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Abstract

In this paper, it is examined on the half line the inverse problem of
scattering theory for a class Dirac operator with discontinuous coeffi-
cient and a spectral parameter in the boundary condition . The scat-
tering function is defined as scattering data and its properties are inves-
tigated. It is obtained Gelfand-Levitan-Marchenko type main equation
which plays an important role in the solution of inverse problem and it
is shown the uniqueness of the solution of the inverse problem by using
Fredholm alternative.
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1 Introduction

The inverse problem of scattering theory for Dirac operator on the half line
was examined in [1, 3, 5] (see [11]). The similar problem for Dirac operator of
order two with discontinuous coefficients was considered in [6, 7]. In this study
as different from other studies it is used new integral presentation, not oper-
ator transformation. The uniqueness of the solution of the inverse scattering
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problem for Dirac operator with discontinuous coefficients for not containing
parameter was shown in [13]. In this paper in the case of discontinuous coef-
ficients, it is investigated an inverse problem with a spectral parameter in the
boundary condition.

We remind that the inverse problem of scattering theory for Sturm-Liouville
operator on the half line was solved completely in [2, 14], for discontinuous case
in [4, 8, 12].

On the half line [0,∞), we consider the boundary-value problem generated
by the differential equation

BY ′ + Ω (x) Y = λρ (x) Y (1)

and the boundary condition

Y1 (0) + λY2 (0) = 0, (2)

where

B =

(
0 1
−1 0

)
, Ω (x) =

(
p (x) q (x)
q (x) −p (x)

)
, Y =

(
Y1 (x)
Y2 (x)

)
,

p (x), q (x) are real measurable functions, λ is a spectral parameter and

ρ (x) =

{
α, 0 ≤ x ≤ a,
1, a < x < ∞,

and 1 �= α > 0.
Assume that the condition

∞∫
0

‖Ω (x)‖ dx < ∞ (3)

is satisfied for Euclidean norm of the matrix function Ω (x) . Let

μ (x) =

{
a + α (x − a) , 0 ≤ x ≤ a,

x, x > a.

It is easily shown that the vector function

f 0 (x, λ) =

(
1
−i

)
eiλμ(x)

is a solution of the equation (1) when Ω (x) ≡ 0.
As known from [6], when the condition (3) is satisfied, for Imλ ≥ 0 the

equation (1) has an solution f (x, λ) which satisfies the condition
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lim
x→∞

f (x, λ) e−iλx =

(
1
−i

)

and can be expressed uniquely as

f (x, λ) = f 0 (x, λ) +

∞∫
μ(x)

K (x, t)

(
1

−i

)
eiλtdt. (4)

Moreover, the elements of the matrix kernel K (x, t) are summable on the
positive half line and for the Euclidean norm of K (x, t) , the inequality

∞∫
μ(x)

‖K (x, t)‖ dt ≤ eσ(x) − 1 (5)

is satisfied, where σ (x) =

∞∫
x

‖Ω ((t))‖ dt.

Also,

ρ (x) {BK (x, μ (x)) − K (x, μ (x)) B} = Ω (x) (6)

and if the matrix function Ω (x) is absolutely continuous, then the kernel
K (x, t) satisfies:

BKx (x, t) + Ω (x) K (x, t) = −ρ (x) Kt (x, t) B.

Let Y (x, λ) and Z (x, λ) be vector solutions of equations system (1). The
expression

W [Y (x, λ) , Z (x, λ)] = Y T (x, λ) BZ (x, λ) = (Y1, Y2)

(
0 1
−1 0

)(
Z1

Z2

)

= Y1Z2 − Y2Z1

is called Wronskian of the vector functions Y (x, λ) and Z (x, λ) .
Since p (x) and q (x) are real valued functions, the vector functions f (x, λ)

and f (x, λ) are solutions of the equation (1) for all real λ. The Wronskian of
the vector functions f (x, λ) and f (x, λ) doesn’t depend on x and is equal to
2i.

