausiidae (2.8%) and Teleosteii (9.3%)

(Table S3). In summer, Euphausiidae were at their maximum

(10%) while the percentage of V. lucetia was low (13.7%) and

Engraulidae were very rare (0.4%).

The diet composition of D. gigas varied significantly with the

distance to the shelf break (Fig. 3C; Table S3): Euphausiidae

slightly decreased, Cephalopoda decreased from 36.3% inside the

50 km to 26.8% out of the 130 km, while percentages of V. lucetia

increased from 13.8% inside the 50 km to 24.2% out of the

130 km. The percentage of Engraulidae also increased with the

distance to the shelf break except for distances greater than

130 km.

Diet changed according to SSTA (Fig 3D). Trend from negative

towards positive anomaly was associated to a significant increase in

V. lucetia (from ,15 to 28.6%) and a significant decrease in

cannibalism (from ,11 to 6.6%) (Table S3).

Prey Taxa Richness
Based on the detailed 55 prey taxa, the prey richness in the

stomachs was very low. A maximum of seven prey taxa was

observed in one stomach only, while a single prey taxon was

recovered in 48.0% of the stomachs and 30.7% had two prey taxa

(mean = 1.87, sd = 1.10). Results were similar with the eleven

aggregated taxa: a maximum of seven prey taxa, 48.6% with one

Table 2. Distribution of the eleven dietary groups recovered from jumbo squid stomach contents off Peru between 2004 and
2011.

Dietary groups Prey code N6 Stomachs %FO %W %N

Dosidicus gigas Dgig 478 13.2 8.6 (625.5) 3.4
(611.7)

Other Cephalopoda Ceph 1591 44.0 31.2 (644.2) 26.4
(639.7)

Euphausiidae Euph 299 8.3 6.4 (623.7) 7.8
(626.3)

Pleuroncodes monodon Pleu 83 2.3 1.7 (612.4) 1.7
(612.5)

Engraulidae Engr 142 3.9 2.7 (615.3) 2.1
(612.4)

Lampanyctus sp. Lamp 491 13.6 4.6 (619.6) 5.1
(617.8)

Myctophum spp. Mycg 302 8.4 3.6 (617.5) 3.5
(615.4)

Other Myctophidae Mycf 784 21.7 6.7 (623.7) 9.7
(624.4)

Vinciguerria
lucetia

Vluc 1299 35.9 19.7 (637.6) 24.4
(637.8)

Teleosteii Tele 786 21.7 12.7 (631.7) 11.7
(628.2)

Other Othe 333 9.2 2.0 (612.8) 8.8
(617.1)

For each prey group are indicated, the corresponding number of stomachs (Nu Stomachs), the frequency of occurrence (%FO), and the percentage of prey group per
stomach by weight (%W) and by number (%N) (mean value 6 standard deviation).
doi:10.1371/journal.pone.0085919.t002
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prey taxon and 31.1% with two prey taxa (mean = 1.82, sd = 1.02).

Consequently, analyses were performed with the eleven aggregat-

ed taxa (Table 2).

According to the Akaike information criterion (AIC), the

proportional-odds model with two covariates (fullness and distance

to the shelf, AIC = 8691) was the most parsimonious (adding squid

size did not improve the fit, AIC = 8692). The estimated values of

the parameters were used to compute the probabilities of

observing 1, 2, or 3+ (i.e., at least 3) prey taxa in a stomach as a

function of stomach fullness or distance to the shelf. Increasing the

stomach fullness led to a sharp increase in the probability of

recovering 3+ prey taxa in a stomach and to a marked decrease of

the probability to observe only one taxon (Fig. 4A). After a short

plateau, the probability for two taxa roughly decreased with

stomach fullness too. On the other hand, the probability to find

one taxon only decreased with the distance to the shelf, while the

probabilities to recover more than two prey taxa increased with

this covariate (Fig. 4B).

