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Abstract

In networked control, there is locational freedom in choosing the node at which to locate the controller, so

as to mitigate the effects of packet losses in the network. What is the optimal location for the placement of

the control logic? Second, what is the optimal control law in that position? The difficulty in answering these

two questions is that analysis of optimality in networked control systems subject to random packet drops

suffers from Witsenhausen’s ‘non-classical information pattern’. Thus, the general problem is considered

intractable.

We make headway on this problem by using a “Long Packet Assumption”, LPA, which allows packets

to be arbitrarily long. This is not intended for implementation, but only to develop a lower bound on the

cost. In particular, under this assumption the optimal controller location can be shown to be collocated

with the actuator. For this position, under the LPA, we can also calculate the optimal cost, which is then a

lower bound on the optimal cost for the original problem for all locations. Despite the apparent strength

of the LPA, we have found that this lower bound is often close to currently realizable upper bounds. This

establishes the near optimality of currently implementable controllers in such instances.

Using the lower bound on cost we obtain a necessary condition for stabilizability over all controller

locations. This condition matches known sufficient conditions for some special cases, thus establishing a

necessary and sufficient condition for location optimized stabilizability of networked control systems with

packet loss.
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Fig. 1. A wireless networked control system. The controller logic and plant are connected by a network which may
delay or lose packets sent from the sensor to the controller (‘up’ link) or from the controller to the actuator (’down’ link).

1 Introduction

We may be on the cusp of seeing networked control systems deployed over wireless networks. In these

systems, components communicate with each other using the network, as shown Figure 1; see [1, 2, 11, 12].

Efforts are already underway to develop deployment mechanisms for wireless networked control systems [8,

6, 5]. In this paper we consider the issue of optimal policieswhen control is exercised over wireless networks.

A key limitation of the wireless medium is channel fading and interference which result in unpredictable

packet loss. This loss of information will have a detrimental effect on performance. It is therefore important

to mitigate the effect of packet drops. One way to do this is by fully exploring the capabilities of networked

control, which allows choice of the locationwhere the control law is computed.

In this paper we address the following questions. (1) What is a good controller placement? Closer

to the sensor, actuator or somewhere in between? (2) What is the optimal control law for that optimal

placement? We shall henceforth refer to this as the location optimized controller. (3) What are the conditions

for stabilizability of the plant when control is exercised over the wireless network? (4) What is the best

performance achievable?

Analysis of these problems is difficult because, as a consequence of the random packet losses, the

information pattern that results is non-classical. Such problems were studied in [33, 15, 16] decades ago,

and it is generally recognized that computing optimal control laws is intractable [23]. Thus, developing an

optimal controller for a given location of the controller, never mind optimizing over controller position, is

already a difficult problem. Some of the issues are briefly illustrated by the example in Figure 2.

We present a brief literature review in Section 2 and then formally introduce the problem in Section 3.

We then consider the problem of optimal controller placement in Section 4 . In order to make the problem

of obtaining a lower bound tractable, we consider a theoretically convenient assumption called the ‘Long

Packets Assumption’ (LPA). The LPA has been considered in [26, 25], and is discussed in Section 4.1. The

assumption allows packets to be infinitely long. This approach is not intended to be implemented, but rather

to allow us to obtain a lower bound on cost for the location optimized controller. In [14, 13], a ”maximal
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Fig. 2. A string of nodes separated by i.i.d. erasure channels. Two potential controller positions are identified by A and
B. As a result of packet drops, controller A will receive more observations from the sensor than the controller at B.
However, control commands from Bwill arrive at the actuator more often than those fromA. Consequently, in choosing
the controller’s location we must choose between having greater knowledge of the system state (as with position A) or
having a greater impact on the system dynamics (as with position B). This requires us to solve for the optimal costs for the
two positions and then compare them. However, each of these problems is intractable.

information set,” similar to the information contained in a long packet is considered. It is shown how by

using an encoder consisting of a modified Kalman filter at the sensor, a sufficient statistic that captures its

information content can be transmitted without requiring packets of growing length, and decoded at the

controller. This scheme requires processing logic for the modified Kalman filter at the sensor. Our result for

the optimal controller for the average cost per time in Theorem 6 provides a complete proof of existence and

optimality. In particular, we take into account the technical issues associated with the average cost per time

problem, for which the average cost dynamic programming equation does not always admit a solution [20].

Under the LPA we are able to show that optimal placement of the controller is to collocate it with the

actuator. Our arguments are based solely on the problems information structure, and not the actual control

law or cost, which is what makes this determination possible. In Section 6 we provide a complete proof,

including existence, of the optimal control policy under the LPA for the collocated controller-actuator system

for the infinite horizon average cost per time problem. The optimal control law exhibits a slightly sharpened

separation structure. This result allows us establish a necessary condition for stabilizability of the networked

control system over all controller locations.

We can also upper bound the optimal cost. For this, all we need to do is consider any implementable

scheme without the LPA. For this purpose we can exploit the fact that when the controller is located at the

actuator, solving for the optimal controller is actually tractable even when the LPA does not hold. Indeed,

such an arrangement has already been studied, and bounds on critical packet drop probability for estimator

and controller stability for it have been established [29, 30, 17, 13, 28]. The lower bound on the packet drop

rate for stability in these works is sufficient for stability for the location optimized controller. Our results

(see Section 8) yield that this sufficient condition is in fact also necessary in some special cases [17, 29, 35]

even when location of controller can be optimized.

