
Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011, 17–25, DOI: 10.2478/v10198-011-0014-y 17

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

TRANSFORMATION OF ONTOLOGICAL REPRESENTED WEB SERVICE
COMPOSITION PROBLEM INTO A PLANNING ONE

Zoltán ĎURČÍK, Ján PARALIČ
Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel.: +421 55 602 4128,
e-mail: zoltan.durcik@tuke.sk, jan.paralic@tuke.sk

ABSTRACT
This article deals with automated web service composition (AWSC). We present an approach utilizing a combination of artificial

intelligence planning methods with knowledge-based approaches to AWSC. For primary composition problem description we used
OWL and OWL-S ontologies, which are than in next step translated into a planning problem. This planning problem is represented
in PDDL language and may be solved in arbitrary PDDL planner. For the translation process we introduced several original
algorithms, which are implemented as components of a prototype system for AWSC.

Keywords: web service, composition, planner, planning, transformation, ontology, OWL, OWL-S, PDDL

1. INTRODUCTION

Nowadays the service oriented approach to design and
implementation of information systems is very hot area of
research and development. One of the most interesting and
discussed issues in this area is a problem of web service
composition, especially automated web service
composition [3]. Web services composition deals with
workflow creation and instantiation. The workflows are
composed from available web services with some
dataflow. If it is not possible to fulfill the user’s request by
one web service, there is a possibility to accomplish this
request by web service composition.

A very simple language translation problem may be
presented as the example of AWSC. Let us assume that
there exist several web services, from which each is able
to translate a word from one language into another one
(e.g. from English to Slovak, from English to German
etc.). Now let us assume, that it is needed to translate
word from language X to language Y, but there is not a
web service available for this direct translation. But there
are two web services available, from which first translates
a word from language X to language Z, and second
translates a word from language Z to language Y. From
this can be seen, that with composition of these two web
services (i.e. output from first service will be fed as input
into the second service) we may translate a word from
language X to language Y (accomplish the original users’
request).

Web services (WS) are distributed programs located
on a computer network (most frequently on internet) and
using standard protocols for communication (most
frequently HTTP and SOAP). The concept of WS was
introduced by major IT Corporations as Microsoft, IBM
and Sun and was proposed as alternative to object-
oriented distributed standards as CORBA and Java RMI.

There are two main properties of WS: they must be
self-descriptive and they must be interoperable together
regardless to the environment (i.e. also the program
language), in which they were created. There are several
standards and technologies, which are related with WS
and are important in terms of the AWSC problem:

• WSDL (Web Services Description Language) - is
the most used language for WS description. It
makes it possible to describe the offer of available
operations in a WS, parameters of these operations,
as well as the way of communication with WS.

• SOAP (Simple Object Access Protocol) - is the
XML based protocol. It serves for interaction and
information exchange over the network interface
by using XML messages. It is platform and
programming language independent.

• OWL (Ontology Web Language) [1] - is a
language designed for ontology description on the
internet. It belongs to languages, which serve for
knowledge representation, and it is approved by
W3C consortium. In the computer science ontology
represents a formal knowledge representation by a
set of concepts and relationships among these
concepts in some domain. OWL is semantic
language for publishing and sharing ontologies.

• OWL-S (Semantic Markup for Web Services) [2] -
may be characterized as ontologically descriptive
language for WS. The base WS descriptive
languages (as e.g. WSDL) are in terms of semantic
web insufficient (mainly for automation of their
activity on the internet). But with incoming
ontologies it was shown, that there is a possibility
to describe WS by ontologies, and connect these
descriptions to existing ontologies. These
descriptive ontologies for WS were called OWL-S
(for reason that they are OWL ontologies and they
are used for service description). Main motivation
for creation of OWL-S were the following tasks:
automated WS discovery, automated WS
invocation and automated WS composition.

Automated web service composition is a special case

of web service composition [3], where the process of
composition creation is automatic. There exist various
methods for AWSC (e.g. situation calculus [6], Petri nets,
artificial intelligence methods [8] etc.).

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357400967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

18 Transformation of Ontological Represented Web Service Composition Problem into a Planning One

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

2. AUTOMATED COMPOSITION OF WEB
SERVICES

The process of automated web services composition
may be divided into several parts. In a simple general
system architecture for an AWSC system the following
main parts can be identified:

• user – a consumer of the system, who provides
requests to the system,

• translator – translates users’ requests in a form
suitable for processing by the process generator,

• process generator – it solves user’s request, i.e.
creates a workflow composed from abstract WS,

• evaluator – it selects the best solution if there are
available multiple possibilities,

• executor – it executes selected workflow via
composition of concrete WS and provides the
results to the user.

The composition problem is in AWSC system

represented by two specifications:
• external specification and
• internal specification.

External specification is used for the primary

composition problem definition. There are usually used
semantic web technologies. External specification then
contains user’s request and WS specifications.

Internal specification defines composition problem in
relation with selected process generator. One of the most
suitable choices for AWSC is use of artificial intelligence
planning methods for solving the composition problem. In
such a case the internal specification is represented as
a planning problem. Planning problem is defined by some
formal planning language.