We denote by ϕ (x, λ) the solution of the equation (1) satisfying the con-
ditions

ϕ1 (0, λ) = −λ, ϕ2 (0, λ) = 1.
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Let us define the function

E (λ) ≡ f1 (0, λ) + λf2 (0, λ) .

The paper is organized as follows: In Section 1 it is used the new integral
representation (not operator transformation) for the solution of the equation
(1), also, we find the scattering function corresponding to the boundary value
problem (1)-(2) and its properties are investigated in Section 2. The Gelfand-
Leviatan-Marchenko type integral equation or main equation of the inverse
problem of scattering theory for the boundary value problem (1)-(2) which is
related the scattering function is derived and it is obtained Levinson formula
in Section 3. Finally, the solvability of main equation is proved and the unique
recovery of the potential from the solution of the main equation is shown in
Section 4.

2 The Properties of Scattering Function

The following lemma is valid.

Lemma 1 For real λ, the identity

2iϕ (x, λ)

f1 (0, λ) + λf2 (0, λ)
= f (x, λ) − S (λ) f (x, λ) (7)

holds, where

S (λ) =
f1 (0, λ) + λf2 (0, λ)

f1 (0, λ) + λf2 (0, λ)
(8)

and

|S (λ)|=1.

Proof. Since f (x, λ) and f (x, λ) constitute the fundamental system for real
numbers λ,

ϕ (x, λ) = c1f (x, λ) + c2f (x, λ)

is written. Taking into account the following relations

W [f (x, λ) , ϕ (x, λ)] = f1 (0, λ) ϕ2 (0, λ) − f2 (0, λ) ϕ1 (0, λ) = f1 (0, λ) + λf2 (0, λ)

and

W
[
f (x, λ), ϕ (x, λ)

]
= f1 (0, λ)ϕ2 (0, λ) − f2 (0, λ)ϕ1 (0, λ) = f1 (0, λ) + λf2 (0, λ)
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it is obtained

c1 = −f1 (0, λ) + λf 2 (0, λ)

2i
, c2 =

f1 (0, λ) + λf2 (0, λ)

2i
. (9)

Hence

ϕ (x, λ) = −f1 (0, λ) + λf 2 (0, λ)

2i
f (x, λ) +

f1 (0, λ) + λf2 (0, λ)

2i
f (x, λ).

Since p (x) and q (x) are real valued functions, f1 (0, λ)+λf2 (0, λ) �= 0 for real
λ. In fact, on the contrary there exits a real number λ0 such that f1 (0, λ0) =
−λf2 (0, λ0). Then

f1 (0, λ0) f2 (0, λ0) − f2 (0, λ0) f1 (0, λ0) = 2i

is valid according to expression of Wronskian. It is obtained a contradiction
from here and the assumption is not true. Dividing both sides of last expression
by E (λ) ≡ f1 (0, λ) + λf2 (0, λ), the identity (7) is obtained. The equality
|S (λ)| = 1 is found directly from (8). The lemma is proved.

Lemma 2 The function E (λ) has no zeros in the upper plane (Im λ � 0).

Proof. We showed above that the function E (λ) had no zeros in the real line.
It is clear from the expression (4) of solution that the functions f1 (0, λ) and
f2 (0, λ) can be continued as analytical and are continuous on the whole line.
It is seen from the expression of E (λ) that these properties are also satisfied
for E (λ).

Since

f (0, λ) →
(

1

−i

)
, |λ| → ∞,

the zeros of E (λ) in the upper plane are not more than countable and consti-
tute a bounded set.

Let us show that the function E (λ) has no zeros in the half plane (Im λ > 0).
Assume the contrary. Let λ (Im λ > 0) be a zero of the function E (λ)

Bf ′ (x, λ) + Ω (x) f (x, λ) = λρ (x) f (x, λ) ,

−f
·∗ (x, λ) B + f ∗ (x, λ) Ω (x) = λρ (x) f ∗ (x, λ) .