In Section 9 we present some simulation results. Despite the apparent strength of the LPA, the upper and

lower bounds are in fact fairly close in several examples that we have tested.



4 C. L. Robinson and P. R. Kumar

2 Related Work

The results presented in the literature depend heavily upon the assumptions made regarding controller

location, the presence of delays, and the existence of a packet delivery notificationmechanism. The first topic,

controller location, has three possible choices: (i) Collocation of the controller and actuator, (ii) collocation

of the controller and sensor, and (iii) placement such that the network delivers both sensor information to

the controller, and control commands to the actuator.

Controllers which are collocated with the actuator are the simplest to analyze as the controller has

access to all past implemented control actions. It also has knowledge of when observation packets were

dropped, since an observation arrival is itself a delivery notification. This is in fact a ‘classical information

structure’ [33] where the controller has full access to all available observations and past control actions.

Under this structure, the optimal controller can be decomposed into forming the optimal state estimate, and

using a certainty equivalent optimal controller.

In this paper, as in [29, 35, 17], we will not consider random packet delay. References that include delay

are [3, 31, 24, 22]. The general no-delay problem is one of forming a stable Kalman filter or LQG controller

in the presence of packet loss. A sufficient condition for the existence of a stable Kalman filter estimator is

determined as a function of the packet loss rate and the system dynamics in [29]:

Theorem 1. ([29]). Suppose C is invertible in (3). A sufficient condition for a stable Kalman filter estimator is:

λ <
1

| eig(A) |
2
, (1)

where | eig(A) | represents the largest eigenvalue magnitude of A and λ is the packet drop probability.

The LQG control result has C replaced by B. The work in [35] relaxes the invertibility condition on C

but requires processing of the raw sensor measurements before transmission. This result has been extended

to the case of partial observations in [21]. Our results in Corollary 1 show the condition in Theorem 1 is

necessary in general, even without requiring invertibility of C.

In [17] the packet drop probabilities for ‘up-link’ (from sensor to controller), λα, and ‘down-link’ (from

controller to actuator), λβ, are considered. Under a TCP-type transport protocol (discussed later) a sufficient

condition for control loop stability is obtained as:

max{λα, λβ} <
1

| eig(A) |
2
, (2)
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This is a consequence of the duality between the optimal state estimation and optimal control problems. In

fact, results such as in [29, 17] depend on the stability of a ‘Modified’ Ricatti equation. In the state estimation

problem, this takes the form: Pk+1 = A
′PkA+Q−λA

′PkC
′ (CPkC

′ + R)−1 CPkA, where λ represents the packet

drop probability. The equation for a stable controller is defined analogously. The stability of the Ricatti

Equation with random coefficients has been studied in [18].

The approaches to the second and third cases introduced above, where the controller is separated from

the actuator by a network, depend critically on whether there is a message delivery notification system

in place. This divides the problem into two broad cases, the so called TCP and UDP problems [17]. These

refer to the transport layer protocol used for message delivery. TCP provides guaranteed message delivery

by using delivery acknowledgments and retransmission of dropped packets. On the other hand, UDP is

a best effort protocol that provides no acknowledgment of packet drops, but potentially faster delivery. If

a TCP-type protocol is used, and a packet containing a control action to the actuator is dropped en-route,

then the controller is made aware of the failure. Provided it has knowledge of what control the actuator

will implement in the case of the packet drop, the controller can plan future control actions. Thus, even

if the control action actually implemented by the actuator is not what was sent in the control packet, it is

still known. This type of information structure, where the controller has knowledge of the entire history of

control actions and observation information is a ‘classical’ information structure [33]. These problems can

be solved using the separation theorem. However, if a UDP protocol is used, then the controller has no idea

what control action was actually implemented, as it is unaware of whether the packet was delivered or not.

This type of problem is an example of a ‘non-classical’ information structure and such problems have been

shown to be intractable [33, 15, 16, 23]. It is for this reason that under the UDP structure, optimal control laws

have been determined only for the particular placement of the controller at the actuator; while in general

only suboptimal control laws are known [4]. The nature of our results and the assumptions we make do not

require the existence of a packet delivery notification system.

3 Problem Formulation

The objective is to control a system described by:

xk+1 = Axk + Buk + Gwk,

yk = Cxk +Hvk, (3)

where xk represents the system state, uk the control action, and yk the measurement at time k. The state and

observation noiseswk and vk aremutually independentwith distributionsN(0, Σ
w) andN(0, Σv), respectively.



6 C. L. Robinson and P. R. Kumar

Also, x0 is N(x̂0, Σ
x0) and is independent of {wk, vk}. For simplicity we will assume that (A,B) controllable,

(A,C) observable and Σw > 0 and Σv > 0. These assumptions can be relaxed.

The sensor, controller and actuator are separated by a communication network, as shown in Figure 1.

An abstraction of such a system is shown in Figure 3. The network randomly drops packets independently

and identically with probability that depends on the source, the destination, and the path followed by the

packet. We assume that a packet will either arrive at the destination perfectly, or not arrive at all. We do not

assume the existence of a message delivery notification system. We assume that transmission time through

the network is exactly one time step, and do not allow for random packet delay.