3. PROPOSAL OF AN AWSC SYSTEM

Our proposal for an AWSC system architecture is
presented on the Fig. 1. This proposal is a specification of
the general AWSC system architecture, which can be
found in [3].

Translator

AI Planner

Execution
engine

WS Storage

Knowledge
data base

External
specification

generator

User
Semantically
knowledge

composition problem
definition

Composition problem
defined by PDDL

planning task

PDDL PlanSemantically
described plan

Result

WS
specification

WS
specification

Ontologies
definitions

Request

Fig. 1 Proposal for an AWSC system architecture

AI (Artificial Intelligence) Planner has been chosen as
a process generator. This means that our internal
specification is represented as a planning problem. In
general the planning problem is represented as a quintuple
<S,S0,G,A,Γ > [8], where:

• S represents a set of all possible states in given
model of the world,

• S0 is a subset of S, and represents the initial state,
• G is a subset of S, and represents the goal state,
• A is a set of all available actions. Each of them

changes the world state by passing world state
from one state to another,

• relation Γ is a subset of S x A x S and defines
preconditions and effects for each action.

In the system we use knowledge approaches. Every

web services composition is performed in some domain
(e.g. language translation domain, travel domain, crisis
management etc.). It is important to have this domain
described in a formal way. In our system we assume that
this domain is described by means of OWL ontologies and
these ontologies will be further referred as domain
ontologies. We are able to create some state of the world
in given domain by creating OWL individuals in the
domain ontology. Therefore by this domain ontology we
can create initial and goal state of a composition problem.

For WS description we will use ontology as well. This
ontology for WS is formalised in OWL-S and represents
WS operations as processes. Processes from OWL-S WS
description then will represent actions in planning task. In
OWL-S are processes described by IOPE – Input, Output,
Preconditions and Effects. Therefore OWL-S may be used
also for representation Γ of PDDL actions.

Domain, initial and goal OWL ontologies together
with OWL-S web services description create external
specification, and in the system are called as semantic
knowledge composition problem definition. This
definition must be translated into a planning problem by
a translator. The process of translation from external
specification to an internal one is the main topic of our
work presented in this article.

After creation of a planning problem we are able to
solve it using suitable external planner. In our system we
can use available AI planners [8] like GraphPlan1 or FF –
Fast Forward planner2 [5]. Besides these there is
possibility to use arbitrary AI planner. The only condition
is to use planner, which is able to work with PDDL
language [10]. Solved problem is afterwards represented
by a plan, which consists of available PDDL actions. Now
there is the necessity for mapping these PDDL actions into
related WS described by OWL-S. This task is realized in
translator again. Finally, we can execute obtained WS and
provide results to the user. This process of transformation
PDDL plans back into semantic representation and
execution of the translated PDDL plan is not discussed in
this work. See [13] for more details.

3.1. Creation of PDDL description of a planning
problem from semantically described WS
composition problem

As it has been mentioned above, there exist two
problem specifications in AWSC system: external and
internal specification. In our case it holds:

1 GraphPlan – http://sourceforge.net/projects/pdd4j/
2 FF - http://personal.cis.strath.ac.uk/~ac/JavaFF/

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011 19

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

• external specification is represented by means of
available domain ontology, initial and state
ontologies created from domain ontology, together
with web services described in OWL-S,

• internal specification is represented as PDDL
planning problem.

PDDL (Planning Domain Definition Language)

language [10] arose is a result of standardisation efforts in
the planning domain. It has been proposed and further
developed for international planning competition
requirements ICP and this language is very popular in the
planning community.

The process of translation between the external and
internal problem specification in our system is showed on
Fig. 2.

External specification –
semantically knowledge

approach Internal specification –
planning task

Initial state
ontology

Goal state
ontology

Domain
ontology

OWL-S
descriptions

PDDL planning
domain

PDDL planning
problem

Translator

Fig. 2 Planning task creation problem

The OWL ontology structure may be divided into three

parts:
• namespace definition,
• ontology header,
• ontology elements.

For every element, which is used in the ontology, it

has to be specified, from where it comes from. This is
either from some other already defined ontology,
referencing it via the namespace, or it can be defined in
the last part of the ontology. In the header of the ontology
additional information can be provided, like e.g. its
creator, date of creation, ontology title, ontology
comments etc. After namespaces and ontology header
definitions original ontology elements are defined. Main
ontology elements are:

• OWL classes,
• OWL properties (object properties, data

properties),
• OWL individuals (instances).

OWL-S represents ontological description for WS.

This description consists of three parts:
• service profile – it describes what a particular web

service provides for the consumers,
• service model – describes how the web service

works,
• service grounding – provides necessary details

about transport protocol and how one can interact
with WS.

For the AWSC purpose the most important is service
model, which describes WS as processes with their inputs,
outputs, preconditions and effects. There are several
possibilities how to define preconditions and effects in
OWL-S. In our proposal we are using SWRL (Semantic
Web Rule Language) conditions’ specification as OWL-S
preconditions and effects.

