Chapter 3
The Nature of Scientific Meta-Knowledge

Barbara Y. White, Allan Collins, and John R. Frederiksen

Introduction

We argue that science education should focus on enabling students to develop
meta-knowledge about science so that students come to understand how different
aspects of the scientific enterprise work together to create and test scientific theo-
ries. Furthermore, we advocate that teaching such meta-knowledge should begin in
early elementary school and continue through college and graduate school and that
it should be taught for all types of science, including the biological, physical, and
social sciences.

In this chapter we outline a theory of scientific meta-knowledge, which is built
around four critical aspects of science. We refer to the four types of meta-knowledge
that are needed as (1) meta-theoretic knowledge, (2) meta-questioning knowledge,
(3) meta-investigation knowledge, and (4) meta-analytic knowledge. While numer-
ous investigators, working in the philosophy of science, cognitive science, and
science education, have developed theories about various aspects of the nature of
science, there have been few attempts to provide detailed models that explicate all
four of these components, along with an elaboration of how they work together in
scientific inquiry. This has resulted in science curricula that provide students and
teachers with impoverished views of the nature of science.

Most K-12 inquiry-oriented science curricula, for example, underemphasize the
role of theory, particularly competing theories. They also fail to adequately explain
the relationship between theory and evidence, nor do they adequately portray the
inquiry processes that are involved in the interplay between the two. Even college-
level textbooks on research methods fall short. Most focus on investigation and
analysis and do not adequately discuss the different forms that scientific models
and theories can take or the types of evidence and arguments that can be used to
support or refute them.
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This chapter is our attempt to provide a more comprehensive and integrated
overview of what science curricula should aspire to teach about the nature and
processes of scientific inquiry and modeling. Our Inquiry Island and Web of
Inquiry learning environments and science curricula, which engage young students
in theory-based empirical research projects, provide first steps toward putting this
vision into practice.

Perspectives on the Nature of Science

The layperson’s view treats science as made up of facts and theories that systematic
observation and experimentation have established over time. This is a somewhat
static perspective, which leads science education to emphasize the coverage of
important scientific facts, concepts, and theories. In contrast, the predominant view
among researchers in science education is that understanding the nature of sci-
ence is important and that scientific inquiry and investigation are at the heart of
the enterprise (AAAS; 1990; National Research Council, 1996, 2007). Those who
hold this view have developed inquiry curricula that teach students how to form
and test hypotheses, carry out careful observations and measurements, analyze the
data they collect in their investigations, and report on their findings (see Anderson,
2002).

Some leading researchers in science education have emphasized the importance
of argumentation between competing theories as the core activity of science (e.g.,
Driver, Newton, & Osborne, 2000; Duschl & Osborne, 2002; Duschl, 2007; Kuhn,
1993; Osborne, 2005; Smith, Maclin, Houghton, & Hennessey, 2000). They there-
fore design curricula that engage students in considering competing theories and in
understanding how evidence can be developed to support or refute those theories
(e.g., Bell & Linn, 2000; Sandoval & Reiser, 2004; Suthers & Weiner, 1995).

In another vein, some view modeling and theory construction as the central goals
of science, where theories are coherent bodies of concepts, laws, and models, which
account for a wide range of observations and enable humans to predict, control,
and explain what happens as events occur (e.g., Collins & Ferguson, 1993; Gilbert,
1991; Halloun, 2004; Hestenes, 1987; Mellar, Bliss, Boohan, Ogborn, & Tompsett,
1994; Perkins & Grotzer, 2005; Slotta & Chi, 2006; White, 1993; Windschitl,
Thompson, & Braaten, 2008). This view leads to science curricula that help stu-
dents learn about the nature of scientific models and the process of constructing
and testing theoretical models (e.g., Grotzer, 2003; Lehrer & Schauble, 2000, 2005;
Schwarz & White, 2005; Smith, Snir, & Grosslight, 1992; Stewart, Cartier, &
Passmore, 2005; White & Frederiksen, 1998).

Other researchers have emphasized the collaborative nature of science (e.g.,
Dunbar, 1999, 2000). Indeed, the scientific enterprise can be viewed as a form
of collaborative learning that enables society to develop and test theories about
the world. This perspective leads to instructional approaches that employ a “com-
munity of learners” approach (Bielaczyc & Collins, 2000; Brown & Campione,
1996), which emphasizes collaborative inquiry and knowledge building, to develop
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students’ understanding of the scientific enterprise (e.g., Borge, 2007; Herrenkohl,
Palinscar, Dewater, & Kawasaki, 1999; Hogan, 1999; Metz, 2000; Scardamalia &
Bereiter, 1994).

We argue that all of these perspectives capture essential components of the scien-
tific enterprise. Scientific inquiry can be viewed as a process of oscillating between
theory and evidence, in a practice of competitive argumentation that leads teams
of researchers to develop and test alternative scientific models and theories. The
ultimate goal is to create theories and develop arguments, which employ explana-
tions and evidence to support or refute those theories, and thereby convince other
researchers of the merits of your team’s “current best theory” (cf., Carey & Smith,
1993; Driver, Leach, Millar, & Scott, 1996; Duschl & Osborne, 2002; Duschl,
2007; Giere, 1992; Hammer, Russ, Mileska, & Scherr, 2008; Klahr & Simon, 1999;
Krathwohl, 1998; Kuhn, Black, Keselman, & Kaplan, 2000; National Research
Council, 1996, 2007).

The transition from making theories to seeking evidence, through an investiga-
tion, is one where the generation of questions and hypotheses derived from theory
is crucial. The transition from carrying out an investigation to the refinement of a
theory is one in which data analyses and syntheses are central. This view leads to
a basic model of scientific inquiry that has four primary processes: (1) theorizing,
(2) questioning and hypothesizing, (3) investigating, and (4) analyzing and syn-
thesizing. Associated with each of these primary processes is a regulatory process
that monitors how well the process is being carried out and whether another pro-
cess should be invoked to deal with issues that arise (such regulatory processes,
though important, are beyond the scope of this chapter and are addressed in White,
Frederiksen, & Collins 2009).

In our earlier work on teaching scientific inquiry to young learners (White &
Frederiksen, 1998), we portrayed such a model as an inquiry cycle, which provides
a scaffold for inquiry in the form of a series of steps that one undertakes in a never-
ending cyclical process of generating, testing, and elaborating scientific principles
and models, with the ultimate goal of developing a widely useful, accurate, and
comprehensive theory for a given domain. This is, of course, a simplified view:
Mature scientific inquiry does not necessarily proceed in this stepwise fashion. For
one thing, it is possible to start anywhere in the sequence. So, for example, one
might start with vague questions that are not based on a particular theory or one
might start with an investigation or with existing data to generate theoretical ideas.
Furthermore, one does not necessarily proceed through these “steps” in order. For
instance, analyzing data can lead to the need to do further investigation. So the crit-
ical components in the scientific enterprise are closely intertwined, and any view
of science education that underplays one of these components fundamentally mis-
leads students as to the nature of science (Chinn & Malhotra, 2002). Nonetheless,
for pedagogical purposes, presenting students with an inquiry cycle, in which one
starts with theorizing and questioning, is an effective initial model that can enable
students to develop capabilities for inquiry, as well as an understanding of its con-
stituent processes (Frederiksen, White, Li, Herrenkohl, & Shimoda, 2008; White &
Frederiksen, 1998, 2005).
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This model of scientific inquiry reflects the way most sciences include two
camps: the theoreticians and the empiricists. Theory and empirical investigation
form the two poles of science. Research questions form a bridge between these two
poles, in which competing theories generate alternative hypotheses about the answer
to a question, which then are tested through empirical investigation. Analysis and
synthesis form the other bridge between the poles by providing ways to represent
and interpret data from the investigation to bear on the theories in competition and
synthesize a new “current best theory.”

Scientific knowledge in a field such as physics is usually thought to include
basic theories (e.g., Newton’s Laws) and concepts (e.g., acceleration), as well as
problem solving, investigation, and data analysis methods. We argue that there is
meta-knowledge sitting above this basic scientific knowledge that characterizes the
different kinds of models, research questions, investigation methods, and data anal-
ysis techniques and the relations between these different aspects of science. This
kind of meta-knowledge provides scientists with a toolkit of representations and
techniques that enables them to be more productive thinkers and better researchers.
We think that making scientific meta-knowledge explicit should lead to improving
science education, as well as to improving the methods and practices of science.

The inquiry cycle underlying our analysis of scientific meta-knowledge is in fact
embedded in the standard form of empirical articles: i.e., introduction, methods,
results, and discussion. The introduction relates the investigation to existing theory
and derives the research questions and hypotheses that the investigation addresses.
The methods section describes how the investigation was carried out. The results
section describes the data analyses and the findings from those analyses. The dis-
cussion section then brings the analyses back to existing theory and how it should
be modified based on the findings. Hence the inquiry cycle we utilize is deeply
embedded in the culture of science.