Taking this into account, multiplying the first equation by f ∗ (x, λ) and the
second equation by f (x, λ). Substracting the first equality from the second
one, and finally integrating this relation from 0 to ∞, we get

W
{
f (x, λ), f (x, λ)

}
|x=0 +

(
λ − λ

) ∞∫
0

f ∗ (x, λ) f (x, λ) ρ (x) dx = 0.
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On the other hand

E (λ) = f1 (0, λ) + λf2 (0, λ) = 0

or

f1 (0, λ) = −λf2 (0, λ) .

Hence,

W
[
f (x, λ), f (x, λ)

]
= f1 (0, λ)f2 (0, λ) − f2 (0, λ)f1 (0, λ)

= −λ |f2 (0, λ)|2 + λ |f2 (0, λ)|2 =
(
λ − λ

) |f2 (0, λ)|2

and taking it into account

(
λ − λ

)
⎧⎨
⎩|f2 (0, λ)|2 +

∞∫
0

f ∗ (x, λ) f (x, λ) ρ (x) dx

⎫⎬
⎭ = 0

it is found λ = λ from here. It is contrary to assumption. This contradiction
shows that E (λ) has no zeros in the half plane (Im λ > 0). The lemma is
proved.

The function S (λ) defined by (8) is called scattering function of the bound-
ary value problem (1),(2).

From the definition of S (λ) we have the following lemma.

Lemma 3 For large λ, as |λ| → ∞ the following asymptotic form holds

S (λ) = S0 (λ) + O

(
1

λ

)
, (10)

where

S0 (λ) = −e−2iλa(1−α).

Proof. Substituting (4) into the expression E (λ), we obtain

E (λ) = eiλa(1−α) +

∞∫
a(1−α)

(K11 (0, t) − iK12 (0, t)) eiλtdt

+λ

⎧⎪⎨
⎪⎩−ieiλa(1−α) +

∞∫
a(1−α)

(K21 (0, t) − iK22 (0, t)) eiλtdt

⎫⎪⎬
⎪⎭ .
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Here, by using partial integration we get

E (λ) = λ

[
−ieiλa(1−α) + O

(
1

λ

)]
.

Taking into account (8) and using properties of Kij (x, t) , i, j = 1, 2, we
obtain

−ie−2iλa(1−α) − S (λ) = −ie−2iλa(1−α) − λ
[
ie−iλa(1−α) + O

(
1
λ

)]
λ
[−ieiλa(1−α) + O

(
1
λ

)]

=
O
(

1
λ

)
−ieiλa(1−α) + O

(
1
λ

)
= O

(
1

λ

)
, |λ| → ∞

Therefore, for |λ| → ∞ we obtained that the asymptotic form (10) holds and
this completes the proof of lemma.

The function S (λ) − S0 (λ) is continuous on the real axis −∞ < λ < +∞
and by using the Lemma2 we have S (λ) − S0 (λ) = O

(
1
λ

)
as |λ| → ∞. Then

the function S(λ) − S0(λ) is integrable square in the neighborhood of +∞
(−∞), and is the Fourier transform of some function in L2 (−∞, +∞) .

3 The Main Equation

Now, we shall obtain the main equation that contributes to construct the
potential Ω (x) in the equation (1) to scattering function. For this, we rewrite
the identity (7) as the following form

2iϕ (x, λ)

E (λ)
+ S0 (λ)

(
1

−i

)
eiλμ(x) −

(
1

i

)
e−iλμ(x)

=

∞∫
μ(x)

K (x, t)

(
1

i

)
e−iλtdt − S0 (λ)

∞∫
μ(x)

K (x, t)

(
1

−i

)
eiλtdt

+ [S0 (λ) − S (λ)]

(
1

−i

)
eiλμ(x) + [S0 (λ) − S (λ)]

∞∫
μ(x)

K (x, t)

(
1

−i

)
eiλtdt.
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Multiplying this equality by 1
2π

(1,−i) eiλy and integrating it in (−∞,∞) to λ,
we get

Re
1

2π

∞∫
−∞

[
2iϕ (x, λ)

E (λ)
+ S0 (λ)

(
1

−i

)
eiλμ(x) −

(
1

i

)
e−iλμ(x)

]
(1,−i) eiλydλ

= Re
1

2π

∞∫
−∞

∞∫
μ(x)