PDDL planning task consists from planning domain
and planning problem definition (see Fig. 2). These may
be further divided into smaller parts. Each from these
parts will be presented in the next subsection. PDDL
planning domain and problem structures are often defined
by EBNF (Extended Backus-Naur Form). Complete
definition of PDDL planning domain and problem can be
found e.g. in [10].

3.2. PDDL planning domain creation

EBNF form of PDDL planning domain may be
described in the following simplified form:

<domain> ::= (define (domain <name>)

 [<require-def>]
 [<types-def>]:typing
 [predicates-def>]
 <action-def>*)

For creation of PDDL planning domain we will use
OWL domain ontology and OWL-S WS description. Each
part of this process is described in particular subsection
below, together with proposed transformation algorithms
in pseudo-code.

3.2.1. Domain name

Domain name is represented as PDDL name. PDDL
name is a string of characters beginning with a letter and
next containing only letters, or digits, or hyphens (-), or
underscores (_). Domain name can be created by using
domain ontology, and may be located in header of this
ontology (e.g. as title of ontology). This is the reason why
the string obtained from ontology header should contain
only permitted characters. In such a case a simple
algorithm for PDDL domain name creation (Alg. 1)
satisfies our purpose.

FUNCTION owl2pddlDomainName(O:OWLOntology):PDDLName

VAR domainName : PDDLName;

BEGIN

domainName := getOntologyTitle(O);

owl2pddlDomainName := domainName;

END;

PDDL domain name algorithm

Alg. 1 Algorithm for PDDL domain name creation

3.2.2. Requirements

This is an optional element of PDDL domain structure.
In case that this element is not included, there is an
assumed only one requirement, namely STRIPS [4]
(:strips). In our case we create PDDL domain from
OWL ontologies and therefore we need also other
requirements, e.g. the possibility of type definition

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

20 Transformation of Ontological Represented Web Service Composition Problem into a Planning One

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

(:typing). There is an expectation, that requirements we
may define in ontology header as additional ontology
information. Currently the PDDL domain requirements
are created manually in our AWSC system.

3.2.3. Types

PDDL types may be created from OWL classes and
from a relationship Class\SuperClass in OWL ontologies.
PDDL types are created for each OWL class definition.
In case when a particular OWL class has defined
a superior class (SuperClass), also the corresponding
PDDL type has superior type. If superior class does not
exist, superior type for corresponding PDDL type is an
object.

PDDL types are represented by a special list called
typed list. This list can assign types to its elements. But
this possibility is available only in case if there is
requirements flag for typing (see antecedent section).
If this flags is not presented, the typed list is a normal list
of elements.

Our algorithm for PDDL type created based on OWL
domain ontology can be seen on Alg. 2.

FUNCTION owl2pddlTypes(O : Owl Ontology):PDDL Typed List
VAR
TL : PDDL Typed List;
CS : Set Of Ordered Pair – OWL Class\SuperClass;
C : Set Of String – OWL Class;
S : Set All Different Types – PDDL Types;

BEGIN
C := getAllClassesFromOntology(O);
FOR c TO C DO BEGIN
VAR
pom : Pair Represent Class\SuperClass

pom.Class := c;
pom.SuperClass := getSuperClassForOWLClass(O,c);
IF (SuperClass is NULL) THEN BEGIN
SuperClass:=”Object”;

END;
IF (NOT(S Don’t contain Pom.SuperClass)) THEN BEGIN
add pom.SuperClass into S;

END;
add pom Into CS;

END;
FOR s TO S DO BEGIN
VAR
type : String;
X : Set All Classes With SuperClass=s;

type := s;
FOR cs TO CS DO BEGIN
IF (cs.SuperClass = s) THEN BEGIN
add cs.Class into X;

END;
END;
add X with type into TL;

END;
owl2pddlTypes : TL;

END;

PDDL domain types algorithm

Alg. 2 Algorithm for identification of PDDL domain types

3.2.4. Predicates

A predicate may represent property or relationship
between entities. Predicates are in PDDL domain
structures represented as atomic formulas skeletons. Each
skeleton represents one predicate and consists from
predicate name and from a set of parameters. Predicates
may be considered as patterns, by which it is possible to
create facts. These facts are created by substitution of
predicate variables by concrete objects.

Predicates will be created from OWL domain
ontology. For creation of PDDL predicates we use object
properties, data properties and OWL classes’ definitions.

Our algorithm for definition of PDDL predicates based
on OWL domain ontology is presented on Alg. 3.

3.2.5. Actions

Each PDDL action consists of an action name (called
also action functor), action parameters and action body.
Action body further contains preconditions and effects for
respective PDDL action.