Multivariate Approach
The pruned classification tree showed 13 nodes (Fig. 5A). The

first split separated four nodes corresponding to a very low fullness

(,0.2) from the others. Among this group, the nodes 1 to 3

predicted diet compositions dominated by cephalopods (predicted

cephalopod probability = 0.48, 0.35 and 0.34, respectively), which

occurred more likely in individuals larger than 80 cm ML (node

1), in individuals smaller than 80 cm ML caught in summer and

fall (node 2), and in individuals located within the 191 km from the

shelf break caught during winter and spring (node 3). The node 4

however showed a high incidence of V. lucetia (predicted

probability = 0.44) at a distance to the shelf break higher than

191 km, in winter and spring. The node 5 showed a high

probability of cannibalism (predicted probability = 0.32) for

medium size (between 60 and 80 cm ML) individuals with

stomach fullness higher than 0.2. From the node 6 on, squids

had a smaller ML (less than 60 cm). The node 6 also showed a

high probability of cannibalism (predicted probability = 0.46) for

SSTA ,0.425uC, in individuals with fullness greater than 2.08,

located at less than 209 km to the shelf break. The node 7,

characterised by the teleosteii (predicted probability = 0.60), had

the same characteristics than the node 6, except a more offshore

location. Nodes 8 to 10 showed a relatively balanced diet and were

separated from nodes 6 and 7 by a lower fullness (,2.08). Nodes

11 to 13 corresponded to fullness $0.2, size ,60 cm and SSTA

$0.425uC. Node 11 was associated to high SSTA ($1.09uC),

short distance to the shelf break (,197 km), and predicted a

dominance of cephalopods (predicted probability = 0.37). In nodes

12 (distance to the shelf break greater than 197 km) and 13

(SSTA,1.09uC), V. lucetia was largely dominant (predicted

probability = 0.38 and 0.55, respectively).

Figure 3. Jumbo squid diet composition in weight (%) according to the individual size (A), the season (B), the distance to the shelf-
break (C), and the Sea Surface Temperature Anomaly (SSTA) (D).
doi:10.1371/journal.pone.0085919.g003
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Discussion

This work is based on an extensive dataset on jumbo squid diet

encompassing a large range of spatiotemporal location and sizes.

Beyond the usual diet description, our results allowed us to provide

new knowledge on jumbo squid trophic ecology, in particular on

prey distribution under different environmental conditions and on

the role that could be played by the dissolved oxygen.

Prey Richness
Using the detailed (55 taxa) or aggregated (eleven taxa)

databases, prey richness in stomachs was similar with an average

of 1.8 taxa per stomach. This unexpected result has several

consequences. It first empirically validates the eleven aggregated

taxonomic groups (Table S1). Second, it shows that when jumbo

squid foraged on one prey among the 55 taxa, it did not feed on

extra prey belonging to the same assemblage among the eleven

aggregated taxa. A spatial segregation of prey of jumbo squids may

explain this observation. If a taxon from one group of the eleven

aggregated taxa occurred in a location where jumbo squids seek

their prey, the probability of the presence of an extra taxon

belonging to the same group may have been low. On the contrary,

jumbo squid could select the most abundant or energetic taxon of

a group, neglecting the other available prey belonging to the same

group. Our data did not support either of these hypotheses.

However, Predictions of the multinomial model showed that

stomach fullness increased with the number of prey taxa, while

most of the stomachs with low contents contained one or two prey

taxa only. We could have expected an opposite pattern. Indeed,

top predators such as tuna exhibit high foraging efficiency (high

fullness) in presence of large and dense monospecific prey

aggregations in surface layers (e.g., [45–47]). Once a prey

concentration of one target species is detected, tunas can feed on

this concentration until satiation [48]. On the contrary, when prey

are scarce and dispersed in the environment [49], tunas forage on

a higher diversity of prey but with a lesser efficiency [50]. For

jumbo squid our results therefore question the usual hypothesis

that top predators may seek locally dense aggregations of

monospecific prey.

Dietary Composition, Environmental Conditions and Size-
related Patterns

Identifying cephalopods food is tricky [11]: the beak can bite off

small pieces of tissue of large prey; diagnostic hard parts of prey,

such as fish otoliths, skeletons, crustacean integuments or

cephalopod beaks are often rejected. Selective rejection can also

occur and blur diet composition. In addition, digestion is known to

be rapid among cephalopods. However, we carefully dealt with the

intrinsic biases linked to the data sampling and with the

identification of prey items that was carried out by the same

scientific team following a constant protocol. Consequently, the

extensive set of data over a large time period allowed us to

elucidate the foraging behaviour of jumbo squids in the northern

Humboldt Current system. We assume that changes in prey

composition according to squid size and spatiotemporal features

were more related to prey accessibility rather than to specific/size-

related preferences. Jumbo squid perform ontogenetic migration

with small individuals distributed further offshore than larger

individuals [5]. Spawning in less productive offshore waters is used

by other species to avoid predation on first stages (e.g. the South

Pacific jack mackerel, Trachurus murphyi; [51]). This spatial

Figure 4. Proportional odds model. Prediction of the number of prey groups (1, 2, 3 or more) in a given stomach according to the fullness weight
index (FWI) (A) and the distance to the shelf-break (B). Black tick marks under the x-axes show the location of the data points.
doi:10.1371/journal.pone.0085919.g004
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dynamics is here also evidenced with small individuals distributed