K (x, t)

(
1

i

)
(1,−i) e−iλ(t−y)dtdλ (11)

−Re
1

2π

∞∫
−∞

S0 (λ)

∞∫
μ(x)

K (x, t)

(
1

−i

)
(1,−i) eiλ(t+y)dtdλ

+ Re
1

2π

∞∫
−∞

[S0 (λ) − S (λ)]

∞∫
μ(x)

K (x, t)

(
1

−i

)
(1,−i) eiλ(t+y)dtdλ

+ Re
1

2π

∞∫
−∞

[S0 (λ) − S (λ)]

(
1

−i

)
(1,−i) eiλ(μ(x)+y)dλ.

It is easily shown

Re
1

2π

∞∫
−∞

(
1

i

)
(1,−i) e−iλ(t−y)dλ = Re

1

2π

∞∫
−∞

e−iλ(t−y)

(
1 −i
i 1

)
dλ = δ (t − y)E2

where δ (t) is a delta function and E2 = Re

(
1 −i
i 1

)
. Thus

∞∫
μ(x)

K (x, t) Re
1

2π

∞∫
−∞

(
1

i

)
(1,−i) e−iλ(t−y)dλdt =

∞∫
μ(x)

K (x, t) δ (t − y)E2dt

= K (x, y)

and

Re
1

2π

∞∫
−∞

S0 (λ)

∞∫
μ(x)

K (x, t)

(
1

−i

)
(1,−i) eiλ(t+y)dtdλ

=

∞∫
μ(x)

K (x, t)

⎛
⎝Re

1

2π

∞∫
−∞

S0 (λ)

(
1 −i
−i −1

)
eiλ(t+y)dλ

⎞
⎠ dt.
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Substituting S0 (λ), it is calculated the following integral:

1

2π

∞∫
−∞

S0 (λ) eiλ(t+y)dλ = −δ (t − y + 2a (1 − α)) .

Substituting this on the right hand of (11), we get

K (x, y) + Re
1

2π

∞∫
−∞

[S0 (λ) − S (λ)]

∞∫
μ(x)

K (x, t)

(
1

−i

)
(1,−i) eiλ(t+y)dtdλ

+ Re
1

2π

∞∫
−∞

[S0 (λ) − S (λ)]

(
1 −i
−i −1

)
eiλ(μ(x)+y)dλ

−Re

∞∫
μ(x)

K (x, t)

(
1 −i
−i −1

)
δ (t − y + 2a (1 − α)) dt

= K (x, y) + F (μ (x) + y) +

∞∫
μ(x)

K (x, t) F (t + y) dt + Re K (x,−y + 2a (1 − α))

where

F (x) = Re
1

2π

∞∫
−∞

[S0 (λ) − S (λ)]

(
1 −i
−i −1

)
eiλxdλ, (12)

and

K (x, 2a (1 − α) − y) = 0

for y > μ (x). Hence, the right hand of (11) has the form

K (x, y) + F (μ (x) + y) +

∞∫
μ(x)

K (x, t)F (t + y) dt

for y > μ (x) . The left hand of (11) is also

Re
1

2π

∞∫
−∞

2iϕ (x, λ)

E (λ)
(1,−i) eiλydλ + Re

1

2π

(
1 −i
−i −1

) ∞∫
−∞

S0 (λ) eiλ(μ(x)+y)dλ
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−Re
1

2π

(
1 −i
i 1

) ∞∫
−∞

e−iλ(μ(x)−y)dλ = 0

As a result for y > μ (x) we get

K (x, y) + F (μ (x) + y) +

∞∫
μ(x)

K (x, t)F (t + y) dt = 0 (13)

where F (x) is defined by (12). This equation is called the main equation of the
inverse problem of scattering theory for the boundary value problem (1),(2).
Thus the following theorem is proved.

Theorem 4 For each fixed x ≥ 0, the kernel of the special solution (4) satisfies
the main equation.