A quadratic performance measure is used in which F ≥ 0, Q ≥ 0 and R > 0:

E




x′NFxN +

N−1∑

k=0

(

x′kQxk + u
′
kRuk

)




. (4)

We also consider the infinite horizon average cost per time version of this cost:

Min lim sup
N→∞

1

N
E




x′NFxN +

N−1∑

k=0

(

x′kQxk + u
′
kRuk

)




. (5)

S

Plant

A

C

Fig. 3. A networked control system is represented by an array of nodes separated by communication links which
randomly drop packets. Node S is the sensor and node A is the actuator. The controller location is represented by node
C. If the controller is collocated with the actuator then it will have knowledge of all past actuation commands, but will
lack the observations which were dropped in the network.

4 Optimality of Controller Placement on Shortest Path

Since the performance of a controller depends on its location in the network, several questions naturally

arise. Firstly, what is the optimal location within a network? Secondly, what is the optimal control given

such a position? Thirdly, what is the optimal cost under such a placement and control law? We consider

these questions in the following sections.
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Consider the network of nodes shown in Figure 3, which represents the network in a networked control

system. The objective is to choose where in the array of nodes to locate the control logic, shown as node C.

Each link represents an i.i.d. Bernoulli erasure channel with drop probability p. Once a location has been

chosen, packets from the sensor node (represented by node S) will be routed along a chosen path to the

controller. A control action will be computed by the controller, and forwarded in a packet to the actuator

at node, A, along a particular path. Intermediate nodes only forward packets; they do not store them for

broadcast later, nor do they do any computation. Packets only move along a predetermined path and are

not broadcast and forwarded by all surrounding nodes. We assume that the sensor will only transmit

observations over the network, and not, as in [13, 34, 27], some function of the measurements that they

compute.

As a packet moves over the network from a node f to a node g it traces a path π f g. The drop probability

along such a path is pπ
f g
:= p|π| where |π| = length of π. A path between node f and node g with the lowest

drop probability is a shortest path, and has a drop probability denoted by p∗
f g
. Theorem 2 below establishes

that the controller should be placed on a shortest path (which is not necessarily unique) between sensor and

actuator, denoted by π∗
SA
and illustrated in Figure 4.

S

Plant

A

i

Fig. 4. A minimal path π∗
SA
from S to A is highlighted. It is a path with p|π

∗
SA
| equal to the smallest total drop probability

p∗SA. It is not necessarily unique.

We first present a Lemma which proves the information dominance of a shorter path:

Lemma 1. Given two chains of computational nodes separated by i.i.d. erasure links each with drop probability as

shown in Figure 5, the information at a node in the longer chain is stochastically dominated by the information at a

corresponding node in the shorter chain.

Proof. Consider two general sequences of nodes denoted by C1 and C2. Assume the length of C1 is greater

than the length of C2, as shown in Figure 5. Consider nodes A and B such that the packet drop probability

en-route to nodeA in C1 is identical to that en-route to node B in C2. The information arrival process at these
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B

A C
C1

C2

Fig. 5. Two chains of computational nodes separated by i.i.d. erasure channels.

two nodes can be stochastically coupled. Since further packets are lost between nodes A and C in C1, the

information at node B stochastically dominates that at C. Similar dominance arguments can be made that

any choice of node C in C1 is stochastically dominated by a node in an equivalent position in C2. Q.E.D.

Theorem 2. Given an array of nodes, an optimal controller placement is on π∗
SA
.

Proof. This follows directly from Lemma 1. Q.E.D.

Note that Theorem 2 holds regardless of the control policy.

4.1 Long Packet Assumption (LPA) and Optimal Location under LPA

We now consider the placement of the controller on the minimum path. As we discussed in Section 2, in the

absence of a packet disposition notification system or a specific placement of the controller (e.g., collocated

with the actuator), the problem of determining the optimal controller at a node, let alone optimizing the

controller over all controller locations, is intractable.

In order to make progress on this problem, we consider a convenient assumption, the ‘Long Packets

Assumption’ (LPA) [26, 25, 13, 14]. Under this assumption, packets are allowed to be infinitely long, and each

packet can in fact contain the entire history of information from a node. For example, the sensor could send

the complete history of all observations until that transmission, on every transmission. However, despite

the size of the packet we assume it will have the same drop probability, transmission time, and bandwidth

usage, as sending a single observation. We stress that this assumption is not intended to be implemented. Our

end goal is analytical: to obtain a lower bound on optimal cost. Since this is an optimistic assumption, the

optimal cost obtainable under this information structurewill be a lower bound on the optimal cost realizable

for the original problem without the LPA. It has also been shown that similar performance is achievable

with finite sized packets by using an encoder/decoder pair on either side of the channel [13]. In [13] the

LPA is used as a reference optimal information passing mechanism with the controller collocated with the

actuator. In our work here we rigorously establish the optimal controller position, and then investigate the

optimal controller and its cost in that location.