FUNCTION owl2pddlPredicates(O : OWL Ontology)
:PDDL Predicates

VAR
V : Set OWL Object and Data Properties;
P : Set of OWL Classes from Properties Domains;
C : Set of All OWL Classes;
Preds : PDDL Predicates;

BEGIN
V:=getAllOWLOntologyProperties(O);

FOR v TO V DO BEGIN
VAR
d : Domain of Property v;

IF (Set P don’t contain d) THEN BEGIN
add d into P;

END;
END;
FOR p TO P DO BEGIN
VAR
Pred : PDDL Predicate;

Pred.PredicateName := p;
FOR v TO V DO BEGIN
IF (The domain of v is p) DO BEGIN
ParameterName := v;
ParameterType := range of v;
add ParameterName with ParameterType into
Pred.Parameters;

END;
END;
ordering all parameters from pred.Parameters by types;
add Pred into Preds;

END;
FOR c TO (C exclude P) DO BEGIN
VAR
Pred : PDDL Predicate;
Pred.PredicateName := c;
ParameterName := c;
ParameterType := c;
add ParameterName with ParameterType into

Pred.Parameters;
add Pred into Preds;

END;
owl2pddlTypes : Preds;

END;

PDDL domain predicates algorithm

Alg. 3 Algorithm for creation of PDDL domain predicates

For creation of PDDL actions we use OWL-S web
services descriptions. Each OWL-S description consists of
three main parts: profile, process and grouding. In terms
of AWSC the process model is important. Process model
represents operations as particular processes. An OWL-S
process is described by its IOPE (inputs, outputs,
preconditions and effects). From this IOPE we create
PDDL action parameters and action body. For PDDL
action name we use the name of related OWL-S process.

There exist three types of processes in OWL-S
description:

• Atomic process is simplest OWL-S process. From
the user’s point of view this process represents one
step and there is a direct web service invocation for
its execution. This WS is described by OWL-S.

• Simple process is not directly executable. Likewise
as atomic processes are simple processes
considered as one step processes too. Simple

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011 21

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

process serves for abstract description of atomic
and composite processes.

• Composite process is a process composed from
subprocesses. A decomposition divides a
composite process into simpler parts, which are
performed by given constructors (sequence, split,
split-join, choice, if-then-else, iterate, repeat until
and repeat while). A composite process execution
inheres in execution its sub-processes.

For every type of OWL-S process we must provide

particular way for transformation of this process into
PDDL action(s). Our algorithm for PDDL actions creation
is shown on Alg. 4, Alg. 5, Alg. 6 and [12].

FUNCTION owls2pddlActions(sO : OWL-S Ontologies)
: PDDL actions

VAR
Processes : Set of OWL-S Processes;
Actions: Set of PDDL actions;

BEGIN
FOR o TO sO DO BEGIN
VAR

process : OWL-S Process;
process := getProcessFromOWLSOntology(o);
add process into Processes;

END;
FOR p TO Processes DO BEGIN
VAR

a : PDDL action;
IF (p is OWL-S atomic process) THEN BEGIN

a := owls2pddlActionAtomicProcess(p);
END;
IF (p is OWL-S composite process) THEN BEGIN

a := owls2pddlActionCompositeProcess(p);
END;
IF (p is simple process) THEN BEGIN

a := owls2pddlActionSimpleProcess(p);
END;
add a into Actions;

END;
owls2pddlActions : Actions;

END;

PDDL domain actions algorithm

Alg. 4 Algorithm for PDDL domain actions definition

Because of complexity of algorithms for definition of
simple and composite processes and the article size limit
we describe here only the way of creation of PDDL
actions from OWL-S atomic processes. The others are
described in [12].

FUNCTION owls2pddlActionAtomicProcess(P :
OWL-S Atomic Process) : PDDL Action

VAR
a : PDDL Action;

BEGIN
IF (P is atomic process with only outputs) DO BEGIN
a := owls2pddlActionAtomicProcessOutputs(P);

END;
IF (P is atomic process with only effect) DO BEGIN
a := owls2pddlActionAtomicProcessEffects(P);

END;
owls2pddlActionAtomicProcess := a;

END;

PDDL domain actions algorithm – atomic process

Alg. 5 Algorithm for PDDL actions derived from OWL-S
atomic processes

In case of atomic process translation we assume that
each atomic process contains only outputs or effects, not
both [7], [11]. Therefore the algorithm presented on Alg. 5
includes calling of one from two available functions with
regard to type of atomic process.

The function for creation of PDDL actions from
atomic processes, which contains only effects, can be seen
on Alg. 6. This is the simple PDDL action creation from
OWL-S process. For other PDDL actions creation
algorithms please refer to [12].

For PDDL action name we use the name of particular
OWL-S process. Inputs of this process are translated into
PDDL parameters. Each of these inputs may have type
and therefore they are in PDDL actions represented by
typed list (see subsection 3.2.3).

Each PDDL action has action body, which presents
preconditions and effects. We are able to create these parts
by using OWL-S process preconditions and effects.

FUNCTION owls2pddlAction_AtomicProcessEffects(P :
OWL-S Atomic Process): PDDL Action

VAR
a : PDDL Action;
Preds : PDDL Domain Predicates;
Prec : Preconditions;

BEGIN
a.ActionName := getNameOfProcess(P);
FOR i TO All P Inputs DO BEGIN
add i with corresponding type into a.Parameters;

END;
ordering all parameters from a.Parameters by types;

add to a.ActionBody.Preconditions :=
swrl2pddlPreconditions(P, Preds);

add to a.ActionBody.Effects :=
swrl2pddlEffects(P, Preds);

owls2pddlAction_AtomicProcessEffects := a;
END;

PDDL domain actions algorithm – atomic process

Alg. 6 Algorithm for PDDL actions derived from OWL-S
processes with effects only

The condition in OWL-S may be defined in several
ways (e.g. by using SWRL – Semantic Web Rule
Language, KIF - Knowledge Interchange Format etc.). In
presented work we use SWRL conditions for definition of
preconditions and effects in OWL-S process model.