Most scientists tend to focus their efforts in one area or another. For example,
some scientists are strong in theory, some in designing investigations, and some in
data analysis, while others are more balanced in their approach. It is not necessary
that a given scientist be an expert in all aspects of scientific inquiry, but the field must
encompass all these different components. We would argue, however, that science
education should emphasize an understanding of all the components so that learn-
ers come to appreciate what is entailed in constructing theories, generating research
questions and hypotheses, designing investigations, and analyzing and synthesizing
interpretations of the data to generate arguments that support or refute particular the-
ories. Such an overview is critical to understanding the nature of science (Lederman,
2007).

We became sensitive to different kinds of scientific meta-knowledge in develop-
ing advisory systems, Inquiry Island and the Web of Inquiry, which guide students
as they do science projects that require them to engage in theory-based empir-
ical research (Eslinger, White, Frederiksen, & Brobst, 2008; Shimoda, White,
& Frederiksen, 2002; White & Frederiksen, 2005; White et al., 2003; White,
Shimoda, & Frederiksen, 1999). These systems incorporate much of the scien-
tific meta-knowledge we outline below in their various advisors. They include
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Quentin Questioner, Hugo Hypothesizer, Ivy Investigator, AnnLi Analyzer, Sydney
Synthesizer, and Morton Modeler. These advisors, who live on Inquiry Island, offer
guidance to students when they seek help or encounter problems. Each advisor
presents goals, purposes, plans, and strategies, as well as definitions and examples,
with respect to their particular component of the scientific inquiry process. We think
of Inquiry Island as one way to make different facets of scientific meta-knowledge
available to students and teachers.

In order to illustrate our views about scientific meta-knowledge, we will use
examples from the domain of social psychology. Working with Inquiry Island and
the Web of Inquiry, we have begun to develop different models of friendship that
students can manipulate and refine. Our goal is to make scientific models readily
accessible and modifiable by students so that they begin to develop an appre-
ciation of the power of models for understanding and refining theories. Rather
than providing students with models that reflect the “received truth of science,”
such as Newton’s laws, we want to provide students with models, such as mod-
els of friendship, which they can critique. The students then are able to test and
refine the models or reject them altogether and create new models that reflect
their understanding of friendship. In this way students are acting like scientists,
searching for weaknesses in models, running models under different conditions,
and engaging in empirical research in order to test and refine the models. They
are learning how theory development and refinement generate empirical questions
and investigations. We will use these friendship models and possible investiga-
tions to illustrate the different kinds of scientific meta-knowledge that we think are
important.

In the next four sections, we describe meta-scientific knowledge in terms of its
four components: meta-theoretic knowledge, meta-questioning knowledge, meta-
investigation knowledge, and meta-analysis knowledge (note that we do not mean
“meta-analysis” in the statistical sense). We should emphasize though that meta-
questioning knowledge includes meta-knowledge about forming both research ques-
tions and hypotheses, while meta-analysis knowledge includes meta-knowledge
about data analysis and synthesis. For each of the four sections, describing the
four types of scientific meta-knowledge, there are five subsections that explicate the
different aspects of the meta-knowledge: (1) the different types, (2) the purposes,
(3) the creation process, (4) the criteria for evaluation, and (5) the synthesis of
the different types. In a final discussion section, we summarize the framework and
discuss the issues it raises.

Meta-theoretic Knowledge

Different Types of Models

Meta-theoretic knowledge includes knowledge about the nature of scientific mod-
els and theories. In our work on epistemic forms and games (Collins & Ferguson,
1993), we characterized three types of theoretical models (or epistemic forms) that
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researchers use to guide their inquiry: structural, causal (or functional), and dynamic
process (or mechanistic) models. The different forms of structural models include
primitive elements (e.g., chemical elements), stage models, cross product tables
(e.g., the periodic table), hierarchies, and comparison tables. Similarly there are dif-
ferent types of causal models, such as causal chains, form—function analysis (e.g.,
Hmelo-Silver & Pfeffer, 2004), and multifactor models (as in medicine). Grotzer
and Perkins (Grotzer, 2003; Perkins & Grotzer, 2005) present a more detailed tax-
onomy of causal model types. Finally there are different process model types, such
as system-dynamics models (e.g., Mandinach & Cline, 1994), production systems
(Newell & Simon, 1972), and agent models (e.g., Wilensky & Resnick, 1999). All of
these representational forms have epistemic games (i.e., rules and strategies) asso-
ciated with them, which are practices scientists use as they construct models to
characterize and theorize about different phenomena.

We can illustrate the different model types with examples of friendship models
for each of the three types: a stage model of friendship (structural), a multifactor
model of friendship (causal), and an agent model of friendship (dynamic process).
We want to reiterate that these models are not meant to be correct models, but rather
models with enough intuitive grounding for young students to test and refine.

The stage model of friendship shows how the five top-level factors in the multi-
factor model of friendship (shown in Table 3.1) might change over time among pairs
of friends. There might be variations on this stage model that reflect a friendship that
lasts a very long time (delete stages 4 and 5) or a friendship that breaks up suddenly
over some event (delete stage 3).

The multifactor model of friendship, shown in Fig. 3.1, postulates a possible set
of factors that affect the strength of friendship between pairs of people. This model
has five top-level factors (the same as in the stage model) and a set of factors that
contribute to each of the five top-level factors.

We have developed some preliminary prototypes for a number of different agent
models, where different types of people interact by calling one another on the phone.
The information they communicate to each other (e.g., “so-and-so lied about you™)
leads the recipients to alter the values of parameters that reflect their feelings for
each of the other people in the network, based on rules of the model (e.g., “if I

Table 3.1 A stage model of friendship that characterizes the relationship between two people

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Getting to Close friends  Drifting apart  Just broken up Not friends
know
Trust Increasing Very high Decreasing None Low
Common Increasing Many Decreasing Rejecting Not applicable
interests
Proximity Seek out Seek out Seek Avoid Neither
sometimes
Effort Very high High Decreasing None Low

Communication Difficult Easy Difficult None Easy
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Friendship

Proximity

Common Communication
Interests
Share Like same Get together Say nice things
confidences activities often to each other
Like same Go to Do things for Amuse each
things same places each other other
Defend to Help when Listen to
others needed each other
Keep Give each
confidences other things

Fig. 3.1 A multifactor model of friendship

Live near
each other

learn a person has lied about me, I will decrease my liking of that person”). These
are simple agent models and lack graphic representations of the behavior of the
agents, such as those in models like the Sims. However, they are both runnable and
modifiable, so young students can see how the models behave under different input
conditions and rules, which they then can modify. We will give a brief description
of one of the more complex agent models.

An Agent Model of Social Interaction (Community Model)

This model embodies a personality for each person in a community, where the per-
sonality is determined by values on six different personality characteristics. People
vary as to how appealing, amusing, talkative, honest, sweet, and shrewd they are. In
this world, people call up people they like and tell them facts about people in the
community and hear facts from the people they call. A person does not call the same
person a second time until they have new facts to communicate.

People each start with 10 facts, assigned randomly, and acquire new facts that
are generated throughout. They also remember any facts they are told. Each fact is
about a person in the world and varies in truth and amusement value. People do not
know about the truth of a fact, unless it applies to them or they made it up. Facts are
remembered for a long time so that when new members join the community, the old
members have lots of facts to tell them.

People tend to like people who are appealing and tell them amusing facts.
Talkative people share more confidences and call more people. Dishonest people
make up facts, and sweet people only say nice things. Shrewd people tell you nice
things about people you like and bad things about people you do not like.

Each person has a degree of liking for each of the other people, which varies
widely. Liking depends on many things, such as how appealing and amusing the
other person is and whether you have discovered them to be dishonest. Depending
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on how much they like the person they are talking to, they will end the conversa-
tion sooner or later. Either party can end the conversation. The system can track
how much each person likes the others over time to see how relationships in the
community change over time.

Purposes of Different Models

Different model types serve different purposes. Structural models highlight the rela-
tionships between different elements in the models. Causal models depict the causal
and functional dependencies between elements in the models. Dynamic process
models allow one to run models of processes to see the consequences of differ-
ent assumptions in the models. These runnable models can unpack mechanisms that
explain the causal relationships depicted in static causal models, like the multifactor
causal model shown above. Each different type depicts different relationships and
properties. We will exemplify the purposes of different model types in terms of the
three examples introduced above.

Stage models are valuable because they show how processes evolve over time.
They are common in historical analysis, psychological analysis, and analysis of any
process that can be characterized by a series of states. One of the most famous stage
models is the cultural progression from hunter—gatherer to agricultural to industrial
societies. Stage models help people to understand changes that occur in the world.
For example, the stage model of friendship we presented in Table 3.1 might help
children understand the way others are behaving toward them and even the way
they are behaving themselves.

Multifactor models are a common way to analyze causality in systems. They are
particularly pervasive in psychology and medicine, but are common in many other
disciplines where events are caused by multiple factors. In well-specified multifac-
tor models, variables (called factors or independent variables) are linked together
in a tree structure. The branches of the tree are AND-ed together if the factors
are all necessary to produce the desired value on the dependent variable. They are
OR-ed together if any of the factors are sufficient to produce the desired value of
the dependent variable. Often the factors are neither necessary nor sufficient, as
in the multifactor friendship model we showed, where we identified a number of
factors that taken together tended to facilitate friendship between pairs of people.
Multifactor models are useful because they specify the different factors that produce
a particular outcome and show how they are interrelated.

