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Discrete cosine transform (DCT) is a special type of transform which is widely used for compression of speech and image.
However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling
requirements of wideband spectrum sensing by utilizing the compressive sampling (CS) principle and exploiting the unique sparsity
structure in the DCT domain. Compared with discrete Fourier transform (DFT), wideband communication signal has much
sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme
outperforms the conventional DFT-CSS scheme in terms ofMSE of reconstruction signal, detection probability, and computational
complexity.

1. Introduction

In cognitive radio networks (CRNs), secondary CR users
should fleetly and accurately sense thewideband spectrum, so
that they can detect the unused spectrum holes, reconfigure
their parameters to utilize the spectrum available, and avoid
interference to primary users (PUs) [1, 2]. In practice, only
a small part of the wideband spectrum is occupied by the
PUs. Too high sampling rate required for scanning the
wideband spectrum can cause immense computational costs
and sensing problems. In compressed sampling (CS) [3], the
sampling and compression operations are combined into a
low complexity compressed sampling. For current CRNs, the
CS has been used to alleviate the sampling burden, which
aims at depressing the sampling rates for the acquisition of
wideband signals [4].

To implement compressed wideband spectrum sensing,
CRs need to exploit sparsity of signal in frequency domain.
In the literature, [4] firstly applied CS for acquiring wideband
signals using sub-Nyquist sampling rates, [5] exploited a
structured compressed sensing, and [6] studied a power spec-
trum blind sampling (PSBS) algorithm trying to reconstruct
the power spectrum. All of these systems belonged to the
class of discrete Fourier transform (DFT) based compressed

spectrum acquisition, which employed the complex expo-
nential functions set as orthogonal sparse basis.

However, the DFT complex exponential matrix is not
the only orthogonal basis that can be used to reconstruct
wideband communication signals. The paper [7] proposed
a cyclic spectrum based wideband spectrum estimating
scheme considering the 2D sparse signal of interest in the
cyclic spectrum domain. The paper [8] considered using
an adaptive tree structured dictionary of orthogonal bases
to optimize the compressive sensing recovery of image and
audio signal. The paper [9] applied several time-frequency
transforms including DFT, DCT, and discrete sine transform
(DST) to spectrum sensing for cognitive power line com-
munication (PLC) systems. However, there were few studies
combining the CSS and DCT for simultaneous estimation of
the spectrum occupancy states over a wide band.

A set of cosinusoidal functions can be used as an orthog-
onal sparse basis to implement the compressed spectrum
sensing (CSS) scheme. Hence, we will synthesize the scheme
as discrete cosine transform DCT-CSS and the conven-
tional discrete Fourier transform (DFT) based CSS system
as DFT-CSS in this paper. Although DFT-CSS algorithm
could quite effectively reduce the sampling requirement,
high computation complexity replaced in signal processing is
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a serious disadvantage. Furthermore, the CRNs require the
sensing time to be short to ensure network responsiveness
and efficiency. In this paper, our main contribution is to
reconstruct a wideband spectrum signal from sub-Nyquist-
rate compressive samples by DCT-CSS. The novel algorithm
provides more accurate recovery and lower computation
complexity.

On the one hand, as another way of time-frequency
transfer, the concentration capability of DCT is superior
to that of DFT. In this regard, [10] has shown that the
DCT is close to optimal in terms of energy-compaction
capabilities. Our simulation results indicate that for the
same wideband communication signal, representation of
signal in DCT domain is much sparser than that in DFT
domain. Higher sparsity not only means lower computation
complexity and shorter processing time but also means lower
minimal sampling rate (compression rate) and much more
accurate reconstruction. On the other hand, the DCT uses
only real arithmetic, as opposed to the complex-valued DFT.
This further reduces the signal-processing complexity/power
consumption, especially for real-valued signal samples. As a
result of the aforementioned properties, same reconstruction
accuracy at a lower implementation complexity and compres-
sion rate can be achieved by DCT-CSS algorithm.

The remainder of this paper is organized as follows.
In Section 2, the system model is given. Then we intro-
duce comparisons between DCT-CSS and DFT-CSS schemes
through coefficients analysis in Section 3. Section 4 proposes
the DCT-CSS scheme. Simulation results are presented in
Section 5. Finally, we draw our conclusions in Section 6.