Our algorithms of creation of PDDL preconditions and
effects from SWRL conditions are presented on Alg. 7
and Alg. 8. These two functions are utilized by function
presented above on Alg. 6.

FUNCTION swrl2pddlPreconditions(P : OWL-S Atomic Process,
Pr : PDDL Domain Predicates) : PDDL GD

VAR:
Preconditions : PDDL GD (Goal Description);

BEGIN
FOR p TO All Process P Preconditions DO BEGIN
add to Preconditions := swrl2atomicFormula(p, Pr);

END;
swrl2pddlPreconditions : Preconditions;

END;

PDDL domain actions algorithm – SWRL Precondition

Alg. 7 Algorithm for creation of PDDL preconditions

FUNCTION swrl2pddlEffects(P : OWL-S Atomic Process,
Pr : PDDL Domain Predicates) : PDDL Effect

VAR:
Effects : PDDL Effect;

BEGIN
FOR e TO All Process P Effects DO BEGIN

add to Effects := swrl2atomicFormula(e, Pr);
END;
swrl2pddlEffects : Effects;

END;

PDDL domain actions algorithm – SWRL Effect

Alg. 8 Algorithm for creation of PDDL effects

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

22 Transformation of Ontological Represented Web Service Composition Problem into a Planning One

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Both Alg. 7 and Alg. 8 utilize function presented on
Alg. 9. This function is the basic function for
transformation of a SWRL condition into a PDDL action
precondition and/or effect. For this we need to create
PDDL atomic formulas. As it has been mentioned above
in section about predicates (section 3.2.4) for creation of
atomic formulas we use atomic formulas’ skeletons from
PDDL predicates. Therefore PDDL predicates must be
well-known functions.

FUNCTION swrl2atomicFormula (S :
SWRL Condition, P : PDDL Predicates):PDDL Atomic Formula

VAR:
CA : Set of Atoms Represented Classes;
PA : Set of Atoms Represented Properties;
BA : Set of BuildIn Atoms (Presently only not);
AF : PDDL Atomic Formula;

BEGIN
FOR a TO All Atoms from S DO BEGIN
IF (a is atom representing Class) DO BEGIN
add a into CA;

END;
IF (a is atom representing Properties) DO BEGIN
add a into PA;

END;
IF (a is buildin atom for not) DO BEGIN
add a into BA;

END;
END;
IF (PA is empty) DO BEGIN
mapping OWL Class from CA into predicate from P;
check the existence OWL Class in BA (if is it
negative or not)
create atomic formula AF;

ELSE BEGIN
create from atoms from PA a CA atomic formula and
mapping this formula to predicate from P;
check the OWL Class representing domain property for
its existence in BA;
add all a
create atomic formula AF;

END;
swrl2atomicFormula : AF;

END;

PDDL domain actions algorithm – SWRL Condition

Alg. 9 Algorithm for translation of SWRL conditions

3.3. PDDL planning problem creation

The simplified planning problem structure represented
by EBFN form is as follows:

<problem> ::= (define (problem <name>)
 (:domain <name>)
 [<require-def>]

[<object declaration>]
[<init>]

 <goal>+)

For creation of PDDL planning problem we use initial

and goal OWL ontologies. Each part of this process is
described in particular subsection with proposed
algorithms in pseudocode.

3.3.1. Problem and problem-domain name

Problem name is the name of the PDDL planning
problem. It is a string for which holds the same conditions
as for PDDL domain name (see section 3.2.1). This name
may be created e.g. from the initial ontology, where it may
be located in the ontology header and we use the same
approach as it was presented in Alg. 1.

 Problem-domain name refers to the corresponding
PDDL domain. Creation of this name from OWL ontology
is not so straightforward. When this name is defined in

ontology header as additional ontology information, we
can easily extract it. Otherwise we need to define it
manually.

3.3.2. Requirements

Requirements flag may be defined as requirements,
which are desired by PDDL planning problem. For these
PDDL problem requirements hold the same rules as for
PDDL domain requirements (see section 3.2.2).

3.3.3. Object declaration

PDDL objects represent objects, which may be
substituted on predicates’ parameters and thus create facts
in PDDL planning problem. These objects will be
retrieved from initial OWL ontology, namely from OWL
individuals. The algorithm for PDDL objects creation is
presented on Alg. 10. In this algorithm we need only
OWL individuals, which are located in range of some
OWL properties. OWL individuals located only in domain
of some properties are for PDDL object creation
uninteresting.