Agent models vary in the degree of intentionality the agents embody (Russell &
Norvig, 1995). The friendship model we described has agents that have character
traits, but no specific intentions. Other agent models we have been developing
have different strategies for pursuing goals, such as getting people to like them.
By running agent models, it is possible to see the consequences of different ini-
tial conditions and rules in the model. Some of the kinds of research questions that
one might investigate with the model we described are the following: Do dishonest
people start out being liked and end up being disliked? Are people with a few friends
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liked more intensely than people with a lot of friends? What happens when you
introduce a liar into a community of honest people? Do people tend to make friends
with people who have the same level of appeal? The power of agent models derives
from the ability to study these kinds of questions and manipulate different rules and
conditions to see the effects.

Creating Models

The different epistemic forms or model types are tools for making sense of the
world. The structural forms are often the first forms people use to try to create a
model. The simplest structural form is just a list so that if you are trying to account
for the variables that affect friendship, you might start by creating a list of the causes
or important factors that lead to a good friendship. As we explained in Collins and
Ferguson (1993), a good list must satisfy a number of constraints: it should have
multiple elements but not too many, the elements should all be of similar types, the
elements should cover all the possibilities, and they should be mutually exclusive.
If the list gets too long, or the elements are not all of the same type, then it might be
that the list should be turned into a hierarchy or table, or one of the causal models,
such as a multifactor model (see below). Trying to satisfy all these constraints helps
the sense maker create the list.

Stage models are a simple type of time-structured list, but they invoke additional
constraints. The simplest stage model is a list constructed with the constraint that
the stages follow each other sequentially without overlap. Figure 3.2 shows a more
complicated version of a stage model. Each stage might be characterized by multi-
ple characteristics, and furthermore these characteristics may be arranged on a set of
dimensions (e.g., the boy was angry and tired before his nap, but happy and energetic
afterward). In a more complicated stage model, which is both structural and causal,

Stage 1 Stage 2 Stage 3 Stage 4
—» Char,onDim1 | Char.onDim1 | Char.onDim1 | Char.on Dim1
+— Char.onDim2 | Char.onDim2 | Char.onDim2 | Char.on Dim 2
Inter- _ _ ) )
relationships [—*| Char.onDim3| Char.onDim3 | Char.onDim3 | Char.on Dim3
—
™ Char.onDim4 | Char.onDim4 | Char.onDim4 | Char.on Dim4

Lt

Reasons
for
transition

! l

}

for

Fig. 3.2 A characterization of stage models

Reasons

transition

for

Reasons

transition
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the interrelationship between the variables might be specified (e.g., energy state
determines mood) and the reason for the change from one stage to the next specified
(e.g., a nap leads to an increase in energy state). The last four constraints (i.e., mul-
tiple characteristics, specified dimensions, specified interrelationships, and reasons
for transition) are all optional constraints that a person might or might not use in
constructing a stage model.

We created the stage model of friendship shown earlier by first identifying
a top-level list of factors (i.e., trust, common interests, proximity, effort, and
communication) and treating these as dimensions that vary over time. Then we
decided on a set of stages that friendships often follow and assigned values to each
dimension for each of the stages we identified. As we mentioned earlier, one could
also have a stage model for lasting friendships, or friendships that dissolve because
of some incident, such as a deep disagreement, a betrayal of trust, or competition
for another person.

Multifactor models are also created by starting with a list of factors that are con-
jectured to affect a dependent variable. Then the goal is to create causal chains
that link the different factors to the dependent variable. Multifactor models can
be expanded into system-dynamics models by adding feedback loops between the
different variables. In the simple multifactor model of friendship we created, the
different factors were assumed to affect one of the five top-level factors, which in
turn affected the dependent variable (i.e., the strength of friendship).

Creating agent models is more difficult. The modeler first has to identify all the
different kinds of agents that will live in the community and the kind of background
world in which the agents interact. Then each agent needs to be given a set of states
they can have (such as holding beliefs), actions they can take (such as talking to
other agents), and reactions they can have (such as changing their beliefs), which
can be specified in the form of rules for interacting with other agents in the world. If
the agents possess higher order intelligence, one can also specify things like goals to
pursue (such as getting people to like them), strategies for achieving the goals (such
as flattering people), and even intentions or purposes to motivate them (such as the
pursuit of happiness) (see Russell & Norvig, 1995). An important aspect of such a
simulation model is how the behavior of the agents will be represented to the user,
whether in dialog, tables, movement of agents around the world, or graphs of some
kind. Many simulations of agent models provide multiple displays, which the user
can manipulate in order to study different aspects of the behavior of the system.

Characteristics of a Good Model

There are a number of characteristics that a well-designed model should have. We
have tried to characterize them in a way that is general to all of the different types
of models:

e Accuracy: The model should accurately reflect some aspect of the way a system
behaves or is structured. No model completely characterizes any system, but it
should be accurate within the scope of its boundary conditions.
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e Generality: The model should account for as wide a variety of phenomena in
the world as possible. The model should cover all the phenomena within its
scope.

e Parsimony: The model should be as simple as possible, but no simpler (to para-
phrase Einstein). Parsimony helps to make the model clear and transparent to
users.

e Useful: The model should have potential application to understanding and pre-
dicting the behavior of the modeled systems. While many models are constructed
without regard to their application, the best models turn out to have useful
applications.

e Coherence: The model should fit with everything that is known about the domain.
In particular, as explained in the next section, it should cohere with other models
to form an integrated theory of the domain.

How Different Models Fit Together

Scientific theories, in our view, are made up of a number of linked models. In
chemistry, for example, the primitive elements (hydrogen, helium, etc.) are arranged
in a cross product table (i.e., the periodic table). There is an underlying atomic struc-
tural model of protons, neutrons, and electrons arranged in shells that accounts for
the structure of the periodic table. There are also constraints that determine how dif-
ferent elements combine into molecules, based on their atomic structure. Hence the
standard theory in chemistry is made up of different types of models linked together
in systematic ways.

In our prior work (Frederiksen & White, 2002; Frederiksen, White, & Gutwill,
1999; White & Frederiksen, 1990), we illustrated how various models of electrical
circuits can be linked together to create a comprehensive theory of circuit behavior.
Models of different types can be used to embody different perspectives on the behav-
ior of a system. For instance, functional models can be used to show the purpose of
a circuit and how subsystems within the circuit interact to achieve that purpose.
Constraint models can be used to portray circuit behavior at the macroscopic level.
They can reason about circuit behavior through the application of a set of laws that
govern the distribution of voltages and currents within the circuit. Process models
can be used to represent the behavior of circuits at a more microscopic level. They
can show, for instance, how electrical forces within a circuit cause mobile charged
particles to be redistributed when, for example, a switch is closed.

Such models can be linked in different ways. They can be linked derivationally
when the behavior of one model type is emergent from the behavior of another
model type (Wilensky & Resnick, 1999). For example, Frederiksen and White
(2002) describe how their macro-level model of circuit behavior (which employs
circuit laws) can be derived from the local-flow model of electricity they present,
and how the local-flow model can be derived from their particle model of electricity
(the micro-level model).

In addition, models can be linked developmentally when there is a “progression
of models” (White & Frederiksen, 1990) such that a higher order model is created
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from a lower order model by adding new rules or entities. For example, a sim-
ple local-flow model of circuit behavior allows people to solve problems about
serial circuits, and an elaboration of the model allows people to solve problems
about serial, parallel, and hybrid circuits. Such model progressions, which lead to
theory development, can involve the addition, modification, differentiation, or gen-
eralization of model components or even the construction of new models. Model
progressions can be used to represent the evolution of scientific theories, as well
as representing possible paths to understanding a domain (i.e., from low-level to
high-level understanding).

The models of friendship we have been developing are linked together in various
ways. We mentioned how the top-level factors in the multifactor model form the
dimensions of change in the stage model and how emergent properties of the agent
model appear in macro models such as the multifactor model of friendship. We have
also developed a number of other models that are linked to the models shown: a flow
model of trust, a system-dynamics model of popularity that links different variables
in feedback loops, and an aggregate model of clique formation that reflects emergent
behavior of the agent model described earlier. In addition, we have been creating
a variety of agent models, one of which has agents that form friendships based
on common interests and one where the agents pursue friendships using strategies
derived from the multifactor model of friendship. The goal is for young learners
to see how models at different grain sizes and addressing different phenomena are
linked together to form a theory of a domain and how such a theory can evolve as
research progresses.

Given the growing importance of modeling in science, we think it is critical
that students learn about the different forms that models can take and how differ-
ent models can be linked together to form a coherent and powerful theory. Hence,
the essential meta-theoretic knowledge that people need to learn is how theories
and models are created, refined, and extended. Our work on epistemic forms and
games (Collins & Ferguson, 1993) is a preliminary attempt to outline how mod-
els are created. The work on linking models (Frederiksen & White, 2002; White &
Frederiksen, 1990) is an attempt to characterize how different models can be inte-
grated to form the theory of a domain, which has implications for how models are
refined and extended. We think these various pieces fit together to form the basis for
the development of meta-theoretic knowledge in science.