The advantage of the LPA is that, under the LPA we can precisely determine the optimal location:

Theorem 3. Under the LPA, the optimal placement of an optimized controller is to collocate it with the actuator.
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Proof. We can restrict the network to consisting of just a shortest path π∗
SA
, and consider the placement of

a controller at node i ∈ π∗
SA
, i , A. Call this Case I, and consider the case where the controller is located at

node A as Case II. Wewill stochastically couple Cases I and II by supposing that events of long packets from

i reaching A are identical in both cases. Then, since every long packet contains all past history, whenever

node A receives a packet it will contain all past sensor information. Hence, at that time both nodes i and

A would have the same set of observation information. However, node A also has the entire history of all

implemented control actions, and hence the information at nodeAdominates that at node i, thus establishing

the optimality of Case II under the LPA. Q.E.D

Note that the proofs thus far have been based solely on information domination arguments and no

assumption has been made on the actual control law that is used. In the following section we shall consider

what is the optimal control law under LPA, and what the optimal cost associated with that law is. Note also,

as discussed in the sequel, that when the controller and actuator are collocated, the optimized controller is

actually tractable even without the LPA. However, such a location may itself be not optimal.

5 Optimal Controller for the Finite Horizon Quadratic Cost under the LPA

Following the result in Theorem 3 we shall place the controller at the actuator. The packet drop probability

is therefore p
π∗
SA

SA
which we will henceforth denote by λ. We use the variable Dk to indicate the number of

successive dropped packets at time k, since the last packet reception. We also denote by τD
k
the event that at

time k, the D consecutive previous packets have been dropped.

Denote by yk−Dk−1 the set of all observations {y j : j ≤ k − Dk − 1}, by u
k−1
k−Dk

the set of control actions

{u j : k − Dk ≤ j ≤ k − 1}, and by u
k−1 the set of control actions {u j : j ≤ k − 1}. The term x̂k|k−Dk−1 will be

used to represent the conditional mean estimate of state x at time k based on the noisy observations yk−Dk−1

and control actions uk−1. The term x̃k|k−Dk−1denotes the error of that estimate, and Σ
x̃
k|k−Dk−1

its conditional

covariance given yk−Dk−1 and uk−1, which is actually the conditional covariance given just Dk, due to the

Gaussianity and linearity of the system.

Theorem 4. For the quadratic cost function in (4), under the LPA, the optimal control law is given by

u∗k = − [R + B
′Wk+1B]

−1 B′Wk+1Ax̂k|k−Dk−1, (6)

where Wk+1 is as given in (20), and x̂k|k−Dk−1 is the conditional mean estimate of the state estimate at time k, given

noisy observations of states up to time k−Dk − 1, contained in the packets received at time k−Dk, and that no further

observations arrive after that time.
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Remark: The result (6) features a slight sharpening of the separation theorem in that only the most recent

state estimate is used, and not the full hyperstate [20], which consists of the estimate made at the time of the

last packet reception and the list of control actions taken since that last received packet. In a similar vein,

we will see that the optimal cost-to-go function also depends only on the most recent state estimate.

Proof. Rewrite the cost (4) as:

E




x′NFxN +

N−1∑

k=0

(

x′kQxk + u
′
kRuk

)




= E

[

(
x̂N|N−DN−1 + x̃N|N−DN−1

)′
F
(
x̂N|N−DN−1 + x̃N|N−DN−1

)

+

N−1∑

k=0

((
x̂k|k−Dk−1 + x̃k|k−Dk−1

)′
Q

(
x̂k|k−Dk−1 + x̃k|k−Dk−1

)
+ u′kRuk

)
]

= E




x̂′N|N−DN−1Fx̂N|N−DN−1 +

N∑

k=0

(

x̂′k|k−Dk−1Qx̂k|k−Dk−1 + u
′
kRuk

)





+E




Tr

(

FΣx̃N|N−DN−1

)

+

N∑

k=0

Tr
(

QΣx̃k|k−Dk−1

)




. (7)

We focus on minimizing the first term above: E
[

x̂′
N|N−DN−1

Fx̂N|N−DN−1 +
∑N
k=0

(

x̂′
k|k−Dk−1

Qx̂k|k−Dk−1 + u
′
k
Ruk

)]

,

since the remaining term does not depend on control actions. We will add the remaining term at the end

though to get the optimal cost. We use dynamic programming to solve for the optimal controller for this first

term. For simplicity we will write x̂k rather than x̂k|k−Dk−1 to denote the estimate of the state at time k based

on the information available until time k. Similarly we will write x̃k for x̃k|k−Dk−1. We will also denote by x̄ j

the conditional mean estimate of x j given y
j and u j−1. We will now prove by backward induction that the

cost-to-go function V consists of a quadratic term in the current state estimate, and an additional constant

fk,Dk :

Vk
(

x̂k−Dk−1, u
k−1
k−Dk
, τDk
k

)

= x̂′kWkx̂k + fk,Dk ≕ V̄k
(

x̂k, τ
Dk
k

)

. (8)

We note that due to the conditional Gaussianity of the linear system, the information state
(

yk−Dk−1, uk−1, τDk
k

)

can be replaced by
(

x̄k−Dk−1, u
k−1
k−Dk
, τDk
k

)

, as above. The claim above strengthens this dependence only on
(

x̂k, τ
Dk
k

)

and also asserts the quadratic structure of the cost-to-go. This is clearly true at the final time step

k = N, since the expected cost using (4) consists of only the quadratic F term.