FUNCTION owl2pddlObjects(O : OWL Ontology) : PDDL Objects
VAR

OP : Set of Concrete Object Properties from O;
DP : Set of Concrete Data Properties from O;
Objects : Set of PDDL Objects;

BEGIN
FOR p TO OP DO BEGIN
VAR

i : OWL Class Individual;
i := range value of property p;
IF (Objects don’t contain i) THEN BEGIN

add i into Objects together with PDDL type
represented by corresponding OWL Class for i;

END;
END;
FOR v TO DP DO BEGIN
VAR

i : XSD Datatype Value;
i := range value of property v;
IF (Objects don’t contain i) THEN BEGIN

add i into Objects together with PDDL type
represented by corresponding Datatype for I;

END;
END;
ordering Objects by types;
owl2pddlObjetcs : MO;

END;

PDDL problem objects algorithm

Alg. 10 Algorithm for creation of PDDL problem objects

3.3.4. Initial state

Initial state of PDDL problem is represented as a set of
PDDL literals. Each literal is either positive or negative
atomic formula. Atomic formula consists of predicate
name and from a list of objects. Therefore we need for
creation of an atomic formula a PDDL predicate, which is
represented by atomic formula skeleton. Predicate
parameters are replaced by concrete objects. By mapping
concrete object into PDDL predicate we create a fact,
which may represent the initial state.

For PDDL planning problem initial state we will use
initial OWL ontology, and this process is showed on
Alg. 11. At the beginning of this process we need to know
all relevant OWL properties (both object and data). For
every OWL individual we need to obtain all OWL
properties, where this individual occurs in the domain.
Afterwards we map this information to concrete predicate

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011 23

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

from PDDL predicates. If the OWL individual is not
located in any OWL property, we may map this OWL
individual directly on PDDL predicate.

3.3.5. Goal state

Likewise initial state also the goal state of PDDL
problem is represented as a set of PDDL literals. PDDL
goal is in the PDDL problem structure represented as
PDDL GD (Goal Description). Therefore there may exist
quantifiers in goal state descriptions (and, or, not, imply,
exists, forall).

FUNCTION owl2pddlInitState(O : OWL Ontology)
:PDDL Init State

VAR
OP : Set of Concrete Object Properties from O;
DP : Set of Concrete Data Properties from O;
IS : Set of Literals – Init State;
I : Set of Individuals;
I1 : Helping Set of Individuals;
PR : Set of Domain Predicates;

BEGIN
PR := owl2pddlPredicates(O);
FOR v TO OP DO BEGIN
VAR
i : OWL Class Individual;

i := value of property v domain;
IF (I don’t contain i) THEN BEGIN
add i into I;

END;
END;
FOR v TO DP DO BEGIN
VAR
i : OWL Class Individual;

i := value of property v domain;
IF (I don’t contain i) THEN BEGIN
add i into I;

END;
END;
FOR i TO I DO BEGIN
VAR
a : PDDL Atomic Formula;
l : PDDL Literal;

a.Predicate := PDDL type of i;
a.Parameters := {all properties where i is situated in
their domains};

mapping a to concrete PDDL predicate from PR;
l := a;
add l into IS;

END;
I1 is a set of Individuals, which are not located in any
property domain;

FOR i TO I1 DO BEGIN
mapping i to concrete PDDL predicate from PR;
l := a;
add l into IS;

END;
owl2pddlInitState : IS;

END;

PDDL problem init state algorithm

Alg. 11 Algorithm for creation of PDDL problem initial state

In current version of our AWSC system we consider
only two of these quantifiers, namely ‘and’ and ‘not’.
They may be several methods for PDDL problem goal
creation.

One of usable method is presented in our algorithm on
Alg. 12. In this method we consider existence of initial
and goal ontologies. Both from these two ontologies
contain information for creation of PDDL literals. The
literals obtained from initial ontology were used for
creation of initial state (see previous subsection 3.3.4).
Now we discover goal OWL ontology and find the new
literals regarding the initial OWL ontology. From this
literals we create the PDDL goal state.

FUNCTION owl2pddlGoalState(OInit , OGoal : OWL Ontology)
:PDDL Goal State

VAR
IS : Set of Literals – Initial State;
GS : Set of Literals – Goal State;
G : PDDL Goal State;
X : Helping Set of Literals;

BEGIN
IS := owl2pddlInitState(OInit);
GS := owl2pddlGoalState(OGoal);
X := Literals from GS, which are not situated in IS;

G := Conjunction of Literals from X;
owl2pddlGoalState := G;

END;

PDDL problem goal state algorithm

Alg. 12 PDDL goal state

3.4. PDDL planning task creation

Alg. 13 presents the whole process for creation of
a PDDL planning problem. In this program we are using
algorithms (functions), which were described in previous
sections.