Meta-questioning Knowledge

Different Types of Research Questions

In order to evaluate models and theories, it is necessary to turn elements of the the-
ories into research questions that can be directly investigated. Sometimes research
questions are quite vague (e.g., What are the precursors to heart disease?) and some-
times the questions are specific (e.g., Does taking a particular drug reduce one’s
cholesterol level?). The hypotheses in any study are the different possible answers
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to a research question, which can be based on alternative theoretical positions. For
example, in the Framingham Heart Study, which tried to identify precursors to heart
disease, researchers identified some 200 plus possible precursors to measure. They
then followed the people in Framingham over time to see if they developed heart
disease. These 200 plus variables were their alternative hypotheses as to what might
lead to heart disease.

The different epistemic forms (i.e., types of models) generate different types of
research questions. Table 3.2 gives examples of the types of questions that arise in
constructing structural models, causal models, and process models. These are not
an exhaustive set of questions needed to construct the different types of models, but
they are some of the most common research questions that arise as scientists create
models to express and develop their theoretical ideas.

Table 3.2 Types of research questions generated by different epistemic forms

Form Examples of questions

Structural What are all the different types of X?
What are the characteristics of X?
What stages does X go through as it evolves?
What are the components of X and how are they related?
Causal Does Y cause X?
What effect does Y have on X?
What causes X to happen?
What are all the factors that affect X?
Process What process produces X?
What are good strategies for accomplishing X?
What are the rules of interaction between X and Y?
What mechanism enables X to be achieved?

If possible, it is always best to construct research questions that differentiate
between alternative theories or models. Any of the questions shown in Table 3.2
can be turned into a question to differentiate between two models. For example, the
first structural question can be transformed into “Are the different types of X from
set Y or set Z?” The first causal question can be transformed into “Does Y or Z
cause X?” The first process question can be transformed into “Is X produced by
process Y or Z?” Research questions that differentiate between alternative models
force researchers to generate alternative hypotheses as answers to their question.

We can illustrate how the different types of research questions are tied to par-
ticular models in terms of the three models of friendship described in the previous
section. These examples do not exhaust the possible research questions one can ask
about each of the friendship models, but they do give the flavor of the kinds of
questions each model provokes.

e The stage model suggests the following questions: What are the critical stages
through which friendships evolve? Are there different trajectories for different
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kinds of friendships? What are the critical characteristics on which the stages
differ? What causes the transition from one stage to another?

e The multifactor model suggests the following questions: What are all the factors
that affect whether two people form a friendship? Which factors have the largest
effect? How do the factors combine to affect the degree of friendship? What
causal chains link each factor to the degree of friendship?

e The agent model suggests the following questions: What strategies do people
follow to get others to like them? What is the process of clique formation and
do cliques change over time? Which kind of statements have the most effect on
increasing or decreasing one’s liking for another person?

Another type of research question addresses the issue of generalization. When one
conducts an investigation, it is carried out in a particular context and, in the social
sciences, with particular participants. In order to generalize the results of the study,
it is possible to generate research questions of the type “Do the findings hold in
other contexts?” or “Do the findings hold with different types of participants?”’
Establishing the bounds on models and theories is an important part of the scientific
enterprise, and so these kinds of generalization questions are pervasive in research.

Purposes for Research Questions

The fundamental reason for constructing research questions is to derive some impli-
cation from a model or theory that can be directly investigated. Hence, research
questions perform the job of narrowing down or extracting from complex theories
a particular issue that can be studied. For example, Einstein’s general theory of rel-
ativity was a broad and complex theory, which was not easy to test. But specific
and surprising implications of the theory could be tested. One implication is derived
from the theory’s prediction that light waves bend in a gravitational field. Hence, a
light source at a great distance, such as a distant quasar, should appear in two dif-
ferent places in the sky, if located behind an object with a strong gravitational field.
The research question this generates is “Can we identify a distant object that appears
in more than one place in the sky?” This question then led to a specific investigation
that could test one implication of a complex theory.

Ideally research questions help to differentiate between possible theories.
Finding crucial questions that in fact distinguish between alternative theories is
very difficult. And when a crucial question is investigated, the researchers whose
theories are not supported by the data usually can come up with some explanation
that still preserves their theory, albeit in a modified form. But even in investigations
that do not compare alternative theories, researchers have to come up with questions
and data that enable them to differentiate their explanations for their findings from
obvious alternative explanations that other researchers might generate.

Very often the purpose of a research question is to solve some practical prob-
lem or help achieve some worthy goal in the world. Hence the question driving the
Framingham Heart Study (i.e., What are the precursors for heart disease?) was a
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very important research question to investigate, since so many lives depended on
the answers that were found. In fact the study identified factors (e.g., smoking, high
cholesterol, and high blood pressure) that could be treated, and hence the findings
of the study have led to the saving of millions of lives.

Criteria for Good Research Questions

There is an art to generating good research questions. We have identified a number of
characteristics that make for a good research question. These represent criteria that
researchers should use when they generate possible research questions to investigate
and need to choose which question(s) to pursue.

e Interesting. A good question addresses an issue other people care about. It is
particularly interesting if the model or theory generating the question predicts a
surprising answer to the question.

o Worthwhile. A question that addresses a salient issue in the world, such as the
precursors of heart disease, is clearly worth pursuing.

e Distinguishing. A question that leads to answers that would help distinguish
between competing theories is an important research question.

e Accumulative. If a question builds on previous research, it helps researchers
create a more comprehensive theory for the domain being studied.

e Feasible. A research question needs to suggest investigations that can clearly be
carried out and give results that fairly answer the question.

Generating Research Questions

There are generally three sources of research questions: theory, data, and practical
issues or problems in the world. We will elaborate on how each of these sources acts
to generate research questions.

When constructing a new theory, there are many questions that arise. As we indi-
cated earlier, each of the epistemic forms or model types gives rise to a number of
different questions. Testing the implications of a model similarly leads to a particu-
lar set of questions depending on the form of the model. And as we suggested, when
there are competing theories, questions that distinguish the theories are particularly
worth pursuing. Finally there are questions that come out of the limitations of any
theory, such as questions of generalization or of filling in holes in the theory. For
example, when Mendeleyev first constructed the periodic table, there were a number
of elements that the table predicted should occur in nature, but that had not yet been
identified. Hence his theory led to the research question: “Can we find elements with
the missing characteristics?”” As these examples suggest, models and theories are a
very rich source of research questions.

In addition to theory, data or findings from an investigation often lead to new
research questions. This happens in two ways. Often, some data found in a study



56 B.Y. White et al.

seem to contradict the predictions from a theory. This can lead to revising the theory,
but it can also lead to questions about boundary conditions of the theory (i.e., its
generalizability). In other cases, patterns of data may not contradict the theory, but
may suggest that the theory is incomplete in some way. In most cases, anomalous
data suggest revisions to the theory, which in turn lead to new research questions.

As we indicated in our discussion of the Framingham Heart Study, research ques-
tions often arise to achieve goals that derive from needs or observations of the world.
The history of science is filled with stories of how the world has posed questions for
researchers that have led to important investigations in science.

How Research Questions Fit Together

When one research question is answered, it often raises a set of related ques-
tions. One way this occurs is when a particular structural pattern is found, as when
Mendeleyev discovered the periodic table, it raised the question of why the ele-
ments in a single column have similar properties. This question led eventually to the
model of the atomic structure of atoms. Similarly, a causal model, such as a multi-
factor model, raises questions about the mechanisms that lead each of the factors to
have the given effects. These two examples show how answering one research ques-
tion can lead researchers to generate related questions about underlying processes,
structures, and mechanisms, which in turn leads to more comprehensive theories for
any given domain.

In summary, the meta-questioning knowledge that we think students need to
acquire includes learning about the different types of research questions that can
be asked and how each type of question is related to particular epistemic forms.
Students also need to develop an understanding of how questions can be created to
distinguish between competing theories and how, in the process of creating a deeper,
more coherent theory for a domain, one question leads to another.

Meta-investigation Knowledge

Different Types of Investigations

The third component of scientific meta-knowledge is an understanding of the
different forms that scientific investigations can take. There are many different
investigation methods, but they generally fall into two basic types: (1) exploratory
inductive investigations (often referred to as scientific induction) and (2) con-
firmatory investigations (often referred to as the hypothetico-deductive method).
Exploratory inductive investigations are employed when one has broad research
questions and some general theoretical ideas, which suggest interesting data sources
to study, but which are not specific enough to generate particular hypotheses. The
goal is to obtain data that will constrain one’s efforts to develop more detailed mod-
els and theories. Confirmatory methods are used when one has a well-developed



3 The Nature of Scientific Meta-Knowledge 57

model, or set of competing models, which allows one to develop a set of theory-
based hypotheses to test. The goal is to test each of the hypotheses to see if the
findings are consistent with its theoretical predictions. This allows one to deter-
mine which models are most consistent with the data and which are not suitable for
explaining the phenomena that have been investigated.

