
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The MultiAgent Decision Process toolbox: Software for decision-theoretic planning in
multiagent-systems

Spaan, M.T.J.; Oliehoek, F.A.

Published in:
Multiagent Sequential Decision Making (MSDM), 2008

Link to publication

Citation for published version (APA):
Spaan, M. T. J., & Oliehoek, F. A. (2008). The MultiAgent Decision Process toolbox: Software for decision-
theoretic planning in multiagent-systems. In J. Shen, P. Varakantham, & R. Maheswaran (Eds.), Multiagent
Sequential Decision Making (MSDM), 2008 (pp. 107-121). IFAAMAS.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 29 Jun 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357400991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dare.uva.nl/personal/pure/en/publications/the-multiagent-decision-process-toolbox-software-for-decisiontheoretic-planning-in-multiagentsystems(81f7415f-1c58-4b28-8996-b66103744ed0).html

The MultiAgent Decision Process toolbox:

software for decision-theoretic planning in

multiagent systems

Matthijs T.J. Spaan Frans A. Oliehoek
Institute for Systems and Robotics Intelligent Systems Lab Amsterdam

Instituto Superior Técnico University of Amsterdam
Lisbon, Portugal The Netherlands

mtjspaan@isr.ist.utl.pt faolieho@science.uva.nl

Abstract

This paper introduces the MultiAgent Decision Process software
toolbox, an open source C++ library for decision-theoretic planning
under uncertainty in multiagent systems. It provides support for sev-
eral multiagent models, such as POSGs, Dec-POMDPs and MMDPs.
The toolbox aims to reduce development time for planning algorithms
and to provide a benchmarking platform by providing a number of
commonly used problem descriptions. It features a parser for a text-
based file format for discrete Dec-POMDPs, shared functionality for
planning algorithms, as well as the implementation of several Dec-
POMDP planners. We describe design goals and architecture of the
toolbox, and provide an overview of its functionality, illustrated by
some usage examples. Finally we report on current and future work.

1 Introduction

Sequential decision making has been a central topic in the Artificial Intelli-
gence community since the beginning of the field, as endowing agents with
intelligent behavior in general requires them to consider what course of action
to take. Such a planning process requires an agent to consider its task as well
as the impact of its actions on its environment. Decision-theoretic planning
provides a framework for agent planning in which the environment is allowed

1

to be stochastic, and the agent’s goal is to maximize its expected utility. For
single agents with imperfect sensing, partially observable Markov decision
processes (POMDPs) form a popular planning model [7]. We will consider
several multiagent decision-theoretic planning models, denoted as multiagent
decision processes (MADPs). Well-known MADPs include partially observ-
able stochastic games (POSGs) [6], decentralized POMDPs [1], multiagent
team decision problems (MTDPs) [11], and multiagent MDPs (MMDPs) [2].

In this paper, we present MultiAgent Decision Process, a software tool-
box for research in decision-theoretic planning (and learning) in multiagent
systems. It has been designed to be rather general and extensible and pro-
vides a uniform representation for several MADP models. As a result of our
particular research interest, most effort has been put in planning algorithms
for discrete Dec-POMDPs. By releasing the software as open source, we
hope to lower the threshold for researchers new to this area, allowing rapid
development of new algorithms. Furthermore, we would like to encourage
benchmarking of existing algorithms, by providing a repository of problem
domain descriptions. The software consists of a set of C++ libraries, as well
as several applications. It is being developed as free software on GNU/Linux
and is available at [9].

The POMDP community has benefitted greatly from the availability of
a repository of problem descriptions and POMDP solving software, provided
by Anthony Cassandra [3] (resulting from his PhD thesis [4]). In particular,
the file format proposed to define POMDP models has found widespread
use. For MADPs such as POSGs and Dec-POMDPs, on the other hand, less
software is available and a lower level of standardization has been established.
This comes as no surprise as computational approaches for such models have
only more recently been receiving a growing amount of attention. To our
knowledge, only two collections of MADP-related software are available [12,
16]. Their scope is more limited than the proposed toolbox, and at the
moment considerably less functionality is provided.

The remainder of this paper is organized as follows. Section 2 introduces
a mathematical formulation of several MADP models and related concepts.
Section 3 introduces the software architecture, including its design goals and
the provided functionality. Next, the file format for discrete Dec-POMDPs is
highlighted in Section 4. Section 5 introduces some of the example applica-
tions, and in Section 6 we briefly describe some implementation details and
the computing platform. Finally, in Section 7 we draw some short conclusions
and highlight in which directions we are extending the MADP toolbox.