Assuming (8) is true for k + 1, performing a one-step expansion of the dynamic programming equation

for k yields,
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Vk
(

x̄k−D−1, u
k−1
k−Dk
, τDk
k

)

= min
uk

{

x̂′kQx̂k + u
′
kRuk

︸           ︷︷           ︸

Cost in current state

+λV̄k+1(Ax̂k + Buk, τ
Dk+1
k+1
)

︸                        ︷︷                        ︸

Packet dropped

+ (1 − λ)E
[

V̄k+1(x̂k+1, τ
0
k+1) | x̄k−Dk−1, u

k
k−Dk
, τDk
k
, τ0k+1

]

︸                                                            ︷︷                                                            ︸

Long packet arrives

}

= min
uk

{

x̂′k|k−Dk−1Qx̂k|k−Dk−1 + u
′
kRuk + λ

(

Ax̂k|k−Dk−1 + Buk
)′
Wk+1

(

Ax̂k|k−Dk−1 + Buk
)

+ λ fk+1,Dk+1

+(1 − λ)E
[

x̂′k+1Wk+1x̂k+1 | x̄k−Dk−1, u
k−1
k−Dk
, τDk
k
, τ0k+1

]

+ (1 − λ) fk+1,0
}

. (9)

When a packet is dropped, the state estimate is a simple open-loop prediction using the previous state

estimate. This is deterministic and hence the expectation has been removed in the above. The proof is now

focused on developing the expectation in the second last term of (9). For notational convenience, define the

information set Ik−Dk as:

Ik−Dk ≔

{

x̂k−Dk−1|k−Dk−1, u
k−1
k−Dk
, τDk , τ

0
k+1

}

(10)

It should be noted that in Ik−D is contained the information that a packet arrives at time k+1, but not the value

of that observation. Nevertheless when such a long packet arrives at k+ 1, the estimation error covariance is

set to Σk+1|k, since the conditional covariance is the unconditional covariance for the linear Gaussian system.

Using also the conditional independence of x̂k+1 and x̃k+1, we obtain

E
[

x̂′k+1Wk+1x̂k+1 | Ik−Dk
]

= E
[
(xk+1 − x̃k+1)

′Wk+1 (xk+1 − x̃k+1) | Ik−Dk
]

= E
[

x′k+1Wk+1xk+1 | Ik−Dk
]

+ Tr
(

Wk+1Σ
x̃
k+1|k

)

− 2E
[

x̂′k+1Wk+1x̃k+1 | Ik−Dk
]

− 2E
[

x̃′k+1Wk+1x̃k+1 | Ik−Dk
]

= E
[

x′k+1Wk+1xk+1 | Ik−Dk
]

− Tr
(

Wk+1Σ
x̃
k+1|k

)

. (11)

Recursively using (3) we obtain

xk+1 = A
Dk+2xk−Dk−1 +

Dk+1∑

i=0

(

AiBuk−i + A
iwk−i

)

, (12)

which yields
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E
[

x′k+1Wk+1xk+1 | Ik−Dk

]

= E

[

Γ1
︷                                        ︸︸                                        ︷
(

ADk+2xk−Dk−1
)′
Wk+1

(

ADk+2xk−Dk−1
)

+

Γ2
︷                                                   ︸︸                                                   ︷

2





Dk+1∑

i=0

AiBuk−i + A
iwk−i





′

Wk+1A
Dk+2xk−Dk−1

+





Dk+1∑

i=0

AiBuk−i + A
iwk−i





′

Wk+1





Dk+1∑

i=0

AiBuk−i + A
iwk−i





︸                                                               ︷︷                                                               ︸

Γ3

| Ik−Dk

]

− Tr
(

Wk+1Σ
x̃
k+1|k

)

. (13)

The mechanical part of the proof is now to develop each of the terms in the expectation in (13). Taking the

first term, and making the substitution xk−Dk = x̃k−Dk + x̂k−Dk yields:

E
[
Γ1 | Ik−Dk

]
= x̂′k−Dk−1|k−Dk−1A

Dk+2′Wk+1A
Dk+2x̂k−Dk−1|k−Dk−1 + Tr

(

ADk+2
′
Wk+1A

Dk+2Σx̃k−Dk−1|k−Dk−1

)

. (14)

For the second term in (13):

E
[
Γ2 | Ik−Dk

]
= 2





Dk+1∑

i=0

AiBuk−i





′

Wk+1A
Dk+2x̂k−Dk−1|k−Dk−1. (15)

Last, expand the third term in the expectation in (13) as

E
[
Γ3 | Ik−Dk

]
=





Dk+1∑

i=0

AiBuk−i





′

Wk+1





Dk+1∑

i=0

AiBuk−i




+

Dk+1∑

i=0

Tr
(

Ai
′
Wk+1A

iΣw
)

. (16)

Substituting (14), (15) and (16) back into (13) yields a new expression for the right hand side of (9):

min
uk

{

x̂′k|k−Dk−1Qx̂k|k−Dk−1 + u
′
kRuk +

(
Ax̂k|k−Dk−1 + Buk

)′
Wk+1

(
Ax̂k|k−Dk−1 + Buk

)
+

+(1 − λ)