further offshore than the large ones. However the biggest ones

(.800 cm ML) seem to move back offshore, probably to spawn

[52] but not as far as the smallest individuals that are advected

further offshore at early stages. Note that warmer waters (offshore

in our case) are suitable for spawning [25]. Prey composition in the

stomach contents matched this pattern. Euphausiids contributed at

a higher level as prey of large rather than of small squids,

according to the known spatial distribution of euphausiids. Ballón

et al. [53] showed indeed that the biomass of euphausiids was

maximal off the shelf-break until a distance of ca. 150 km, an area

where the larger individuals spawn [52]. Therefore, contrary to

most past studies [1,20,29,32,54] zooplankton contribution does

not systematically decrease with the size. In addition, isotope

signatures along jumbo squid gladius in the northern Humboldt

Current system showed that large individuals can substantially

forage on low trophic levels [28].

Mesopelagic fish (V. lucetia and myctophiids) recovered in the

jumbo squid stomachs confirmed the structuring role of spatial

matching in the jumbo squid-prey interactions. This prey group

contributed mainly during spring and far from the coast, when

jumbo squid was more offshore. In addition, small jumbo squids

distributed far from the coast consumed more mesopelagic fish

than larger individuals located closer to the coast. This pattern was

unexpected again, but is in accordance with the distribution

pattern of mesopelagic fish that are distributed more offshore than

euphausiids [55].

Cannibalism contributed greater than 8% by weight. High

levels of cannibalism were frequently observed in jumbo squid

[20,21]. Yet, cannibalism can be overestimated depending of the

fishing gear used for capture [21,56]. In this study we followed

various steps to remove as far as possible artificially induced

cannibalism. On the other hand, cannibalism may also be

underestimated. Indeed, squid muscles sections with a high degree

of digestion are difficult to determine. When it was not possible to

identify the squid prey species, the corresponding items were

incorporated in the group of other cephalopods. Thus some

digested D. gigas were most likely classified as ‘other cephalopoda’.

Several hypotheses are proposed to explain cannibalism in

squid. This behavior may be part of an energy storage strategy of

the population, allowing cephalopod to react to favorable and

adverse environmental conditions by increasing or reducing their

number [56]. Cannibalism can also provide a competitive

advantage among young and adults and can be beneficial for

survival during periods of food shortage [57]. We observed the

classic pattern of steady increase of cannibalism with size related to

the increase in predator’s ability to capture and handle the prey

[58,59]. Large specimens can access to highly energetic food when

Figure 5. Classification tree of jumbo squid diet (prey groups) according to the Fullness Weight Index (FWI), the Distance to the
Shelf (in km) (DS), the Sea Surface Temperature Anomaly (SSTA, in 6C), the mantle length (Size in cm) and the Season. For each final
node, the predicted probabilities of occurrence of the 11 prey groups is detailed (histograms) and the number of prey occurrences (occ) is given. See
Table 2 for prey codes.
doi:10.1371/journal.pone.0085919.g005

Comprehensive Model of Jumbo Squid Trophic Ecology

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e85919



feeding on conspecifics [60]. However, the relative spatial

segregation of this species by size [5] may be a response to limit

cannibalism on juveniles.

The Anchovy Paradox: Does Oxygen Matter?
In the California Current system D. gigas forages substantially on

coastal fish, particularly anchovy (Engraulis mordax) [25,61].

Surprisingly D. gigas consumes very few anchovy in Peru, whereas

a tremendous biomass of anchovy is potentially available.

Furthermore, off Peru, anchovy is concentrated in schools or

dense aggregations within the thin surface oxygenated layer

[62,63], which makes anchovy an easy prey for mobile predators

[64]. Unlike in California [25], the jumbo squid distribution

hardly overlaps with that of anchovy, which is very coastal (Fig. 6).