Exploratory Inductive Investigations

Galileo is famous for developing exploratory inductive methods in science. In his
experiments on pendulums and gravity, he systematically varied the elements that
he thought might affect the period of the pendulum and the speed of a ball rolling
down an incline. From these exploratory investigations, he derived equations for the
motion of pendulums and falling bodies. The Framingham Heart Study is a modern
variation on his method using natural variation rather than controlled manipulation.
The investigators in this study collected data from many people in Framingham
Massachusetts on a large number of variables that they thought might influence the
likelihood of getting heart disease. They then followed the people over many years
to see if they developed heart disease and identified a number of variables that were
precursors to heart disease.

The kind of data collected in exploratory investigations has a strong effect on the
types of models that can be constructed from the data. Quantitative data support the
construction of constraint-equation models, as we see with Galileo, or multifactor
models, as we see in the Framingham Heart Study. To construct process models,
such as the agent model described earlier, one needs a richer data stream, such as
observational, protocol, or discourse studies provide. The goal of exploratory studies
is to identify patterns in the data and systematic relationships that allow for the
construction of models. These models can then be evaluated using confirmatory
methods.

Confirmatory Investigations

Confirmatory investigations, which are designed to test theory-based hypotheses,
can take many different forms. The best known is the randomized controlled trial, in
which one or more hypotheses are tested by comparing conditions that correspond
to each of the hypotheses being tested. Often such a test of a hypothesis contrasts
an “experimental” condition, which includes some particular feature, with a control
condition that lacks that feature. In such cases, the competing hypothesis is that
the feature will have no effect, which is known as the “null hypothesis.” In order
to ensure the generality of the findings, the participants, or objects being studied,
are assigned randomly to the different conditions. Often special efforts are made to
control any variables that might affect the results, other than those being deliberately
varied. After the experiment has been carried out, the data are analyzed to see if they
are consistent with what was predicted by any of the hypotheses.

In one example of such a randomized controlled trial, we tested hypotheses about
the impact of self-assessment on students’ learning (White & Frederiksen, 1998).
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In this study, three middle school teachers taught science lessons in two differ-
ent ways using our ThinkerTools Inquiry Curriculum in which students construct
theories of force and motion. By randomly assigning their classes to the experimen-
tal or control conditions, it was possible to hold the teacher variable constant. The
experimental group engaged in systematic self-assessment of their work, whereas
the control group spent the same amount of time reflecting on what they liked and
did not like about the ThinkerTools learning environment. The experimental group
showed significant gains as compared to the control group on a number of different
assessments of their learning. The findings support the theory that self-assessment
can positively impact the learning of science and scientific inquiry. One advantage
of collecting multiple measures of performance is that the patterns found can lead to
further hypotheses and theory refinement, such as theories about the impact of low-
achieving students working on self-assessment in collaboration with high-achieving
students.

Examples of Investigations

We can illustrate different confirmatory and exploratory investigation methods in
the context of creating and testing models of friendship. In order to construct a mul-
tifactor model of likeability, students could break into groups to conduct interviews
or surveys of people they know in order to identify critical factors. They might ask:
What is it about other people that makes you like them? If different groups of stu-
dents construct different multifactor models of likeability, these models could be
tested by different confirmatory methods.

One kind of confirmatory study might set up a series of small parties, where
actors talk to different people, who do not know the nature of the study. The actors
would apply different strategies to get people to like them. Each actor would apply a
different strategy in each party so that the strategies and actors are properly counter-
balanced. For example, one pair of actors could use a flattery strategy, another pair
could appeal to common interests, and a third pair could tell amusing stories. After
talking to each person, the people participating in the party could rate each of the
actors on likeability. The average likeability rating for actors using each different
strategy would be a measure of the strategy’s effectiveness. This experiment thus
could determine which of the strategies is most effective and the relative efficacy
of each.

Another kind of study, using observation and interviews, might be helpful for
constructing a stage model, a multifactor model, and an agent model of friend-
ship. The idea is you would study how the relationships in a new group of people
evolve over time—for example, a book group made up of people who do not
know each other beforehand. The book group would be videotaped, and inter-
views would be conducted with each participant shortly after each meeting. The
interviews might ask (1) How do you feel about X and why? (for X = each
person), (2) Did you do anything to make others like you?, and (3) Did you do
anything to attract or repel X and if so what? The research questions could be the
following:
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How do the relationships change over time?

What factors determine how much each person likes another?

What strategies do people use to attract or repel others?

Do cliques form and change over time? What is the process of clique formation?

Purposes of Different Investigations

The goal of exploratory investigations is to create or refine a model. Often different
methods are applied to triangulate on the phenomena in order to construct a more
robust model. Different inductive methods should be applied depending on the type
of model the investigator is trying to create. We described one method that might
be used to create a multifactor model, though such self-report data may be system-
atically biased. If one wanted to create the kind of agent model we outlined in the
theory section, you would need to apply more intensive methods. For example, you
might carry out an observational study in different groups, with cell phones that
record all conversations, in order to identify salient personality types, the nature,
duration, and frequency of the messages between different people, and the bases for
the cliques that form among the groups. A limitation of such intensive investiga-
tions is that the researchers may have systematic biases in what data are collected
and in how they are interpreted. That is why confirmatory studies are critical to the
development and refinement of models.

Confirmatory investigations are needed to evaluate the accuracy of models and to
resolve conflicts between different theories. They are also critical to determining the
boundary conditions for different models in order to decide the range of situations to
which the model applies. As described above, theories and models generate research
questions, which in turn generate hypotheses. These hypotheses are then tested with
investigations designed to see whether or not the prediction made by each hypothesis
is supported.

Creating Investigations

There are a number of steps to creating an investigation. The first step is usually to
decide on your research questions. Some research questions, such as “what are all
the factors that affect X,” lead to exploratory investigations. Other questions, such
as “does X have a positive effect on Y,” suggest confirmatory studies. In order to
address your question, you need to simulate the situation or process you are trying
to model. If your question is “what factors affect whether a person likes another
person,” you need to create a situation where people are deciding whether they like
someone or commenting on why they like or dislike other people. If you want to
know whether a particular strategy causes people to like the person employing the
strategy, then you need to create a situation where people are judging other people
who employ that strategy. If you have complex research questions, such as “How
do cliques form in a community?” and “What are the characteristics that determine
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which people form cliques together?”, then you need to carry out an investigation
that embodies the entire process of clique formation.

Next you have to decide how to collect a representative sample with respect to
the phenomena the model addresses. If you are surveying or interviewing people,
you choose a random sample of people who fit the class that the model is supposed
to characterize. If you are creating a situation that is supposed to reflect situations in
the world, then consider whether there are characteristics of the situation you have
created that will bias the results you find. For example, if you are creating a party
where actors are trying to make people like them, it is important to select a random
sample of people that is large enough to represent the population you are modeling
(e.g., high school students). It is also critical to consider ways that the party might
be unrepresentative of the ways that people form opinions about others. Ensuring
that the subjects are unaware of the nature of the experiment is one way to make
the party more representative, but it is still a highly artificial situation that distorts in
different ways the basis on which people form opinions about others. To compensate
for this artificiality, it is necessary to carry out other investigations that address the
same issues.

To carry out an investigation, you need a detailed plan of the steps you will
follow, specified in enough detail that other investigators could carry out the inves-
tigation themselves. For example, if you are conducting interviews with people to
determine the factors that make for likeability, you need to specify the questions
you will ask in a survey or interview, how the respondents will be chosen and how
the data will be collected. In surveys, you have to specify the layout and order of
questions. In interviews, you have to specify the method of recording answers and
the order in which the questions will be asked. In the party simulation, you need to
specify how different actors will carry out the strategies so that there is replicability
in implementing the strategies.

It is wise to check your plan to see how feasible it is to execute and whether it
produces the kind of data you expect. The most common way to evaluate a plan is
to conduct a pilot study with a few subjects over a short period of time. You do not
have to analyze the pilot data carefully, but you should check to see that the data you
are getting are reasonable. You should consider whether any changes in your plan
are warranted on the basis of the pilot results.

When you carry out the investigation in full, you should look carefully at the
results to see if they are plausible and consistent. You also need to determine whether
the plan was executed as specified or whether there were problems that arose that
caused the investigation to vary from the planned procedure.

Further Issues to Consider When Designing Investigations

Confirmatory studies, designed to confirm or test hypotheses, are best suited for
situations where there are a small number of hypotheses and variables. When situa-
tions are complex, investigators may only be able to test a few specific predictions
of a theory. Many confirmatory studies simplify or standardize the situation and
collect a large amount of data, hoping that factors that have not been controlled
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are contributing randomly to the effects being investigated and will not affect the
group averages in any systematic way. Another way to deal with complexity is
to use multivariate methods, such as regression or covariance analyses. The intent
in these methods is to control complexity by taking into account, through statisti-
cal adjustments, factors, other than those specified in the hypotheses, which might
have effects on the results. The problem with these multivariate methods is that
they depend on correlational evidence and ignore variables that are not quantifi-
able. Many verification studies, such as those using analysis of variance methods,
simplify the situation in order to get enough constraint to establish a strong causal
argument.