(

Tr
(

ADk+2
′
Wk+1A

Dk+2Σx̃k−Dk−1|k−Dk−1

)

+

Dk+1∑

i=0

Tr
(

Ai
′
Wk+1A

iΣw
)

−Tr
(

Wk+1Σ
x̃
k+1|k

)
)

+ λ fk+1,Dk+1 + (1 − λ) fk+1,0

}

. (17)

The minimizing control action u∗
k
is

u∗k = − [R + B
′Wk+1B]

−1 B′Wk+1Ax̂k|k−Dk−1. (18)

Since theminimum can bewritten purely as a quadratic function of x̂k|k−Dk−1 plus fk,Dk only, without explicitly

needing x̂k−Dk−1|k−Dk−1, we see that Vk is as shown in (8). Q.E.D.
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The results for the optimal controller derived in Theorem 4 yield the following expressions for the finite

horizon cost.

Theorem 5. The finite horizon cost is given by:

Jmin(N) = x̂
′
0W0x̂0 + f0,0 + E





N−1∑

k=0

Tr
(

Σx̃k|k−Dk−1Q
)




, (19)

where

Wk = Q +A
′Wk+1A − A

′Wk+1B [R + B
′Wk+1B]

−1 B′Wk+1A, (20)

and

fk,D = λ fk+1,D+1 + (1 − λ) fk+1,0 + (1 − λ)φk,D, (21)

with

φk,D ≔ Tr




AD+2

′
Wk+1A

D+2Σx̃k−D−1|k−D−1 − A
′Wk+1AΣ

x̃
k|k +

D+1∑

i=1

Ai
′
Wk+1A

iΣw




. (22)

The associated boundary conditions are WN = F, and fN,D = Tr
(

FΣx̃
N|N−D−1

)

.

Proof. Substitute (18) into (17) and match terms.

6 The Infinite Horizon Average Cost per Time Problem

We now turn to the infinite horizon average cost per time problem, also considered in [13, 14], and proceed

to give a complete proof of the infinite horizon average cost per time problem under LPA, attending to the

technical issues arising from the fact that the average cost dynamic programming equation does not always

admit a solution or solve the problem, as well as an explicit representation of the optimal average cost per

time in terms of a power series that allows us to readily deduce the necessary condition for stabilizability.

We also provide the behavior at the critical drop probability that is at the boundary of the stabilizable and

unstabilizable regions. The infinite horizon average cost per time problem is:

Min lim sup
N→∞

E





1

N

N−1∑

k=0

(xk
′Qxk + uk

′Ruk)




.

We note that due to assumptions on the system, limk→∞ Σk−D|k−D−n = Σ
x̃
n > 0 exists for all n, with Σ

x̃
0

denoting the steady state error covariance of the usual Kalman filter when the observation is always

received immediately. Also, W defined byW = Q + A′WA − A′WB [R + B′WB]−1 B′WA, is positive definite.

This results in the following solution of the infinite horizon average cost per time problem.
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Theorem 6. Under the LPA, there exists a policy with finite value of infinite horizon average cost per time and

limk→∞
E[x′kxk]
k = 0, if and only if λ < 1

max(eig(A))2
. The optimal average cost per unit time over the class of all policies

satisfying limk
E[x′

k
xk]

k = 0 is

Jmin(λ) ≔

∞∑

D=0

λD(1 − λ)

{

(1 − λ)Tr

(

A′
(

AD+1
′
WAD+1 −W

)

AΣx̃0 +

D+1∑

i=1

Ai
′
WAiΣw

)

+ Tr
(

Σx̃D+1Q
)




. (23)

Proof. Note first that since the sumands in (23) involve D only as products of λD and quadratics in AD, it

follows that Jmin(λ) < ∞ if and only if λ <
1

eig(A)2
. Moreover, as λր 1

eig(A)2
, Jmin(λ)→∞.

The average cost per time unit can written as:

lim
N→∞

1

N
E





N−1∑

k=0

(

x′kQxk + u
′
kRuk

)




= lim
N→∞

1

N
E





N−1∑

k=0

Tr
(

Σx̃k|k−Dk−1Q
)

+

N−1∑

k=0

(

x̂′kQx̂k + u
′
kRuk

)




(24)

We focus on the last summation term in (24), which reduces to solving the average cost dynamic program-

ming equation [20]:

J∗(λ) + V(x̂k,Dk) = min
uk
E
[

x̂′kQx̂k + u
′
kRuk + V(x̂k+1,Dk+1)

]

. (25)

Let us consider λ < 1
eig(A)2

. Assume that the form for V is V(x̂k,D) = x̂
′
k
Wx̂k + f (D). Note that since this is the

infinite horizon case, the constant term f (D) and V depend only on the number of dropped packets and not

the time index. Proceeding as in the finite horizon case, (25) can be reduced to:

J∗(λ) + f (D) = λ f (D + 1) + (1 − λ) f (0) + (1 − λ)φD, (26)

where

φD ≔ Tr




A′

(

AD+1
′
WAD+1 −W

)

AΣx̃0 +

D+1∑

i=1

Tr
(

Ai
′
WAiΣw

)




. (27)

From (26), multiplying by λD and summing gives

M∑

D=0

λD J∗(λ) = λM+1
[
f (M + 1) − f (0)

]
+

M∑

D=0

(1 − λ)λDφD. (28)

So if limM→∞ λ
M+1 [ f (M + 1) − f (0)

]
= 0, then

J∗(λ) =

∞∑

D=0

(1 − λ)2λDφD (29)
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Now note that if f (D) is a solution of (26), then so is f (D) + α for all α. So we fix f (0) =
J∗(λ)
1−λ for simplicity.