2

2 Multiagent decision processes

We first introduce the mathematical framework behind MADPs, at the same
time introducing notation. We start by formally defining the POSG model [6],
the most general case we consider, after which we will discuss other MADP
models as special cases.

2.1 Partially observable stochastic games

A partially observable stochastic game (POSG) is a tuple 〈Ag,S,A,O, T, O,R〉,
where

• Ag = {1, . . . , n} is the set of n agents.

• S is a set of states the environment can be in.

• A = A1 × · · · × An is the set of joint actions a = 〈a1, . . . , an〉, where
an individual action of an agent i is denoted ai ∈ Ai.

• O = O1 × · · · ×On is the set of joint observations o = 〈o1, . . . , on〉. An
individual observation of agent i is denoted oi ∈ Oi.

• T is the transition function which provides P (s′|s, a), the probability
of a next state s′ given that joint action a is executed from state s.

• O is the observation function that specifies P (o|a, s′), the probability
that the agents receive joint observation o of state s′, when they reached
this state through joint action a.

• R = {R1, . . . , Rn} is a collection of individual reward functions. Ri(s, a)
specifies the individual reward for agent i, represented as a real number.

At every time step, or stage, the agents simultaneously take an action.
The resulting joint action causes a transition to the next stage. At that point
the environment the system emits a joint observation, of which each agent
observes its own component. The initial state distribution b0 specifies the
probability of each state at stage t = 0.

3

2.2 MADP models

Now we will discuss different types of MADPs as special cases of a POSG.
In particular, these special cases make assumptions on the reward functions
and/or the observability of states.

In a POSG each agent has its own reward function, indicating that each
agent has its own preferences. As a result POSGs model self-interested
multiagent systems. When all agents have the same reward function (i.e.,
∀i, j Ri(s, a) = Rj(s, a)) all agents have the same preferences and the sys-
tem is cooperative. This special case is referred to as a decentralized partially
observable Markov decision process (Dec-POMDP) [1], and is equivalent to
an MTDP [11].

When assuming that the agents in a POSG can observe the state s, a
POSG reduces to a (fully observable) stochastic game (SG). In such a SG,
O and O are omitted. A SG that is cooperative (i.e., with only one reward
function for all agents) is also referred to as a multiagent MDP (MMDP) [2].
A final special case is when there is only 1 agent. In that case the above
models reduce to a (PO)MDP [7].

2.3 Planning

An MADP is typically considered over some number of time steps or stages,
referred to as the horizon h (which can also be infinity). The main task we
address is planning : finding an (near-)optimal plan, or policy, that specifies
what to do in each situation that can occur during h stages. In multiagent
planning the goal is to find a joint policy ; a policy for each agent.

In such a planning context, we assume that the necessary models (T,O

and R) are available. Using these models we compute a joint policy in an
off-line phase. Once this plan is computed it is given to the agents, who then
execute the plan in an on-line phase. Note that this is in contrast to the
setting of reinforcement learning (RL) [14], where agents have to learn how
the environment reacts to their actions in the on-line phase1. Exactly which
(joint) policies are optimal depends on the optimality criterion considered. A
typical choice is the maximization of the expected cumulative future reward,
also called expected return: E[

∑h−1

t=0
γtR(st, at)], where 0 < γ ≤ 1 is a

1Although the MADP toolbox currently does not provide functionality specific to rein-
forcement learning, the uniform problem representation and the provided process simulator
should prove useful for reinforcement-learning settings as well.

4

discount factor. Note that when h = ∞ the discount should be < 1 to
ensure a finite sum.

2.4 Histories and policies

An agent’s policy tells it how to act at any moment in time. The form of a
policy of an agent depends heavily on the observability assumptions imposed
by the particular kind of MADP. In the most general case, however, a policy
is a mapping from the observed history of the process to an agent’s actions.
A process of horizon h specifies h time-steps t = 0, . . . , h − 1. At each of
these time-steps, there is a state st, joint observation ot and joint action at.
Therefore, when the agents will have to select their k-th actions (at t = k−1),
the history of the process is a sequence of states, joint observations and joint
actions, which has the following form:

(

s0,o0, a0, s1,o1, a1, . . . , sk−1,ok−1
)

.