2. System Model

2.1. Signal Model. We assume that 𝑟(𝑡) is a band-limited
signal spanning in a wide spectrum, as shown in Figure 1.

(1) The wideband is divided into 𝑚 subbands
{𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑚
}, and the frequency boundaries

are known to the CR.The bandwidth of the spectrum
bands occupied by each PU is equally 𝐵.

(2) The signal power spectrum density (PSD) over each
spectrum subband 𝐵

𝑖
is smooth; however, the PSD of

PUs over two neighboring subbands is independent.
(3) The number of active PU subbands 𝑄 and their

locations are unknown to the CR nodes.
(4) During the spectrum sensing period, all CRs keep

quiet as enforced by protocols, for example, at the
media access control layer.

(5) In a sensing period, the locations and the number of
active subbands 𝑄 keep unchanged but may vary for
different sensing period.

2.2. Compressed Sampling. In practice, a signal can always be
sparsely or near sparsely represented on a transform domain.
For a time window as 𝑡 ∈ [0, 𝜏], 𝑟(𝑡) have discrete form as an
𝑁-length signal 𝑟

𝑡
, which can easily be described as

𝑟
𝑡
= 𝐹𝑟
𝑓
, (1)
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Figure 1: Wideband signal model.

where the 𝑁 × 1 vector 𝑟
𝑓

is the 𝐾-sparse frequency
representation of 𝑟

𝑡
and𝐾 is the number of nonzero elements

of 𝑟
𝑓
(𝐾 ≪ 𝑁). 𝐹 is an 𝑁 × 𝑁 DFT matrix, and 𝜓

𝑖
(𝑖 =

1, 2, . . . 𝑁) is the similarly sampled basis function.
For Nyquist theorem 𝑁 samples are necessary to exactly

reconstruct the power spectrum density. As mentioned
above, the CS is able to accurately reconstruct signals only
with a small portion of samples with size of𝑀 (𝑀 ≪ 𝑁)

𝑦 = Φ𝑟
𝑡 (2)

in which 𝑦 denotes an 𝑀-length measurement vector, and
Φ is the measurement matrix. The spectrum of 𝑟(𝑡) can
accurately be reconstructed when themeasurement y is avail-
able. We aim at developing a spectrum sensing scheme with
fewer nonadaptive measurements. Here, we use a modulated
wideband converter (MWC) [11], which aims at sampling
wideband sparse signal at a rate lower than that of Nyquist.

2.3. Reconstruction. Substituting (1) into (2), we can obtain

𝑦 = Φ𝐹
−1
𝑟
𝑓
. (3)

The reconstruction of 𝑟
𝑡
could be resorted to the recon-

struction of 𝑟
𝑓

𝑟
𝑓
= argmin

𝑟𝑓

󵄩
󵄩
󵄩
󵄩
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󵄩
󵄩
󵄩
󵄩
󵄩0

s.t. (Φ𝐹
−1
) 𝑟
𝑓
= 𝑦. (4)

It can be seen that (4) is a nonconvex problem. Equation
(4) has a unique solution when the following holds:

𝑟
𝑓
= argmin

𝑟𝑓

󵄩
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󵄩
󵄩
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s.t. (Φ𝐹
−1
) 𝑟
𝑓
= 𝑦. (5)

Actually, (5) is a second-order cone program. On the
other hand, some variants of LASSO algorithm have been
developed to deal with the noisy signals by minimizing the
usual sum of squared errors:

𝑟
𝑓
= argmin

𝑟𝑓
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s.t.󵄩󵄩󵄩󵄩
󵄩
(Φ𝐹
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) 𝑟
𝑓
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩2

< 𝜀, (6)
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where bounds the noise in signals. A number of convex
optimization software packages have been developed to solve
the LASSO problem, for example, [12].

In our work, we use (6) to solve the reconstruction
problem.

3. Comparison between DCT and DFT

For a normal signal, it is not difficult to find a sparse
representation in a certain space, where 𝜀 bounds the noise in
signals. Actually, signals involved in CRNs have been proved
sparse in the frequency domain. So, it is possible to find the
unoccupied spectrum in CRNs with compressed spectrum
sensing with a rate lower than Nyquist.

For the consideration of better performance of energy
concentration, we present an algorithm of DCT-based com-
pressed spectrum sensing for the wideband frequency sparse
signal.