Rewriting (28) with this gives

λM+1 f (M + 1) =
J∗(λ)

1 − λ
−

M∑

D=0

(1 − λ)λDφD

= (1 − λ)

∞∑

D=M+1

λDφD. (30)

Hence,

N∑

M=0

λM+1 f (M + 1) = (1 − λ)

N∑

M=0

∞∑

D=M+1

λDφD

= (1 − λ)

N+1∑

D=1

D−1∑

M=0

λDφD + (1 − λ)

∞∑

D=N+2

N∑

M=0

λDφD

= (1 − λ)

N+1∑

D=1

DλDφD +

∞∑

D=N+2

(N + 1)λDφD (31)

Now choose λ < λ̄ < 1
eig(A)2

. Hence, J∗(λ̄) < +∞, and so

N+1∑

D=1

DλDφD =

N+1∑

D=1

D
(
λ

λ̄

)D (

λ̄DφD
)

,

which converges by the ratio test. Also

(N + 1)

∞∑

D=N+2

λDφD ≤ (N + 1)
(
λ

λ̄

)N+1 ∞∑

D=N+1

λ̄DφD (32)

converges to 0. Now since the probability thatDk = D is (1−λ)λ
D, we have E[ f (Dk)] ≤ (1−λ)

∑∞
M=0 λ

M f (M) <

+∞.

Hence, in the class of policies for which limk→∞
E[x̂′k x̂k]
k = 0, we can deduce as in ([20], page 158) that J∗(λ)

is the optimal average cost per unit time among all such policies. Hence for λ̃ ≥ 1
eig(A)2

the optimal average

cost is greater or equal to limλր 1

eig(A)2
Jmin(λ) = ∞.

Now we note that the average cost per unit time is monotone non-decreasing in λ, since the control

policy can simply discard more packets to emulate a larger drop probability.

For J∗(λ), (26) is the cost associated with the last summation term of (24). The contribution to the cost

from the first term is given by calculating the probability that the time interval between two packets is D,

which is λD(1 − λ). Hence,
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lim
N→∞

E





1

N

N−1∑

k=0

Tr
(

Σx̃k|k−Dk−1Q
)




=

∞∑

D=0

λD(1 − λ)Tr
(

Σx̃D+1Q
)

.

Combining them gives (23). This completes the proof. Q.E.D

7 An Upper Bound on Cost without LPA

The optimistic LPA assumption leads to (23) being a lower bound on the achievable optimal cost for the

location optimal controller without the LPA, when it is finite. The question then is how tight is this lower

bound?

We can upper bound the achievable optimal cost by the cost of any implementable scheme. In particular,

we consider the scheme using a Kalman filter for state estimation, and collocate the controller with the

actuator [13]. In this placement, the separation theorem with classical information structure holds, and

the Kalman filter will simply perform open-loop state estimation in the case of packet drops. The LQG

certainty-equivalent controller is optimal for that collocated position.

It turns out that these upper and lower bounds are in fact fairly close in many cases, as will be seen in

Section 9.

8 Necessary Conditions for Stability

We now consider the case where the LPA does not hold. We can use the results under the LPA to derive

a necessary condition for the stabilizability of the system without the LPA, allowing optimization over all

controller locations and admissible control laws. Here, by stability wemean finiteness of the infinite horizon

average quadratic cost per time, as well as limk→∞
E[x′

k
xk]

k = 0. In fact it will be seen to yield a necessary and

sufficient condition in Corollary 2 in certain special systems.

Corollary 1. If (A,B) is controllable, (A,C) is observable, Σw > 0 and Σv > 0, then the condition

λ <
1

| eig(A) |
2
, (33)

is necessary and sufficient for the existence of a stabilizing controller at any location, in the presence of packet drops.

Proof. This follows immediately fr Theorem 6. Q.E.D

For certain special systems the following corollary shows that we can deduce the sharp packet drop proba-

bility threshold and region for stabilizability of networked control systems with packet drops:

Corollary 2. If C−1 exists then the condition:
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λ <
1

| eig(A) |2

is necessary and sufficient for the existence of a stabilizing controller in the presence of packet drops.

Proof. Follows directly from Theorem 1 and Corollary 1. Q.E.D

9 Simulation Results

To investigate the utility of the results obtained in the previous sections we performed several simulations

to study the tightness of the bounds.

Consider the candidate system with

A =





1.7000 0.0000 0.0000 0.0000

0.6211 0.6029 0.3028 0.6965

0.3200 0.7210 0.3685 0.1146

0.2272 0.7875 0.0138 0.2518





, (34)

which has eigenvalues 1.7000, 1.3544, 0.2925 and −0.4237. Identity matrices were used for all other system

matrices as well as noise covariances. The resulting cost for various drop probabilities is shown in Figure 6.