PROGRAM PDDLPlanningTaskCreation
VAR
O : Domain OWL Ontology;
initO : Initial State Ontology;
goalO : Goal State Ontology;
owlS [Owls1, Owls2, ... , Owlsn] : Set of available
OWL-S Web Services Descriptions;

domain : PDDL Planning Domain;
problem : PDDL Planning Problem;

BEGIN
domain.Name := owl2pddlDomainName(O);
domain.Requirements := {:strips, :typing};
domain.Types := owl2pddlTypes(O);
domain.Predicates := owl2pddlPredicates(O);
FOR p TO owlS DO BEGIN
VAR
A : PDDL action;

A := owls2pddlActions(p);
add A into domain.Actions;

END;

problem.Name := owl2pddlProblemName(initO);
problem.DomainName := owl2pddlDomainName(O)
problem.Requirements := {:strips, :typing};;
problem.Objects := owl2pddlObjects(initO);
problem.Init := owl2pddlInitState(initO);
problem.Goal := owl2pddlGoalState(initO, goalO);

END;

PDDL planning task program

Alg. 13 Algorithm for PDDL planning task creation

3.4.1. Examples

(define
(domain travel)
(:requirements :strips :typing)
(:types road thing place at – object

person vehicle - thing)
(:predicates

(at ?has_place - place ?has_thing - thing)
(road ?has_place_to ?has_place_from - place)
(person ?person - person)
(vehicle ?vehicle - vehicle)
(thing ?thing - thing)
(place ?place - place)

)
(:action Driving

:parameters
(?Thing – string
?FromPlace ?ToPlace - place)

:precondition
(and (road ?FromPlace ?ToPlace)

(at ?FromPlace ?Thing))
:effect

(and (at ?ToPlace ?Thing)
(not (at ?FromPlace ?Thing)))

)
)

Fig. 3 PDDL domain example

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

24 Transformation of Ontological Represented Web Service Composition Problem into a Planning One

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

On Fig. 3 can be seen a simple example of a PDDL
planning domain. This example has been derived by
transformation of the semantic description for primary
composition problem definition in OWL and OWL-S.
This problem was next transformed into PDDL planning
problem (Fig. 4) using proposed algorithm (see Alg. 13).

(define
(problem pb1)
(:domain travel)
(:requirements :strips :typing)
(:objects a b c d - place mazda – vehicle

john - person)
(:init

(place a)
(place b)
(place c)
(place d)
(at b mazda)
(at a palo)
(road a b)
(road b a)
(road b c)
(road c b)
(vehicle mazda)
(road c d)
(road d c)
(person palo)

)
(:goal

(and (at d mazda)
(at d palo))

)
)

Fig. 4 PDDL problem example

4. RELATED WORK

Most of the systems and works, which deal with
(semi)automatic web service composition, make use of
existing automated planning systems. It is due to relatively
straightforward and suitable mapping between planning
problem and web service composition problem. In our
work we introduced a possibility of mapping semantically
represented web service composition problem into
a planning problem represented in the PDDL language.

Table 1 Comparison of existing systems (AC = automated

composition, SAC = semi AC)

System WS
standards

Internal
problem

represent.

System
type

Dynamic
planning

WS
prolog

OWL-S,
WSDL

logical
program

SAC no

SHOP2
system

OWL-S,
WSDL

PDDL 2.1 AC no

OWLSX
plan

OWL,
OWL-S,
WSDL

PDDL 2.1 AC yes

WSPlan WSDL PDDL 1.2 AC with
manual

WS
selection

no

SEMCO
-WS

OWL,
OWL-S,
WSDL

GWorkflowDL SAC
with

workflow

no

Before we designed our AWSC system, we analysed
a couple of already existing systems and proposals.
Summary of the analysed systems can be seen in Tab. 1.

WS Prolog [14] is a system for web service
composition, which uses logical programming elements.
As already suggests the name of this system, it is based on
Prolog programming language.

SHOP2 is domain independent HTN (Hierarchical
Task Network) planning system, which won one of the
four main prices on international planning competition in
20023. HTN is a planning method, which is focused on
task decomposition in order to create a plan. Tasks
decomposition is performed until all tasks aren't
decomposed into primitive tasks. On given planning
system authors in created system for AWSC [7]. In this
system transformation of OWL-S WS descriptions into
HTN planning domain is performed. In our work we are
inspired by some of the algorithms from this system, but
we use different target language.

OWLSXplan [9] is a tool developed for automatic
web service composition by using artificial planning
method. This system realises conversion of WS described
by OWL-S version 1.1 into equivalent planning problem
described by PDDL 2.1 language. After conversion into
planning domain the planning itself is performed by
XPlan planner. XPlan planner is based on Fast Forward
planner improved by HTN planning. One of our
innovations with respect to this system is the use of
SWRL for conditions specification.

Authors in [15] dealt with web service composition
only with using WSDL descriptions. They proposed
a system, which goal is to provide WSDL described web
service composition through artificial intelligence planner.
The problem of composition starts with user part, in which
users must select initial WS. Therefore this system is
semiautomatic.

SEMCO-WS project [16] dealt with processing web
and grid services composition. A service composition is
performed through semantic WS and data annotations and
afterwards executable workflows are created. Petri Nets
are used for representation of workflows and the
mechanism for web service composition is completely
different than in our approach.