In exploratory inductive investigations, different methods and data sources are
often used to cover the phenomena of interest in order to construct a more robust
theory. Dewey (1910, Chapter 7) suggested three principles for regulating the obser-
vation and collection of data in forming “explanatory conceptions or theories” that
are still wise advice today: (1) Care must be taken in differentiating between what
is observed and what is inferred, so as not to jump to hasty conclusions about one’s
theory. (2) One needs to look for multiple cases to see how general one’s conclusion
is, but one also needs to look for contrasting cases in order to determine the factors
that are critical to the conclusion. (3) One needs to look for exceptions and contrasts
that may challenge one’s initial conclusions and suggest others (which is similar to
having control conditions in a confirmatory investigation). One often learns more
from examining anomalous cases that do not have the expected features.

Characteristics of a Good Investigation
There are a number of characteristics that make for a good investigation:

e Directness: The investigation should be tightly linked to the phenomena being
modeled. The more indirect the measures, the more likely that the data will not
accurately reflect the real world (Frederiksen & Collins, 1989).

e Replicability: The investigation should be carefully specified so that other
researchers can carry out the investigation and ideally find the same results. This
is related to the generalizability of the results. The plan for the research should
characterize the situations within which the same results can be expected.

e Transparency: The procedures should be readily understandable by other
researchers so that they can evaluate how well the investigation addresses the
claims made. Transparency is also critical so that other researchers can replicate
the investigation.

e Systematic: The procedures should be carried out thoroughly and systematically
so that the results found can be relied upon. This requires representative samples
and careful measurement. The accuracy of the findings depends on carrying out
the investigation in a systematic way.

e Distinguishing: For confirmatory investigations, the experimental design should
test the hypotheses so that the findings will support particular theories or models
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and rule out other plausible theories and models. Such investigations are labeled
“crucial experiments.”

e Feasible: The investigation should be possible to carry out by other investiga-
tors so that the results can be replicated. Ideally the experimental conditions
should be easy to create and the instruments and resources needed widely
available.

How Different Investigations Fit Together

There are three major ways that different investigations can relate to one another:
(1) One investigation can replicate another. (2) One investigation can complement
another in order to triangulate on the results. (3) An exploratory investigation
can lead to a confirmatory investigation, which can trigger further exploratory
investigation. We will briefly discuss each of these relationships.

No investigation is ever an exact replication of another. The situations will be
different, the participants will be different, and the procedures will be different.
Replications help to determine how general the results are by showing whether
they hold up under all these differences. When different results are obtained in
a replication, it leads investigators to question whether the original results were
spurious or whether some critical difference between the two investigations led
to the different results. So replication is critical to the progressive refinement of
theory.

Triangulation is an important strategy when investigators are dealing with com-
plex phenomena. The goal is to bring different methods to bear on the same
phenomena. For example, an investigation about what factors make someone like
another person might collect data from three different sources: surveys with a range
of people, data on what strategies are effective at a simulated party, and structured
interviews with people about their friendships and feelings toward others. Other
kinds of data, such as ethnographic observation, would also be valuable in order to
triangulate on the best theory.

We have argued that exploratory inductive studies help in constructing models
and theories, whereas confirmatory investigations are used to test hypotheses that
represent competing theories; however, the process is really cyclical. Often con-
firmatory studies, especially if they include collecting rich data, provide clues for
further theory development through an embedded inductive investigation of those
data. This can lead to theory refinement and suggests new confirmatory inves-
tigations that can further refine and test the theory. Thus in scientific inquiry,
testing hypotheses deduced from theories and interpreting patterns in data to con-
struct new theories are intertwined. This process is complex and depends on
meta-knowledge of the forms of inquiry one is engaging in at a given time
and how they are interrelated as one moves from one form of investigation
to another. Meta-investigational knowledge also makes one aware of the pit-
falls and limitations of the forms of investigation one is using at any particular
time.
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Meta-knowledge for Data Analysis

Different Data Analysis Methods

Data analyses are systematic procedures for examining the information obtained in
an investigation. We classified investigations as either exploratory, confirmatory, or
mixtures of both, so we can characterize data analysis methods the same way. In
addition, we can classify them as qualitative or quantitative. In fact, most graduate
schools in the social sciences offer separate courses for quantitative and qualitative
methods, thereby treating them as distinct categories.

Although the methods for analyzing qualitative versus quantitative data may dif-
fer, we argue that the primary goals of the analysis remain the same. Thus data
analyses can perhaps best be characterized by how they support these common
goals: (a) coding and representing data to reveal patterns, (b) testing hypotheses,
(c) inducing new theoretical models, and (d) considering the generality of the find-
ings. Exploratory studies, in which the main goal is to develop a model that accounts
for the findings, require the testing of hypotheses to induce the model. Confirmatory
studies not only test hypotheses derived from existing models but also provide rich
data usually that lead to new models or theories (which are often about underlying
mechanisms).

In the following, we illustrate some different data analyses by describing how
data from the three studies we outlined previously, in the section on investigation,
could be analyzed.

Study 1. Qualitative and Quantitative Exploratory Analyses
Based on Interviews with Students About Their Views of Friendship

Data for this exploratory study are the tape-recorded answers students have given to
the open-ended question: What is it about people that makes you like them? Analysis
steps one can take are as follows:

Represent students’ responses through data coding. In coding, one seeks to create
as short a list of attributes as possible, which still covers all of the ideas that are
mentioned by the respondents. What results is a set of “emergent” categories to
capture the range of ideas expressed by students in responding to each question.
The categorized data are recorded in a data table that indicates, for each student,
which attributes were mentioned and which were not. A code book is also produced
that provides examples of responses given each code category. The same codes are
used for every respondent so that you can make comparisons among them.

Represent data in ways to see patterns. Create bar charts showing the per-
centage of students mentioning each response category to see what are the most
frequent attributes mentioned by students. Also, try to determine which attributes
“go together” in the respondents’ answers to the two questions.

Use the patterns in the data to build a model. Having identified the relevant
attributes, one might construct a multifactor model. By identifying which attributes
go together, one can identify factors that interact in the model.
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Consider the generality of the findings. The statistical tests of differences among
frequencies of categories will give an indication of the likelihood that one would find
similar results if the study were repeated with a new, comparable set of respondents.
However, the investigation method used (asking questions of respondents) limits
one’s ability to claim that these results have been shown to apply to real-world
friendship formation.

Explore the data to get ideas for follow-on analyses or investigations. As you
study the data, you might notice, for instance, that some attributes of friendship
seem to be mentioned more often by boys or girls. You could test this hypothesis by
looking at frequencies of categories separately for each gender. As you build your
multifactor model, you might think of new ways to test your model. For instance,
you might decide to ask respondents questions about particular friends, instead of
friends in general, to see if the same attributes are important for different people.

Study 2. A Quantitative, Confirmatory Analysis to Test Hypotheses
About Strategies for Making Friends

This proposed investigation sought to test elements of the multifactor model using a
“party” simulation. Imagine that actors were chosen to adopt different strategies for
making others like them, such as (1) flattery, (2) common interests, and (3) amusing
stories. For each strategy, there were a number of actors. Each group of actors was
chosen to be equally appealing a priori, on average. The people at the party circu-
lated and talked to all of the other people, including the actors (they were not aware
that there were any actors at the party). After they talked to each person, they rated
the actors on likeability using a five-point scale. In order to get reliable data, the
procedure was repeated with three different groups of people, with each actor using
a different strategy at the three parties.

Enter data into a data table. For each actor using a particular strategy, his/her
rating should be entered into a data table. The data table should use a systematic
design, so it will be easy to analyze using a statistics program or spreadsheet.

Represent data in ways to see patterns. Calculate the average likeability for each
strategy and actor. Look to see if any one strategy was better than any others and
make a bar chart of the means for each strategy and actor.

Test hypotheses. Calculate the mean rating for each strategy. If the pattern of
differences among strategies is consistent with any of the hypotheses, you can have
increased confidence in the model that generated that hypothesis. If the results are
not consistent with any of the hypotheses, think about why. Is the model inadequate?
Are there things going on in the study that the model did not anticipate?

Consider the generality of the findings. For each person, calculate the mean like-
ability for the actors who used each strategy. Then do a statistical comparison of
the means for each strategy using analysis of variance or t-tests. If there are sig-
nificant differences among them, there is evidence of generalizable trends for this
population.

Explore ideas for follow-on investigations. In order to get a better idea of the
reasons why people liked, or did not like, the actors who used particular strategies,
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one could interview the participants and ask them about their reasons for liking or
not liking each actor.

Study 3. Qualitative and Quantitative Exploratory Analyses Based
on Observation of the Development of Friendships Within a Book Group

This is a study of how groups of friends evolve over time in an actual social group,
here, a book group made up of people who do not know each other beforehand. The
goal is to construct an agent model that embodies the interaction patterns. Regular
meetings of the book group would be videotaped, and interviews would be con-
ducted with each participant shortly after each meeting. The interviews might ask
(1) How do you feel about X and why? (X = each person)? (2) Did you do anything
to make others like you? (3) Did you do anything to attract or put off X and if so
what? The research questions could be the following:

e What factors determine how much each person likes another?

e What strategies do people use to attract or put off others?

e How do their relationships change over time?

e Do cliques form and change over time? What is the process of clique formation?