The lower and upper bounds are seen to be fairly tight.

Figure 7 shows several simulation results and compares the percentage deviation of the transport layer

protocol described in [27] from the lower bound derived in Theorem 6. The upper bound is also shown. The

closeness of the two bounds again demonstrates the utility of the two bounds.

Table 1 shows a summary of results obtained from simulations of various examples of systems taken

from the literature. It should be noted however, that for cases where the necessary condition is not in fact

sufficient, the gapmay be unbounded near the critical drop probability. The systemswere chosen from some

of the existing literature on networked control systems to facilitate comparison to the results in those works.

However, not all models were fully specified. Some did not include model noise covariance or observation

matrices. In these cases we used identity matrices. In most cases this represents a large measurement and

model covariance matrix. Hence, when more realistic values are used (such as those given in system [32])

the bounds are closer.

Finally, Figure 8 gives some indication as to why the upper and lower bounds are tight. When a packet

drop occurs, both the lower and upper bound error covariances diverge from the steady state value.

However, when a packet arrives, the system with the LPA immediately jumps back to the original error

covariance. What is of importance is that within only a couple of time steps the error covariance for the

upper bound system has also converged.
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simulation steps. The system used is described in (34) with identity noise covariances. Hence, the stability bound is
limited by the largest eigenvalue of A and is computed as 0.346.

10 Conclusion

In networked control systems, location of the controller is also a “control variable” and it too can be

optimized to mitigate the effect of packet drops in wireless networks. Moreover, it can also be migrated in
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Fig. 7. Simulation results showing the percentage deviation in cost from the lower bound achievable using the LPA. λ
is the packet loss probability. ‘Optimal C’ refers to the cost obtained by using the optimal ratio in [27].
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Table 1. Summary of performance simulation results for various systems.

System λmax Limit
0 Drops 25% λmax 50% λmax 75% λmax
Cost % Cost % Cost % Cost %

System in (34) 0.275
UB - Simulated 53.27

0
65.57

0.8
88.69

1.6
145.25

3.1LB - Simulated 53.27 65.01 87.24 140.65
LB - Theoretical 53.29 65.05 88.13 154.20

Batch Reactor [32] 0.671
UB - Simulated 58.96

0
65.88

0.8
79.20

1.6
117.37

2.7LB - Simulated 58.96 65.35 77.87 114.20
LB - Theoretical 58.90 65.30 77.89 114.20

General [4] 0.602
UB - Simulated 274

0
379

1
654

2
1805

2.7LB - Simulated 274 375 640 1756
LB - Theoretical 274 375 642 1790

General 3x3 [29] 0.64
UB - Simulated 412.6 0 573.1

1.46
1018

4.37
3304

9.34LB - Simulated 412.6 564.9 975.4 3022
LB - Theoretical 412.4 564.4 974 2931

General Scalar [29] 0.64
UB - Simulated 8.91

0
10.50

3.1
13.57

6.4
22.54

10.12LB - Simulated 8.91 10.17 12.69 20.26
LB - Theoretical 8.91 10.19 12.71 20.12

Vehicle Speed [10] (Stable) 1
UB - Simulated 59305

0
59352

0.02
59443

0.05
59722

0.11LB - Simulated 59305 59340 59414 59658
LB - Theoretical 60156 60192 60267 60514

DC Motor [19] (Stable) 1
UB - Simulated 256.21

0
256.55

0.2
257.22

0.3
259.22

0.6LB - Simulated 256.21 256.55 257.22 259.22
LB - Theoretical 253.51 253.84 254.50 256.45

real time as network conditions change or nodes fail [5, 7, 9]. Hence it is important to address the probelm

of location of controller logic. We have studied the problem of where to locate a controller in a wireless

network with packet losses.

Determining the optimal location is however a difficult problem as a result of the ‘non-classical’ infor-

mation structures that result. This makes the general problem intractable.

We are able to make progress by considering the artifice of a ‘Long Packet Assumption,’ (LPA), under

which we can solve the optimal location problem as well as the optimal controller and cost for that location.

We show that, under the LPA, the optimal controller placement in a networked control system is collocated

with the actuator and that the optimal controller for that location is obtained from a slightly strengthened

separation theorem. The former result is based purely on information dominance arguments. The resulting

cost, when finite, is a lower bound on optimal cost for systems in which the LPA does not generally hold.

The utility of this lower bound on optimal cost over all locations and all controllers is that it permits a

comparison with known realizable upper bounds or other controller placements in the network. In many

example problemswe have seen that existing schemes are nearly optimal, though the optimization problem

is intractable. The cost expression also yields a necessary condition for stabilizability over all controller

locations which complements existing sufficiency results. In some special systems the necessary condition

coincides with the known sufficient condition. When they do not coincide, we should note that the gap
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Fig. 8. Figure (a) is a trace of the actual state and its estimate using systems with the upper and lower bounds. When
a packet is dropped, the indicator value is 3. Figure (b) plots the largest singular value of the state error covariance
matrices for the two bounds.

between lower and upper bounds will diverge for drop probabilities beyond the critical drop probability

for which the system is stabilizable if that is less that that given by the necessary condition.
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