The initial joint observation o0 is assumed to be the empty joint observation
and will be omitted from now on. An agent can only observe his own actions
and observations. The action-observation history of agent i at time step t is
defined as

~θ t
i =

(

a0

i , o
1

i , a
2

i , . . . , o
t−1

i , at−1

i , ot
i

)

and the observation history for agent i, ~oi, as the sequence of observations
an agent has received: ~o t

i = (o1

i , . . . , o
t
i) . The set of all possible action-

observation histories for agent i is ~Θi. The joint action-observation history,
~θ, is the action-observation history for all agents: ~θt = 〈~θ t

1
, . . . , ~θ t

n〉. Notation

of joint observations and observation histories are analogous (o, ~Oi).
In the most general case, we can formally define a policy πi for agent i as

a mapping from action-observation histories to probability distributions over
actions πi : ~Θi → P(Ai). Such policies are also called stochastic policies.

For deterministic or pure policies, this reduces to πi : ~Oi → Ai. Similar to
previous notation we use π = 〈π1, . . . , πn〉 to denote a joint policy.

3 MADP Toolbox architecture

Now that we briefly introduced the decision-theoretic mathematical frame-
work in which our toolbox operates, we discuss its global architecture and
components.

5

3.1 Design goals and assumptions

The development of the MADP toolbox has two main goals. The first is
to provide a library for rapid development and evaluation of planning algo-
rithms for MADPs. As shown in Section 2, the considered MADPs consist
of many components: states, (joint) actions, (joint) observations, transition
models, etc., and in the planning process we encounter even more data types
(histories, policies, etc.). We aim to reduce the amount of work needed to
implement a working MADP description and a corresponding planning algo-
rithm. The second goal is to provide a benchmark set of test problems and
planning algorithms for Dec-POMDPs (and potentially other MADPs).

Before elaborating on the design objectives of the toolbox, first let us
state our main assumptions. In particular, throughout the software we as-
sume that time has been discretized, i.e., that agents take decisions at pre-
defined intervals. Such an assumption is ubiquitous in the literature on the
MADP models we consider. Furthermore, the POSG definition of Section 2.1
does not specify whether the sets S, Ai, and Oi are continuous or discrete,
which is reflected in our design. However, as the majority of algorithms
tackle the discrete case, most effort (until so far) has been spent in providing
functionality for discrete models.

Based on the goals of the toolbox, we have identified the following de-
sign objectives. (1) A principled and object-oriented representation of all
MADP elements, such as (joint) actions, observations, etc., such that they
can be recombined in new MADP variants; and of derived data types such
as histories, policies, etc., such that they can be easily used in new planning
algorithms. (2) To provide typical functionality, for example construction of
joint actions from individual actions, generation of histories, manipulation of
indices, and computation of derived probabilities. (3) The classes provided
by the library should be customizable: the user should be able to select which
of the functionality (e.g., generation of observation histories) he would like to
use, to allow a trade-off between speed and memory. (4) The design should
be extensible. It should be easy to write and use new implementations of
particular classes.

In accordance with these design goals, the MADP toolbox has a sepa-
ration of interface and implementation. Although C++ by itself does not
distinguish between interface classes and their implementation, we have cho-
sen to make such a distinction, clearly recognizable by their naming. In this
text, however, we will not specifically emphasize this separation. The MADP

6

Figure 1: The hierarchy of the different MADP models.

Figure 2: The hierarchy of planning units.

toolbox also has a strict separation between on the one hand problem rep-
resentations and on the other hand (planning) algorithms. The former are
represented by a hierarchy of MADP classes, while the latter are represented
by various derivations of the abstract class PlanningUnit. Because planning
algorithms typically only refer to an interface of a particular problem, a user
is able to provide his own implementations for specific problems, and still
run general planning algorithms on this class. In order to provide some intu-
ition on the design of the toolbox, we will give a brief overview of these two
different components.

3.2 Representing MADP models

A set of classes is dedicated to representing MADPs, currently implement-
ing a hierarchical representation of POSGs and Dec-POMDPs as illustrated
in Figure 1. In particular the figure shows the interfaces for various MADP
classes. MultiAgentDecisionProcess2 is the most abstract level of the hier-
archy in which only the number of agents is defined. MultiAgentDecision-
ProcessDiscrete assumes that world consists of discrete states and that
agents have discrete actions and observations. This means the functions
in this class can be based on indices (of states, actions and observations).

2Capitalized nouns in typewriter font refer to C++ classes.

7

On the other hand POSG defines functions to set a reward function and
a discount factor for each agent. POSGDiscrete inherits from both these
classes. A DecPOMDP is a special case of, and thus extends, POSG by provid-
ing get/set reward functions that can be called without specifying an agent.
DecPOMDPDiscrete inherits both from POSGDiscrete and DecPOMDP, while
finally ProblemDecTiger provides a full implementation of a discrete Dec-
POMDP, implementing all the interfaces it inherited.