Why does jumbo squid not distribute closer to the coast and

benefits from the huge anchovy stock? Oxygen may be the answer.

Anchovy is not adapted to anoxia and cannot enter the oxygen

minimum zone. However this small fish (oxygen supply per body

size decreases as fish size/weight increases) can forage at low cost

(so low oxygen demand) on macrozooplankton and is thus adapted

to inhabit the unsaturated surface coastal waters [65]. On the

contrary, jumbo squid is adapted to anoxia since it undertakes diel

vertical migration and occupies the oxygen minimum zone (OMZ)

during the day [15,16,18,66–69]. D. gigas succeeds in the OMZ by

managing hypoxia via metabolic suppression [18,19,66,67],

coupled with a high-affinity respiratory protein, the hemocyanin

[69]. However normoxic conditions are needed in surface during

the night to supply the oxygen demand that was not achieved in

hypoxic waters at greater depths [69,70]. In coastal Peru the OMZ

is much more intense than in California, the upper OMZ is

shallower and, above the oxycline, oxygen concentration and

saturation are low [66]. In such conditions jumbo squid may be

prevented to enter the coastal waters where the anchovy is

situated, as was previously evidenced for sardine [65]. Indeed, off

Peru, the abundance of jumbo squid biomass increases with

oxygen saturation (Fig. 6). When upwelling is strong, anchovy

partly distributes off the shelf break and should be more accessible

to jumbo squid. However, such conditions correspond also to an

extension of the surface oxygen unsaturated waters [65].

Synthesis
As a synthesis we propose a comprehensive model of jumbo squid

Dosidicus gigas trophic ecology in the northern Humboldt Current

system (Fig. 6). Small jumbo squid (,400 mm) are mostly

distributed far offshore where they largely forage on mesopelagic

fish. As they grow, they move closer to the coast and increase their

consumption of other cephalopoda. However, off Peru, contrarily to

other systems [25], D. gigas does not occupy very coastal waters

where a huge biomass of anchovy is present. We hypothesize that

jumbo squid cannot enter the coastal waters that present low surface

oxygen saturation. Although jumbo squid can forage in hypoxic

deep waters it needs surface normoxic waters afterwards [69].

Oxygen concentration may thus limit the co-occurrence of both

species and then preclude predator-prey interactions. Large squids

move further offshore (without reaching the oceanic distribution of

smaller jumbo squids), and increase their consumption of squids

(including jumbo squid) and euphausiids. Note that euphausiids

consumption is rather low considering its availability, indicating that

Figure 6. Conceptual model and cross-shore profiles of oxygen and organisms distribution. The lower panel shows the mean (spline
smooth) cross-shore profiles of dissolved oxygen saturation in % (grey dashed line), depth of the 2 ml.l21 isoline in m (black solid line) and the
acoustic-estimated biomass of anchovy (blue solid line) and the jumbo squid acoustic-estimated biomass (red solid line). Oxygen and anchovy data
come from Bertrand et al. (2011); jumbo squid data come from IMARPE, unpublished data. Note that the oxygen data cover the range 7uS to 18uS.
The upper part shows the cross-shore distribution of jumbo squid along its ontogenetic cycle. The colours in the arrow represent the schematic range
of distribution and proportional abundance of the three main prey groups i.e., the other cephalopoda, euphausiids and mesopelagic fish.
doi:10.1371/journal.pone.0085919.g006
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D. gigas may seek out more energetic prey. The global pattern we

described illustrates the opportunistic foraging behaviour of jumbo

squid, which is impacted by ontogenetic migration and most likely

by oxygen conditions. Also, even if the global scheme described in

Figure 6 seems consistent [28,71], high variability exists between

individuals and the differences in jumbo squid life history strategies

highlight the high degree of plasticity of the jumbo squid and its high

potential to adapt to environmental changes.
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21. Ibáñez C, Arancibia H, Cubillos L (2008) Biases in determining the diet of

jumbo squid Dosidicus gigas (D’Orbigny 1835) (Cephalopoda: Ommastrephidae)

off southern-central Chile (34uS–40uS). Helgol Mar Res 62: 331–338.

22. Chong J, Oyarzún C, Galleguillos R, Tarifeño E, Sepúlveda R, Ibáñez C (2005)
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