Code the data. Code the interview data and enter the results into a data table, as
described for study 1. Code the interactions among all participants shown in the
videotapes of book group meetings. One way of coding the data is to consider each
person and code their interactions with other members of the group (this is the unit of
analysis). Things one might code are (a) Who are they addressing/commenting on?
(b) Are they interrupting? (c) What is their emotional tone (e.g., smiling, nodding,
grimacing, sighing)? (d) Are they agreeing or disagreeing? (e) Are they building on,
ignoring, or contesting the other’s ideas?

Represent data in ways to see patterns. One goal is to identify closely interacting
groups (cliques) based on observations of interactions among individuals. Cluster
analyses could be carried out using different kinds of data, such as positive inter-
action time and negative interaction time, the frequency of positive versus negative
interactions, and the positive feelings for each member expressed in the interview.
Groups could be identified for each meeting of the book group so that one could
look at changes in clique memberships. Another goal is to identify the precursors of
clique formation in terms of the kinds of interactions members have in prior meet-
ings. One could also look at the interview response codes for the same interactions,
such as the strategies people used to attract others.

Build a model and explore its ramifications with further data analyses. These
data analyses will provide a rich array of information about factors that contribute to
forming friendships in a new social group. The model is constructed by developing
various hypotheses about critical factors and determining whether they apply across
different circumstances. If they do, they become part of the model. Considering
implications of the model will lead to additional questions and, often, to further
hypotheses about factors that might be observable in the data at hand for the study.
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For instance, new criteria for video analysis might be suggested, which could then
lead to additional data analyses in which these hypotheses are tested.

Consider the generality of the findings. Since the study used only one social
group (the book group), data are not available to empirically test the generality of
the findings for other kinds of social groups that might be constituted. However, an
argument for the plausibility that the results are generalizable can be made based on
the typicality of the group used in the study.

Purposes of Data Analysis

The main purpose of data analysis is to support the development of convincing
arguments, which show how the findings from an investigation support particular
conclusions and have implications for theories. Date analyses examine the informa-
tion obtained in an investigation in order to meet several objectives in developing
and testing models and theories. These include the following:

(1) Creating representations that will reveal patterns: One objective is to code
and display data in ways that summarize the data and reveal patterns. Achieving
this goal requires what diSessa terms meta-representational expertise (see diSessa,
2002a, 2002b, 2004).

(2) Interpreting how data provide evidence with respect to competing hypothe-
ses: A second objective is to use patterns found in the data to determine which
hypotheses are supported or refuted by the data. These may be hypotheses that
were predicted ahead of time, using existing models (confirmatory studies), or that
emerge from the data to construct new models (exploratory studies).

(3) Exploring the data to develop new models, theories, and ideas for further
research: Another objective is to search the various representations of the data
for unanticipated phenomena or relationships among variables. Discoveries made
through this process may lead to modifying an existing model or to creating new
models and theories. This, in turn, leads to further research to investigate the utility
and generality of the new model.

(4) Establishing the generality of the findings: A final purpose of data analyses
is to provide evidence regarding the generality of a theoretical model—the range of
circumstances to which it applies. If there are limitations to the conclusions one can
draw about the model’s generalizability, this can lead to adding boundary conditions
to the model or to revising it. Alternatively, it may lead to suggestions for further
research in order to more adequately determine the generalizability of the model.

Pursuing these objectives leads to data analyses that enable one to develop and
test theoretical models, as well as to improve the range of coverage and explanatory
power of a theory.

Creating Analyses

Coding data. In developing ways of coding data, one should think about what
features of the data need to be represented to test existing hypotheses and develop
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new ones. Sometimes these features are not immediately available in the data and
need to be inferred or coded. This is most often the case when the data are quali-
tative, such as when they are based on participants’ responses and are coded using
categories or abstracted descriptions.

In order to see patterns, data obtained in different situations need to be repre-
sented using similar measurements or coded qualitatively using similar categories.
This makes it possible to make comparisons of data across different situations.
Coding of variables may be based on either predetermined aspects of responses, or
they may be “emergent” categories based on examining all responses and creating
categories that distinguish them in theoretically interesting ways.

Representing data to reveal patterns. Ways of representing data need to be
devised that will (a) indicate whether patterns predicted by a hypothesis or model
are present, (b) reveal unexpected patterns that may require modifications to the
model, or (c) reveal patterns that lead to the induction of a new model. The
goal in each case is to display relational features of the data that show what is
“going on” and thereby provide a way of testing the explanatory power of com-
peting theories. Tools used to represent data include statistical ways of describing
data (e.g., means or frequencies for different situations) and graphic tools for
visualizing relations (e.g., bar charts, scatter plots). Experience and education in
data analysis techniques will lead to creating a “library” of forms for displaying
data (cf., Giere, 1991). For instance, a graph of average values obtained before
and after a treatment, shown for two different treatments, may be a good way
to see if there is an interaction between treatment and effect in a confirmatory
study.

There are many kinds of patterns that can emerge from data, paralleling the many
kinds of relations among variables that are generated by different types of models.
In complex, multivariable data sets, the number of pair-wise relations among vari-
ables can be great, and the possibility of interactions among variables increases the
number of possible patterns even further. Exhaustively searching for all meaningful
relationships is often impractical. Thus the particular techniques used in data anal-
ysis to reveal patterns are often guided by the epistemic forms of the models one
is trying to create and test. The choices of epistemic forms and data analysis meth-
ods interact: you see data patterns through analyses that are themselves suggested
by theoretical models. In arguing for a particular interpretation of data, you need to
be cognizant of how other investigators with different theoretical orientations might
interpret the data. One of the most difficult things in data analysis is to be able to
“put on the hat” of a different theorist and consider alternative forms of analysis and
types of models which they might entail.

Testing hypotheses. If the investigation is a confirmatory study, then the predic-
tions made by the competing hypotheses need to be tested against the data. Similarly
in exploratory studies, one generates hypotheses that need to be tested. For each
hypothesis, one reviews the summarizations of the data, created in the previous step,
to see if the hypothesis appears to be supported or refuted. Investigators often use
both descriptive and inferential statistics to do this. In carrying out this step, you
must be sure to identify patterns that disconfirm predictions of the underlying the-
ory, or that were not anticipated, in order to see which aspects of the model need to
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be replaced or improved or if the whole way of thinking about the phenomena needs
to be reconsidered.

Patterns can thus be found in data that provide evidence for whether a hypothe-
sis is confirmed or disconfirmed. Confirming a hypothesis increases confidence in
the theory’s accuracy, but does not confirm the theory itself, because other theories
might be constructed that lead to the same prediction and hypothesis. However, dis-
confirming a hypothesis can support an argument for rejecting the associated theory.
Popper (1963) argues that strong theories are subject to refutation when tested, but
can never be fully confirmed. Theories that are not fully specified are hard to dis-
confirm, because they can be augmented to account for factors that had been left
out. Having such meta-knowledge about the relationship between theory and evi-
dence should help investigators make appropriate inferences from their data about
the status of their theories. It should also lead them to create theoretical models that
are increasingly well specified as their research progresses.

Creating new models. If the investigation is an exploratory study, then one is
using the data to develop new theoretical ideas. Also confirmatory studies often
produce findings that were not predicted by any of the hypotheses and that require
a new theoretical model. In creating a new model, you need to incorporate concepts
and relationships that predict and account for the patterns found in the data analysis.
Choosing the type of model, or epistemic form, will determine more specifically
what is needed from the data analysis, such as what type of patterns need to be
identified (Collins & Ferguson, 1993).

Finding evidence of generalizability. Theoretical models are expressions of rela-
tionships that have general applicability across a range of situations. In scientific
inquiry, establishing the generality of a model is important. Commonly, one obtains
data from a sample of different situations, or individuals, to provide evidence for
the consistency of the results that are predicted by the model across the range of
circumstances to which it purportedly applies. However, a theoretical argument
for the generalizability of a model to other situations can also be made. This can
take the form of specifying the conditions that are necessary for a model to apply,
with the implicit suggestion that other factors not mentioned are irrelevant. Such
theoretical arguments lead to further research.

When interesting patterns are found during data analysis (e.g., that support or
refute a hypothesis or that suggest a new model), there is a need to determine that
the patterns are not “flukes,” but are reproducible over a range of instances that the
model purports to cover. Often this involves studying a sample of similar situations
and determining statistically that the patterns have occurred too regularly to have
happened by chance.

Emerging ideas for follow-on investigations. Exploratory studies lead to the cre-
ation of theoretical models that require further investigation. In confirmatory studies,
a careful and deep data analysis often leads to many new questions and hypotheses
for future investigations. In addition, the data analysis will suggest many ways in
which the investigation could be improved. For example, the investigator may dis-
cover factors that were not controlled or may think of different situations that could
have been studied.
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Characteristics of a Good Data Analysis

In carrying out a data analysis, the desirable characteristics that should drive the
analysis include the following:

e Perspicuous: The representations of the data should organize and summarize the
data in productive ways, so one can see the patterns.

e Complete: The analyses should test all reasonable hypotheses in order to be
thorough and complete.

e Systematic: The analysis procedures should be carried out carefully and system-
atically.

e Accurate: The analysis needs to avoid miscalculations and violation of the
assumptions inherent in the methods used.

e Coherent: The interpretation should fit all of the data in an integrated way and be
consistent with other known sources of data that are pertinent.

e Transparent: The analysis procedure should be easily understood and replicable
by other researchers.