The continuity of the function S (λ) at real points is a straightforward
consequence of Lemma1. The increment of logarithm of S (λ) is equal to zero.
In fact, we apply the argument principle to the function E (λ). This function
is regular in the upper half plane, continuous in the closed upper half plane
Im λ ≥ 0. The increment of argument of E (λ) as λ runs over the real axis
from −∞ to ∞ is equal to zero:

arg E (+∞) − arg E (−∞) = 2π (N − P )

where N is number of zeros of E (λ) and P is number of poles Since N = P = 0
and

ln S (λ) = −2i arg E (λ)

we get

ln S (+∞) − ln S (−∞) = −2i {arg E (+∞) − arg E (−∞)} = 0

The last relation is called Levinson formula.
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4 Solvability of the Main Equation

By given the scattering function S (λ), it is found the function F (x) by the
formula (12) and then write the main equation (13). In the main equation (13)
we can take kernel K (x, t) of equation as an unknown and regard it as a matrix
equation of Fredholm type in the space of matrix functions with elements in
L2 (μ (x) ,∞) for every fixed x.

Theorem 5 For every fixed x ≥ 0, the main equation has an unique vector
solution with elements in L2 (μ (x) ,∞) .

Proof. It is obtained from Lemma3.3.1 in [14] that the main equation is
generated by compact operator. We rewrite the homogeneous equation

(
K11 (x, y) K12 (x, y)
K21 (x, y) K22 (x, y)

)
+

∞∫
μ(x)

(
K11 (x, t) K12 (x, t)
K21 (x, t) K22 (x, t)

)
(14)

× 1

4π

∞∫
−∞

(S0 (λ) − S (λ))

(
1 −i
−i −1

)
eiλ(t+y)dλdt

+

∞∫
μ(x)

(
K11 (x, t) K12 (x, t)
K21 (x, t) K22 (x, t)

)
1

4π

∞∫
−∞

(
S0 (λ) − S (λ)

)(1 i
i −1

)
e−iλ(t+y)dλdt

= 0.

From here it follows that

K11 (x, y) +
1

4π

∞∫
μ(x)

∞∫
−∞

{K11 (x, t) − iK12 (x, t)} (S0 (λ) − S (λ)) eiλ(t+y)dλdt

+
1

4π

∞∫
μ(x)

∞∫
−∞

(
S0 (λ) − S (λ)

)
{K11 (x, t) + iK12 (x, t)} e−iλ(t+y)dλdt = 0

and

K12 (x, y) +

+
1

4π

∞∫
μ(x)

∞∫
−∞

{−iK11 (x, t) − K12 (x, t)} (S0 (λ) − S (λ)) eiλ(t+y)dλdt

+
1

4π

∞∫
μ(x)

∞∫
−∞

(
S0 (λ) − S (λ)

)
{iK11 (x, t) − K12 (x, t)} e−iλ(t+y)dλdt = 0.
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Multiplying the second equation −i and adding the first equation we get

K11 (x, y) − iK12 (x, y) (15)

+
1

2π

∞∫
μ(x)

∞∫
−∞

(
S0 (λ) − S (λ)

)
{K11 (x, t) + iK12 (x, t)} e−iλ(t+y)dλdt = 0.

We put

g (y) : = K11 (x, y) + iK12 (x, y)

Fs (z) : =
1

2π

∞∫
−∞

(S0 (λ) − S (λ)) eiλzdλ.

Multiplying the equation (15) by g (y), integrating it from −∞ to ∞ according
to y, we obtain

(
g (y), g (y)

)
+

⎛
⎜⎝

∞∫
μ(x)

g (t) Fs (t + y)dt, g (y)

⎞
⎟⎠ = 0

or

1

2π

∞∫
−∞

∣∣∣∣˜g (λ)

∣∣∣∣
2

dλ +
1

2π

∞∫
−∞

˜g (−λ) (S0 (λ) − S (λ)) ˜g (λ)dλ = 0.