The DCT sequence is represented by

𝑉 (𝑘) = 2

𝑁−1

∑

𝑛=0

𝑥 (𝑛) cos [ 𝜋
𝑁

(𝑛 +

1

2

) 𝑘] ,

𝑘 = 0, 1, . . . , 𝑁 − 1.

(7)

The DFT sequence is represented by

𝑋 (𝑘) =

𝑁−1

∑

𝑛=0

𝑥 (𝑛) 𝑒
−𝑗(2𝜋𝑛𝑘/𝑁)

=

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑘𝑛

𝑁
,

𝑘 = 0, 1, . . . , 𝑁 − 1,

(8)

where by definition𝑊
𝑘𝑛

𝑁
= 𝑒
−𝑗2𝜋/𝑁.

Let 𝑠(𝑛) be a 2𝑁 point even symmetry extension of
𝑥(𝑛)defined by

𝑠 (𝑛) = {

𝑥 (𝑛) , 0 ≤ 𝑛 ≤ 𝑁 − 1

𝑥 (2𝑁 − 𝑛 − 1) , 𝑁 ≤ 𝑛 ≤ 2𝑁 − 1.

(9)

The 2𝑁-point DFT of 𝑠(𝑛) is given by

𝑆 (𝑘) =

2𝑁−1

∑

𝑛=0

𝑠 (𝑛)𝑊
𝑘𝑛

2𝑁
, 𝑘 = 0, 1, . . . , 2𝑁 − 1. (10)

Substituting (9) in (10) yields

𝑆 (𝑘) =

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑘𝑛

2𝑁
+

2𝑁−1

∑

𝑛=𝑁

𝑥 (2𝑁 − 𝑛 − 1)𝑊
𝑘𝑛

2𝑁
. (11)

If we change the second index of summation using 𝑛 =

2𝑁 − 1 −𝑚, we recall that𝑊2𝑚𝑁
2𝑁

= 1 for integer𝑚, we factor
out𝑊−𝑘/2

2𝑁
, and we obtain

𝑆 (𝑘) = 𝑊
−𝑘/2

2𝑁
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] ,

𝑘 = 0, 1, . . . , 2𝑁 − 1.
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Figure 2: Comparison of coefficients of DCT and DFT.

The last expression may be written as

𝑆 (𝑘) = 𝑊
−𝑘/2

2𝑁
2

𝑁−1

∑

𝑛=0

𝑥 (𝑛) cos [ 𝜋
𝑁

(𝑛 +

1

2

) 𝑘] ,

𝑘 = 0, 1, . . . , 2𝑁 − 1.

(13)

Or equivalently

𝑆 (𝑘) = 𝑊
−𝑘/2

2𝑁
2Re[𝑊𝑘/2

2𝑁

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑘𝑛

2𝑁
] ,

𝑘 = 0, 1, . . . , 2𝑁 − 1.

(14)

Substituting (7) in (13) yields,

𝑆 (𝑘) = 𝑊
−𝑘/2

2𝑁
𝑉 (𝑘) , 𝑘 = 0, 1, . . . , 𝑁 − 1

or 𝑉 (𝑘) = 𝑊
𝑘/2

2𝑁
𝑆 (𝑘) , 𝑘 = 0, 1, . . . , 𝑁 − 1,

(15)

𝑉 (𝑘) = 2Re[𝑊𝑘/2
2𝑁

𝑁−1

∑

𝑛=0

𝑥 (𝑛)𝑊
𝑘𝑛

2𝑁
] , 𝑘 = 0, 1, . . . , 𝑁 − 1.

(16)

Re[◻] implies the real part of the term enclosed.
DCT of 𝑥(𝑛) can be computed by taking the 2𝑁-point

DFT of 𝑠(𝑛), as in (9), and multiplying the result by 𝑊𝑘/2
2𝑁

, as
in (15). Another approach is to take the 2𝑁-point DFT of 𝑥(𝑛)
with𝑁 zeros appended to it, multiply the result by𝑊𝑘/2

2𝑁
, and

then take twice the real part. We note that 𝑉(𝑘) is real and
𝑆(𝑘) is complex.

As shown in Figure 2, we can easily find that the sparsity
of DCT is half of the DFT.