3.3 Planning Algorithms

In the MADP toolbox planning algorithms are represented by a family of
so-called planning unit (PU) classes as illustrated in Figure 2. Each class
in the hierarchy of PUs is associated with a corresponding class from the
MADP hierarchy. Intermediate classes in the hierarchy provide auxiliary
functionality for the associated MADP, while the leaves of this hierarchy
represent complete planning algorithms. In particular PlanningUnit forms
the most abstract level, which defines the horizon h and an abstract function
Plan(), which needs to be implemented by all planning algorithms.

One of the major classes is PlanningUnitMADPDiscrete which represents
a PU for a discrete MADP, and provides a multitude of auxiliary functions.
For instance, it provides functions to construct (joint) (action-) observation
histories. The generation of these elements is controlled by parameters, giv-
ing the user the control to optimize between memory and speed requirements.
For instance, for particular algorithms it will be beneficial to generate and
cache all joint observation histories, but this might not be feasible due to lim-
ited memory. The class also provides functionality for conversions between
joint and individual history indices. Finally, many planning algorithms typ-
ically will require probabilities of joint action-observation histories and the
corresponding probability distribution over states (given a joint policy). I.e.,
they will often require the following, recursively defined joint probability
distribution:

P (st, ~θt|b0, π) =
∑

st−1

P (ot|at−1, st)P (st|st−1, at−1)

P (at−1|~θt−1, π)P (st−1, ~θt−1|b0, π). (1)

The class also provides functions to compute these probabilities.
PlanningUnitDecPOMDPDiscrete provides some forwarding functions to

get rewards. Currently, the MADP Toolbox includes two basic planning

8

algorithms for the solutions of discrete Dec-POMDPs, namely brute force
search, which valuates each joint policy, and exhaustive JESP [8].

There is also a set of classes that provides general functionality for plan-
ning algorithms. Examples of such classes are (joint) beliefs and policies and
the implementation of the data types uses to represent all types of histories.
Furthermore, the MADP toolbox also provides efficient command-line option
parsing.

3.4 Overview

We present a short overview of the different libraries in which the function-
ality of the MADP toolbox has been organized.

Base library The base library is the core of the MADP toolbox. It contains
the classes that represent the MADPs and their basic elements such as
states, (joint) actions and observations. Is also includes a representa-
tion of the transition, observation and reward models in a multiagent
decision process and auxiliary functionality regarding manipulating in-
dices, exception handling and printing.

Parser library The parser library only depends on the base library, and
contains a parser for .dpomdp problem specifications, which is a file
format for discrete Dec-POMDPs (see Section 4). The format is based
on Cassandra’s POMDP file format. A set of benchmark problem files
is included.

Support library The support library contains basic data types useful for
planning, such as: a representation for (joint) observation, action and
action-observation histories and a representation for (joint) beliefs. It
also contains functionality for representing (joint) policies, as mappings
from histories to actions, and provides easy handling of command-line
arguments.

Planning library The planning library depends on the other libraries and
contains functionality for planning algorithms. In particular it provides
shared functionality for discrete MADP planning algorithms, such as
computation of (joint) history trees, joint beliefs, and value functions.
It also includes a simulator to empirically test the quality of a solution.
Currently two simple Dec-POMDP solution algorithms are included:
JESPExhaustivePlanner and BruteForceSearchPlanner.

9

4 Problem specification

In the MADP toolbox there are basically two ways of specifying problems.
The first is to derive a class from the MADP hierarchy, as is done for
ProblemDecTiger illustrated in Figure 1. For (discrete) Dec-POMDPs, there
is a second option: create a .dpomdp file and use the parser library to load
the problem. The first option has the advantage of speed, while the second
option makes it easier to distribute a test problem.

The .dpomdp file format is based on Cassandra’s .pomdp format [3], which
has been extended to handle multiple agents. An example of the format is
shown in Figure 3, which shows a major part of the DecTiger problem spec-
ification. Illustrated is how the transition and observation model can be
compactly represented by first declaring them uniform, and then overrid-
ing the values that are not uniform. E.g., only when the agents perform
〈listen,listen〉, the state does not reset with uniform probability, but
remains unchanged (the transition matrix is the identity matrix). A full
specification of the .dpomdp file format is available in the MADP toolbox
distribution [9].