Since ˜g (λ) is the Fourier transform of a function g (y) which vanishes for y <

μ (x), ˜g (−λ)e−2iλμ(0) is the Fourier transform of a function g (−y + 2μ (0)) ,
which vanishes for y > μ (x) .Hence

1

2π

∞∫
−∞

e−2iλμ(0) ˜g (−λ)˜g (λ)dλ =

∞∫
μ(x)

g (−y + 2μ (0)) g (y)dy = 0
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and

1

2π

∞∫
−∞

∣∣∣∣˜g (λ)

∣∣∣∣
2

dλ +
1

2π

∞∫
−∞

˜g (−λ)S0 (λ) ˜g (λ)dλ − 1

2π

∞∫
−∞

˜g (−λ)S (λ) ˜g (λ)dλ

=
1

2π

∞∫
−∞

∣∣∣∣˜g (λ)

∣∣∣∣
2

dλ − 1

2π

∞∫
−∞

˜g (−λ)S (λ) ˜g (λ)dλ

=
1

2π

∞∫
−∞

˜g (−λ) ˜g (−λ)dλ − 1

2π

∞∫
−∞

˜g (−λ)S (λ) ˜g (λ)dλ

=
1

2π

∞∫
−∞

{
˜g (−λ) − S (λ) ˜g (λ)

}
˜g (−λ)dλ = 0

This shows that the function z (λ) = ˜g (−λ) − S (λ) ˜g (λ) is orthogonal to

˜g (−λ) in L2 (−∞,∞). But then

∥∥∥˜g (−λ)
∥∥∥2

=
∥∥∥S (λ) ˜g (λ)

∥∥∥2

=
∥∥∥˜g (−λ) − z (λ)

∥∥∥2

=
∥∥∥˜g (−λ)

∥∥∥2

+ ‖z (λ)‖2

which is possible if and only if z (λ) = 0.We find that

˜g (−λ)

f1 (0, λ) + λf2 (0, λ)
=

˜g (λ)

f1 (0, λ) + λf2 (0, λ)
.

Taking

z1 (λ) =

{ �g(−λ)

f1(0,λ)+λf2(0,λ)
, Im λ ≥ 0,

�g(λ)
f1(0,λ)+λf2(0,λ)

, Im λ ≤ 0.

This formula shows that the function z1 (λ) is regular in the upper and lower
half plane. Therofere, the function z1 (λ) is an entire function and tends to

zero as λ → ∞. Then ˜g (λ) = 0 and we conclude that g (t) ≡ 0. Thus, the
homogeneous equations (14) and (15) have only zero solution and from here it
follows that the unique solvability of integral equations (13), which proves the
theorem.
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Theorem 6 The scattering function determines the boundary value problem
(1), (2) uniquely.

Proof. Evidently, to form the main equation it is sufficient to know the
matrix function F (x) and in its turn, to find F (x) it is sufficient to know the
scattering function S (λ) . It is seen from Theorem 5 that the main equation
(13), constructed only on the basis of the scattering function, and has a unique
solution K (x, y). Then the matrix function Ω (x) in the equation (1) can be
uniquely found from (4). It is constructed the equation (1) by given algorithm.
The theorem is proved.
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[8] I. M. Gusĕınov, R. T. Pashaev, On an inverse problem for a second-order
differential equation. (Russian) Uspekhi Mat. Nauk 57, no. 3(345), (2002)
147–148; translation in Russian Math. Surveys 57, no.3, (2002) 597–598



On an inverse problem for a class of Dirac operator 1287

[9] B. M. Levitan, On the solution of the inverse problem of quantum scat-
tering theory. (Russian) Mat. Zametki 17, no. 4, (1975) 611–624.

[10] B. M. Levitan, Inverse Sturm-Liouville problems. Translated from the
Russian by O. Efimov. VSP, Zeist, 240 pp. 1987.

[11] B. M. Levitan, I. S. Sargsjan, Sturm-Liouville and Dirac operators. Trans-
lated from the Russian. Mathematics and its Applications (Soviet Series),
59. Kluwer Academic Publishers Group, Dordrecht, 350 pp., 1991.

[12] Kh. R. Mamedov, Uniqueness of the solution of the inverse problem of
scattering theory for Sturm-Liouville operator with discontinuous coeffi-
cient. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 24 (2006), 163–172.
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