How Different Analyses Fit Together

As we illustrated in this section, analyzing rich sets of data can allow researchers
to test specific hypotheses and develop new theoretical models. This applies, as we
have argued, whether the study is primarily exploratory or confirmatory. Often this
means collecting both quantitative and qualitative data about a phenomenon. The
best analyses involve displaying the data in different forms so that different patterns
can be seen. The different patterns then can be tested for statistical significance or
for consistency across cases, which can lead to supporting or revising an existing
model or to developing new theoretical models. Ideally researchers should be able
to synthesize findings from all of their analyses to produce a coherent interpretation
that supports a particular theory, one that provides a better account of the data than
other competing theories they considered. This can involve, for example, testing
causal models, perhaps using inferential statistics, while also analyzing the data to
develop process models of the underlying mechanisms. The resulting theory would
thus incorporate models that provide both causal and mechanistic accounts of the
phenomena being studied.

Discussion

Summary of the Meta-knowledge Framework

We have proposed a framework for scientific meta-knowledge in terms of four
primary processes and various supporting processes. The four primary processes
are (1) theorizing, (2) questioning and hypothesizing, (3) investigating, and
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(4) analyzing and synthesizing the findings. The supporting processes include cogni-
tive, social, and metacognitive processes (see White & Frederiksen, 2005), including
regulatory processes that guide scientific inquiry (see White et al., 2009). We devel-
oped a standard form for characterizing each of the four primary processes in terms
of five elements: (1) the different types, (2) the purposes, (3) the creation process,
(4) the criteria for evaluation, and (5) the synthesis of the different types. This is the
basic structure of the framework.

With respect to theorizing, we discussed three different epistemic forms or model
types: (1) structural models, such as a stage model, (2) causal models, such as a mul-
tifactor model, and (3) process models, such as an agent model. We illustrated each
of these types in terms of simplified models of friendship. Stage models show how
events unfold over time. Multifactor models specify all the factors that influence a
particular dependent variable. Agent models allow one to simulate the process of
interaction among a set of different actors. Different types of models can serve to
embody different parts of an integrated theory, such as a theory of friendship.

Generating research questions is the process that bridges from theory to design-
ing an investigation. Different types of models generate different kinds of research
questions. For example, stage models ask how many different phases or stages there
are, what are the characteristics of each stage, and what leads to the transition from
each stage to the next. Multifactor models raise questions about what factors affect
the dependent variable, how the factors are causally connected to the dependent vari-
able, and how the factors combine to affect the dependent variable. Hence, research
questions are linked together by the type of model being developed and investigated.
Hypotheses constitute the possible answers to the research questions posed and may
be derived from competing models and theories.

Investigations can either be exploratory or confirmatory. There are many ways to
conduct exploratory studies, such as by carrying out discourse or protocol studies
or studies using observational, interview, and survey methods. There are also dif-
ferent forms that confirmatory investigations take, such as randomized controlled
trials, where hypotheses are tested by assigning subjects randomly to different con-
ditions and then comparing how the subjects perform. The kind of data collected
has a strong effect on the types of models that can be constructed from the data.
For example, quantitative data support construction of multifactor models, as in
the Framingham Heart Study. To construct process models, such as agent models,
one needs a richer data stream, such as observational, protocol, or discourse studies
provide. These models can then be evaluated using confirmatory methods.

Analysis and synthesis use data from an investigation to arbitrate between com-
peting models and to develop new models. There are four aspects to this process:
(1) coding and representing data to reveal patterns, (2) interpreting the patterns with
respect to competing hypotheses, (3) exploring the data to induce new models, and
(4) determining the generality of the findings. With qualitative data, a coding scheme
helps to create useful data representations. In order to see patterns in the data, there
are a variety of representational tools, such as graphs, charts, and computer-based
visualization tools. Statistical tests can be applied to help determine relationships in
the data, as well as to determine the generalizability of the findings. Often surprising
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patterns may be found in the data, which suggest revisions to models or lead to new
theoretical models, further investigations, and more data analyses.

Teaching Scientific Meta-knowledge

To develop and demonstrate an understanding of the four kinds of scientific meta-
knowledge that we argue are needed, students would need to engage in an extensive
inquiry curriculum, one aimed at developing and testing models of different types,
which would fit together to create a scientific theory for a given domain. For each
study they undertake, students would need to consider which type of model they
want to develop, which type of question they should ask, which type of investiga-
tion they need to carry out, and which data analysis techniques they should employ.
Being able to make such decisions presupposes that they know about different
model types, question types, investigation methods, and data analysis techniques
and, further, that they know how these work together to create and test scientific
theories.

While our Inquiry Island and Web of Inquiry software embody much of the
meta-knowledge we have described in this chapter, our own research program has
provided limited opportunities for determining how best to teach such meta-level
expertise to young students (i.e., upper elementary and middle school students).
In one attempt to develop students’ meta-modeling knowledge, for example,
we designed a version of our ThinkerTools Inquiry Curriculum that focuses on
enabling students to learn about different types of scientific models and their utility
(Schwarz & White, 2005). The results were encouraging, though the impact of the
curriculum was strongest on the higher achieving students.

In most of our recent work (Frederiksen et al., 2008; White & Frederiksen,
2005), the teachers we collaborate with only commit to having their students engage
in one or two major research projects per year. Given this limited time commit-
ment, we have focused on enabling students to develop a particular type of theory,
which usually consists of a causal model (often multifactor) linked with some pre-
liminary models of underlying mechanisms. To evaluate their theories, students
design and carry out a particular type of investigation, usually a controlled com-
parison designed to test their competing hypotheses. They then undertake a limited
range of data analyses, typically centering around a comparison of averages and
frequency distributions of data from the various experimental conditions. Thus,
although the students learn a great deal about scientific inquiry and produce some
impressive research projects (Frederiksen et al., 2008), the restricted instructional
time and number of investigations students undertake limit the development of their
meta-level expertise.

Creating curricula that adequately teach scientific meta-knowledge would require
a much more extensive curricular sequence that would give students opportunities to
learn more about different types of models, investigations, and analyses, as well as
how all of these components of inquiry work together, throughout a series of inves-
tigations, to create comprehensive scientific theories. Engaging in such a curriculum
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would thus necessitate a serious time commitment on the part of schools and teach-
ers. Teachers, along with those who develop curricular standards and accountability
measures for science education, need to be convinced of the importance of scientific
meta-knowledge.

Concluding Thoughts About the Utility of the Framework

A major benefit of the meta-knowledge framework described in this chapter is to
increase the awareness of students, teachers, and scientists as to different types of
models, questions, investigations, and analyses. If they have a toolkit that includes
a wide variety of model types, they may construct richer theories by building mul-
tiple models of different types and linking them together. Similarly if researchers
learn how to use different investigation methods, they can combine these methods
to triangulate on the phenomena they are trying to understand and hence produce
more robust results. The framework provides guidance to make informed decisions
as to what to do at different points in the inquiry process. Our basic argument is
that scientific meta-awareness provides insights for scientists and students that will
enhance their ability to learn and understand scientific inquiry.

One long-term goal of our work has been to develop computer-based tools that
support scientists and students in their work. For example, we think a modeling tool
could help scientists construct many different kinds of models, just as Stella (High
Performance Systems, 2000) helps students construct system-dynamics models and
Net Logo (Wilensky, 1999) and Agent Sheets (Repenning, loannidou, & Zola, 2000)
help students construct agent models. Such a tool could help scientists and students
consider different types of models they might construct and provide a structure,
which guides the development of each type of model.

Inquiry Island and the Web of Inquiry provide another kind of computer-based
tool that can support scientists and students in their research. Inquiry Island has
extensive advice about the issues people should address as they construct models
and theories, formulate research questions and hypotheses, carry out investigations,
and analyze and synthesize the data they collect. This advice is available when
people ask for it or when they appear to need it. It can be modified, in the Web
of Inquiry, for particular types of inquiries or for particular groups of people. The
goal is to refine Inquiry Island and the Web of Inquiry as general-purpose tools that
can support scientific inquiry at many different levels.

Clearly more work remains to be done. This chapter only presents a top-level
view of the kind of meta-knowledge we think is central to scientific inquiry.
For example, there are many different kinds of model types or epistemic forms
(Collins & Ferguson, 1993) that scientists and students might learn to use. In fact,
artificial intelligence has led to a proliferation of different model types in its short
history, such as production-system models, agent models, constraint-satisfaction
models, semantic-network models, frame-system models, qualitative-process mod-
els. This proliferation of model types provides new power for making sense of
diverse phenomena in the world. Understanding the affordances and constraints in
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building models of these different types should become a learning goal for future
scientists.

Such work on meta-scientific knowledge should thus have benefits that go
beyond science education. We think that our framework provides a structure that
will enable science to refine its practices and products. Making the meta-knowledge
underlying scientific processes explicit fosters systematic reflection by scientists and
the field as a whole. This reflection enhances the possibility that a self-improving
system will take hold to develop better tools, models, and representational forms.
Hence we argue that the development of an explicit understanding of the nature of
scientific meta-knowledge will lead to a more productive scientific enterprise.
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