5 Example applications

Apart from the libraries presented in Section 3.4, the MADP toolbox also
includes several applications using the provided functionality. For instance,
applications which use JESP or brute-force search to solve .dpomdp for a par-
ticular planning horizon. In this way, Dec-POMDPs can be solved directly
from the command line. Furthermore, several utility applications are pro-
vided, for instance one which empirically determines a joint policy’s control
quality by simulation.

To provide a concrete example, Figure 4(a) shows the full source code
listing of an application. It is a simple but complete program, and in the dis-
tribution more elaborate examples are provided. The program uses exhaus-
tive JESP to compute a plan for the horizon 3 DecTiger problem, and prints
out the computed value as well as the policy. Line 5 constructs an instance of
the DecTiger problem directly, without the need to parse dectiger.dpomdp.
Line 6 instantiates the planner, with as arguments the planning horizon and a
pointer to the problem it should consider. Line 7 invokes the actual planning
and lines 8 and 9 print out the results.

10

agents: 2

discount: 1

values: reward

states: tiger-left tiger-right

start:

uniform

actions:

listen open-left open-right

listen open-left open-right

observations:

hear-left hear-right

hear-left hear-right

Transitions

T: * :

uniform

T: listen listen :

identity

Observations

O: * :

uniform

O: listen listen : tiger-left : hear-left hear-left : 0.7225

O: listen listen : tiger-left : hear-left hear-right : 0.1275

[...]

O: listen listen : tiger-right : hear-left hear-left : 0.0225

Rewards

R: listen listen: * : * : * : -2

R: open-left open-left : tiger-left : * : * : -50

[...]

R: open-left listen: tiger-right : * : * : 9

Figure 3: Specification of the DecTiger problem as per dectiger.dpomdp

(abridged).

11

1 #include "ProblemDecTiger.h"

2 #include "JESPExhaustivePlanner.h"

3 int main()

4 {

5 ProblemDecTiger dectiger;

6 JESPExhaustivePlanner jesp(3,&dectiger);

7 jesp.Plan();

8 std::cout << jesp.GetExpectedReward() << std::endl;

9 std::cout << jesp.GetJointPolicy()->SoftPrint() << std::endl;

10 return(0);

11 }

(a) Example program.

1 src/examples> ./decTigerJESP

2 Value computed for DecTiger horizon 3: 5.19081

3 Policy computed:

4 JointPolicyPureVector index 120340 depth 999999

5 Policy for agent 0 (index 55):

6 Oempty, --> a00:Listen

7 Oempty, o00:HearLeft, --> a00:Listen

8 Oempty, o01:HearRight, --> a00:Listen

9 Oempty, o00:HearLeft, o00:HearLeft, --> a02:OpenRight

10 Oempty, o00:HearLeft, o01:HearRight, --> a00:Listen

11 Oempty, o01:HearRight, o00:HearLeft, --> a00:Listen

12 Oempty, o01:HearRight, o01:HearRight, --> a01:OpenLeft

13 Policy for agent 1 (index 55):

14 Oempty, --> a10:Listen

15 Oempty, o10:HearLeft, --> a10:Listen

16 Oempty, o11:HearRight, --> a10:Listen

17 Oempty, o10:HearLeft, o10:HearLeft, --> a12:OpenRight

18 Oempty, o10:HearLeft, o11:HearRight, --> a10:Listen

19 Oempty, o11:HearRight, o10:HearLeft, --> a10:Listen

20 Oempty, o11:HearRight, o11:HearRight, --> a11:OpenLeft

21 src/examples> ../utils/evaluateJointPolicyPureVector -h 3 \

22 -r 10000 ../../problems/dectiger.dpomdp 120340

23 Horizon 3 reward: 5.1

(b) Program output.

Figure 4: (a) C++ code of a small example program that runs JESP on the
DecTiger problem, and (b) shows its output (with enhanced printout).

12

The output of the program is shown in Figure 4(b). Lines 6 through 12
show the resulting policy for the first agent, and lines 14 through 20 the
second agent’s policy. For instance, lines 12 and 20 show that both policies
specify that the agents should open the left door after hearing the tiger on
the right twice. Line 21 shows how to empirically evaluate the computed
joint policy (index 120340) on the parsed DecTiger description for horizon 3
using 10000 sample runs. As such, it briefly demonstrates the command-line
parsing functionality and the use of the .dpomdp parser.