As shown in Figure 3, we also compare the sparsity of our
wideband signal between DCT and DFT. The wideband is
only occupied by four channels, each of which is modulated
by BPSK mode. From Figure 3, we apparently prove the
validity of the conclusion we obtained above.

As discussed above, DCT has more superiorities than
DFT in three aspects.

(1) Transform energy compaction capability means the
capability of the transform to redistribute signal
energy into small number of transform coefficients.
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The DCT basis has better spectral compaction and
energy concentration properties than DFT. That is,
signal representation is much sparser in DCT domain
than in DFT. This, in turn, leads to improved perfor-
mance with reconstruction accuracy and can result in
released computation complexity.

(2) On the other hand, the DCT uses only real arith-
metic, as opposed to the complex-valued DFT. Times
of multiplication needed in real arithmetic account
at most half of complex arithmetic. This reduces
the signal-processing complexity/power consump-
tion, especially for real-valued signal samples.

(3) Both of the two points mentioned above reduced
computation complexity, which in other wordsmeans
less processing time. This is an important parame-
ter in scenarios with strict time limitation, such as
dynamic spectrum access.

4. DCT Based Compressed Spectrum Sensing

As discussed in the preceding section, the signal response
is sparse in DCT domain, so the DCT-CSS problem can
be solved with a three-step scheme: (1) use compressed
measurements y to estimate the sparse sequence 𝑟

𝑑
, (2)

reconstruct signal 𝑟
𝑡
according to 𝑟

𝑑
, which can be done by

an inverse DCT transfer, and (3) get frequency response 𝑟
𝑓

from 𝑟
𝑡
via a fast Fourier transform (FFT).

The mathematical description of the DCT-CSS scheme is
similar to the DFT-CSS scheme with Fourier matrices being
replaced by the DCT matrix:

𝑦 = Φ𝐷
−1
𝑟
𝑑
, (17)

where 𝑟
𝑑
= 𝐷𝑟
𝑡
is the representation of 𝑟

𝑡
in DCT domain.
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Similar to (6), we can get the estimate response 𝑟
𝑑
from

𝑟
𝑑
= argmin

𝑟𝑑
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󵄩
𝑟
𝑑
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󵄩
(Φ𝐹
−1
) 𝑟
𝑑
− 𝑦

󵄩
󵄩
󵄩
󵄩
󵄩2

< 𝜀. (18)

We can easily get 𝑟
𝑡
from the inverse transform 𝑟

𝑡
= 𝐷
−1
𝑟
𝑑

and finally get frequency estimate

𝑟
𝑓
= FFT (𝑟

𝑡
) . (19)

5. Simulation

In this section, we evaluate the performance of the proposed
DCT-CSS scheme. We consider that a wideband spectrum
occupies 512MHz band, which is divided into 16 subbands.
We use 8MHz BPSK modulated signal to be active signal in
each band.The received signal is corrupted by additive white
Gaussian noise (AWGN). On average, four subbands are
occupied simultaneously, while the locations and amplitudes
change for several time bursts.

We compare the normalized MSE of the estimated spec-
trum, which is defined as

MSE = 𝐸

{

{

{

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
𝑓
− 𝑟
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

2

2

}

}

}

. (20)

From Figure 4, we can see that DCT-CSS outperforms
DFT-CSS in terms ofMSE of recovery as the compression rate
varies from 0.05 to 1. As compression rate increases, recovery
accuracy improves. On the other hand, different SNR leads
to different recovery accuracy. Higher SNR means higher
accuracy.

Figure 5 compares probability of detection as the com-
pression rate varying from 0.02 to 0.3. As compression rate
increases above 0.25, probability of detection of both the two
schemes reaches 1 and goes to balance. However, during the
region 0.02 to 0.22, DCT-CSS performs always better than
DFT-CSS.

As shown in Figure 6, we compare the computation
complexity of the two schemes. Processing time increases
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as the compression rate varies from 0.02 to 1. However, the
processing time of DCT-CSS is approximately half of the
DFT-CSS.

6. Conclusion

In this paper, we have proposed a novel DCT-CSS scheme
for wideband spectrum sensing. Analysis has verified that
wideband spectrum signal is sparser in DCT domain than
in DFT. Simulation results have shown that DCT-CSS can
not only improve the reconstruction accuracy and probability
of detection but also save processing time. Our future
work will focus on DCT-CSS scheme implemented by other
reconstruction algorithms.
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