5. CONCLUSIONS

In this article we presented our proposal for a AWSC
system. The main focus of our activity was to design and
implement suitable transformation process from external
composition problem specification into an internal
specification. For external specification we used
knowledge approaches (OWL and OWL-S ontology) and
for internal specification the PDDL planning problem
specification was used. We proposed several original
algorithms, presented partially in this article, which were
implemented and experimentally verified.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and
Development Agency under the contract No. VMSP-P-

3 IPC – International Planning Competition,
http://planning.cis.strath.ac.uk/competition/

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 2, 2011 25

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

0048-09 (30%); the Slovak Grant Agency of Ministry of
Education and Academy of Science of the Slovak
Republic under grants No. 1/0042/10 (30%).

This work is also the result of the project
implementation Development of the Center of Information
and Communication Technologies for Knowledge
Systems (project number: 26220120030) supported by the
Research & Development Operational Program funded by
the ERDF (40%).

REFERENCES

[1] BECHHOFER, S. et al.: Owl Web Ontology Lan-
guage Reference, W3C Proposed Recommendation.
http://www.w3.org/TR/owl-ref/, 2004.

[2] MARTIN, D. et al.: OWL-S: Semantic Markup for
Web Services, W3C Member Submission,
http://www.w3.org/Submission/OWL-S/, 2004.

[3] RAO, J. – SU, X.: A Survey of Automated Web
Service Composition Methods. In Proceedings of the
First International Workshop on Semantic Web
Services and Web Process Composition, SWSWPC
2004, San Diego, California, USA, 2004.

[4] NILSSON, N. J. – FIKES, R. E.: STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving, Artificial Intelligence, 2(3):189-
208, 1971.

[5] HOFFMAN, J.: FF: The Fast Forward Planning
System, AI Magazine, Vol. 22 #3, pp. 57–62, 2001

[6] REITER, R.: On knowledge-based programming
with sensing in the situation calculus. ACM Trans.
Comput. Logic 2, 4 (Oct. 2001), 433-457, 2001.

[7] WU, D. – SIRIN, E. – HENDLER, J. – NAU, D. –
PARSIA, B.: Automatic Web services composition
using SHOP2, In Workshop on Planning for Web
Services, 2003.

[8] PEER, J.: Web Service Composition as AI Planning
- A Survey, Dissertation, University of St. Gallen,
Switzerland, 2005.

[9] KLUSCH, M. – GERBER, A. – SCHMIDT, M.:
Semantic Web Service Composition Planning with
OWLS-Xplan. 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web, Arlington VA, USA,
2005.

[10] GHALLAB, M. et al.: PDDL – The Planning
Domain Definition Language, Version 1.2. Yale
Center for Computational Vision and Control, Tech
Report CVC TR-98-003/DCS TR-1165, October,
1998.

[11] YANG, B. – QIN, Z.: Composing Semantic Web
Services with PDDL. Information Technology
Journal 9 (1), ISSN 1812-5638, 48-54, 2010.

[12] ĎURČÍK, Z.: Webové služby - kompozícia umelo
inteligentnými metódami. In: Znalosti 2010,
Jindřichuv Hradec, 2010, ISBN 978-80-245-1636-3,
pp. 203–206.

[13] ĎURČÍK, Z.: Translation Semantic Web Services
Descriptions into Planning Problem. In: SCYR 2010:
10th Scientific Conference of Young Researchers of
FEI Technical University of Košice: proceedings
from conference: May 19th, 2010, Košice, Slovakia.
- Košice: FEI TU, 2010, ISBN 978-80-553-0423-6,
pp. 189–191.

[14] SIRIN, E. – HENDLER, J. – BIJAN, P.: Semi-
automatic composition of web services using
semantic descriptions in Web services: Modeling,
Architecture and Infrastructure workshop in ICEIS
2003, Angers, France, April 2003.

[15] PEER, J.: A PDDL Based Tool for Automatic Web
Service Composition. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg. ISBN 978-3-
540-22961-2, pp. 149–163, September 2004.

[16] HABALA, O. – PARALIČ, M. – ROZINAJOVÁ, V.
– BARTALOS, P.: Semantically-Aided Data-Aware
Service Workflow Composition. SOFSEM '09:
Proceedings of the 35th Conference on Current
Trends in Theory and Practice of Computer Science,
ISBN 978-3-540-95890-1, pp. 317–328, 2009.

Received November 25, 2010, accepted April 10, 2011

BIOGRAPHIES

Zoltán Ďurčík graduated (MSc) with distinction at the
department of Cybernetics and Artificial Intelligence of
the Faculty of Electrical Engineering and Informatics at
Technical University in Košice. He finished his PhD.
study at the same department in 2010 and this article
describes main aspects of his dissertation thesis. His
scientific research was focused on semantic web and
automated web service composition. Currently he is
working in IT department of an electricity providing
company in Slovakia.

Ján Paralič received his Ph.D. degree in 1998 at the
Technical University in Košice. Since 2004, he is
associate professor at the Department of Cybernetics and
Informatics, Technical University in Košice and since
2005 also head of the Centre for Information
Technologies at the same university. He (co-)authored
four books; (co-)edited 12 proceedings from various
international workshops and conferences and published
more than 90 scientific papers. His research interests
currently are in the areas of knowledge discovery, text
mining, semantic technologies, and knowledge
management.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:17 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