6 Implementation and platform

As mentioned before, the MADP toolbox is implemented in C++ and is
licensed under the GNU General Public License (GPL). We develop it on
Debian GNU/Linux, but it should work on any (recent) Linux distribution.
It uses a standard GNU autotools setup and the GCC compiler. The software
uses the Boost C++ libraries, in particular the Spirit library to implement
the .dpomdp parser, and the uBLAS library for representing sparse vectors
and matrices. A reference manual is available, and is generated from the
source by doxygen. The manual can be consulted on-line at [9], where the
source code can also be obtained.

7 Conclusions and future work

We introduced the design of the MADP toolbox, which aims to provide
a software platform for research in decision-theoretic multiagent planning.
Its main features are a uniform representation for several popular multia-
gent models, a parser for a text-based file format for discrete Dec-POMDPs,
shared functionality for planning algorithms, as well as the implementation
of several Dec-POMDP planners. The software has been released as free
software, and as special attention was given to the extensibility of the tool-
box, our hope is that it will be easy for others to use. Moreover, because
the toolbox includes a set of benchmark problems and parser, we think it
provides a useful tool to the research community.

The MADP toolbox remains under active development. Our focus has
been partially observable models, however, we also would like to include ob-
servable models (MMDPs, SGs) and other special cases such as transition-

13

and observation independent Dec-(PO)MDPs in the future. In particular,
we are currently working to incorporate support for factored (Dec-POMDP)
models. Also, we are planning to add more advanced algorithms, such as
GMAA∗ [10] (which includes MAA∗ [15]) and forward sweep policy computa-
tion [5]. We also hope that we will be able to include other algorithms such as
memory bounded dynamic programming [13], DP-JESP [8], SPIDER [17], so
as to provide a true MADP algorithm library. To accompany these planning
algorithms, a more elaborate set of benchmark problems should be provided.
Finally, contributions from the community are welcomed.

Acknowledgments

This work was partially supported by Fundação para a Ciência e a Tec-
nologia (ISR/IST pluriannual funding) through the POS Conhecimento
Program that includes FEDER funds, and through grant PTDC/EEA-
ACR/73266/2006. The research reported here is part of the Interactive
Collaborative Information Systems (ICIS) project, supported by the Dutch
Ministry of Economic Affairs, grant nr: BSIK03024.

References

[1] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complex-
ity of decentralized control of Markov decision processes. Math. Oper. Res.,
27(4):819–840, 2002.

[2] C. Boutilier. Planning, learning and coordination in multiagent decision pro-
cesses. In TARK ’96: Proceedings of the 6th conference on Theoretical aspects

of rationality and knowledge, 1996.

[3] A. Cassandra. The POMDP page. http://pomdp.org/pomdp/.

[4] A. R. Cassandra. Exact and approximate algorithms for partially observable

Markov decision processes. PhD thesis, Brown University, 1998.

[5] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate
solutions for partially observable stochastic games with common payoffs. In
Proc. of Int. Joint Conference on Autonomous Agents and Multi Agent Sys-

tems, 2004.

14

[6] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for
partially observable stochastic games. In Proc. of the National Conference on

Artificial Intelligence, 2004.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–
134, 1998.

[8] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming
decentralized POMDPs: Towards efficient policy computation for multiagent
settings. In Proc. Int. Joint Conf. on Artificial Intelligence, 2003.

[9] F. A. Oliehoek and M. T. J. Spaan. MultiAgent Decision Process page. http:
//www.science.uva.nl/~faolieho/madp.

[10] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate Q-
value functions for decentralized POMDPs. Journal of Artificial Intelligence

Research, 2008. To appear.

[11] D. V. Pynadath and M. Tambe. The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial

Intelligence Research, 16:389–423, 2002.

[12] Resource-Bounded Reasoning Lab, University of Massachusetts at Amherst.
Dec-POMDP web page. http://rbr.cs.umass.edu/~camato/decpomdp/.

[13] S. Seuken and S. Zilberstein. Memory-bounded dynamic programming for
DEC-POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2007.

[14] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, March 1998.

[15] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic search algo-
rithm for solving decentralized POMDPs. In Proceedings of the Twenty First

Conference on Uncertainty in Artificial Intelligence, 2005.

[16] TEAMCORE Research Group, University of Southern California. Distributed
POMDPs web page. http://teamcore.usc.edu/pradeep/dpomdp_page.

html.

[17] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo. Letting
loose a SPIDER on a network of POMDPs: Generating quality guaranteed
policies. In Proc. of Int. Joint Conference on Autonomous Agents and Multi

Agent Systems, 2007.

15

