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A weighted LabPQR interim connection space, based on human color vision, is proposed for retaining more visual color
information. A new weight function proposed in our paper is connected with color-matching function and then further weighted
the PQR dimensions of LabPQR compared with the other two weight functions and nonweight function.The results indicated that
weighting obviously improved the colorimetric representing accuracy and robustness compared with nonweighting, and the new
weight function outperformed the other two weight functions. The weighted LabPQR of the new weight function is most suitable
for spectral color reproduction.

1. Introduction

Thespectral reflectance is define as an object “fingerprinting”
that accurately carry the fundamental color information,
so spectral color reproduction could match originals under
arbitrary illuminants and observers [1–3]. However, a high-
dimensional spectral data need large storage space and
computational complexity. In addition, the raw spectral data
is not suited for spectral image processing, gamut boundary
description, and spectral gamutmapping in the spectral color
reproduction in many applications such as textile color, art
reproduction, and printers with inks [3–6]. So it is necessary
to construct an interim connection space (ICS) both for
spectral color representation and reproduction.

In the quest for an optimal spectral color reproduction,
an impressive number of ICSs have been proposed in
the literature, and ICSs are classified into two types of
categories. The first type is the algorithm that applies
multivariate statistical analysis theory to optimize spectral
color information. Bakke et al. [7] proposed PCA-based
ICS, which applied principal component analysis (PCA) on
dimensionality reduction of the spectra and spectral recon-
struction. Zhang et al. [8] proposed two ICSs called ICS 2SI

and ICS 3SI, which applied PCA on extracting the widely
used illuminants and light sources. These ICSs have the
higher spectral and colorimetric representing accuracy and
no obvious illuminants selective property. However, these
ICSs have not effectively gamut boundary, gamut mapping
algorithms, and spectral gamut visualization. In addition,
ICSs are not compatible with the widely used colorimetric
management system and have no actual physical meaning.

The second type called compensation approach reinserts
metameric black spectrum to compensate for the loss of
spectral details caused by the colorimetric tristimulus values.
Derhak and Rosen [9] had proposed an ICS called LabPQR
with six dimensions.The first three dimensionswere CIELAB
values under a specific viewing condition, and the addi-
tional dimensions were spectral reconstruction dimensions
describing a metameric black (PQR) with PCA. As a matter
of fact, the LabPQR ICS could well represent the spectral
information with low dimension, and most of the proposed
spectral gamuts mapping algorithms in LabPQR were based
on the optimal method [8]. Several variations of the LabPQR
had been proposed recently, such as the LabRGB color space
[10] and XYZLMS color space [3]. These ICSs could be
better to be compatible with the widely used colorimetric
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management system and spectral gamut visualization. In
addition, LabPQR have effectively gamut boundary and
gamut mapping algorithms [11]. It had reported that LabPQR
could be used successfully in several applications [12, 13].
However, these ICSs have obvious illuminants dependence
property. In additional, the LabPQR ICS is with high spectral
but low colorimetric representing accuracy. The main reason
is that PQR dimensions of LabPQR apply PCA to extract
the residual error of the spectral reflectance, and are not
weighted by the human color vision that usually has different
sensitivities over different wavelengths.

This paper presents a weighted LabPQR ICS based on
human color vision for the spectral color reproduction, which
is the desire to achieve a visuallymore spectral colormapping
between reproductions and originals. To define the most
optimal weight function, three different weight functions
were tested. These weighted LabPQR (wLabPQR) ICSs were
evaluated under different illuminants and light sources com-
pared with the traditional, nonweighted LabPQR ICS.

2. Mathematical Background

2.1. LabPQR [9, 11–13]. TheLabPQR is a six-dimensional ICS.
Thefirst three dimensions are CIELAB values under a specific
condition, and the additional dimensions are spectral recon-
struction dimensions (PQR).The PQR coordinates represent
the spectral difference between original and reconstructed
spectra from colorimetric values.

Spectral reconstruction from six-dimensional LabPQR
could be determined as

̂R = TN
𝑐
+ VN

𝑝
, (1)

whereT is a 𝑛 by 3-transformationmatrix,V is a 𝑛 by 3matrix
describing PQRbases,N

𝑐
is a tristimulus vector,N

𝑝
is a vector

of PQR values, and 𝑛 counts wavelength 𝜆. Note that T is
applied to tristimulus values converted from CIELAB values.
Using a set of the tristimulus vectors, the transformation
matrixT is determined by amatrix calculation using the least
square analysis:

T = RN𝑇
𝑐
(N
𝑐
N𝑇
𝑐
)

−1

,
(2)

where R is measured spectral reflectance of training samples;
the superscript “𝑇” shows the pseudoinverse of the proposed
matrix.

The PQR bases V are derived from principal component
analysis (PCA) on a set of spectral differences between
the original spectra and the reconstructed spectra through
the inverse transformation with T from N

𝑐
. This spectral

difference is expressed as
E = R − TN

𝑐
. (3)

Only the first three eigenvectors are preserved as the PQR
bases:

V = (k
1
, k
2
, k
3
) ,

̂E = VN
𝑝
,

(4)

where k
𝑖
are eigenvectors in a set of the spectral difference.

2.2. Weighted LabPQR (wLabPQR). It is clear that the PCA
is the well-known linear model that equally treats spectral
reflectance over the whole wavelength, which could not well
represent the characteristic of color information [14, 15].
The purpose of wPCA is to improve the color reproduction
accuracy at the cost of the accuracy of spectral reconstruction
in color technology and science [16, 17].

In the wPCA, it is noted that, before calculating the
correlation matrix C

𝑤
, each sample point requires being

multiplied or weighted with proper coefficients or a weight
function 𝑤(𝜆), resulting in weighted data E

𝑤
,

C
𝑤
= E
𝑤
E+
𝑤
=WE[WE]+, (5)

where the matrixW is a diagonal matrix with main diagonal
of the values of the weigh function𝑤(𝜆). The superscript “+”
is the matrix transpose. After reproduction, this same weight
function can be separated from the spectral data to achieve
representatives of the original spectral curves [17]. Consider

̂E = V(WV)𝑇WE. (6)

2.3. Weight Function. The main goal of the wPCA algorithm
is to minimize the weighted squared reconstruction error
[18]:

e = ∑W(E − ̂E)
2

= ∑(

√WE − √ŴE)
2

→ Min. (7)

To evaluate the performance of the weight functions, three
weight functions were selected. The weight functions are not
limited, but the color-matching functions well reflect human
vision characteristics. Three weight functions plotted in
Figure 1 are connected with CIE1931 𝑥(𝜆), 𝑦(𝜆), and 𝑧(𝜆)
color-matching function that involves brightness informa-
tion and chromatic information.

The first weight function 𝑤
1
(𝜆) (WF1) was introduced by

Tian and Tang [16], which is generated by adding the three
matching functions and normalizing the maximum of value
to be 1:

𝑤

1
(𝜆) =

𝑥 (𝜆) + 𝑦 (𝜆) + 𝑧 (𝜆)

2.14631

.
(8)

The second weight function 𝑤
2
(𝜆) (WF2) is generated by

adding the three matching functions to the constant func-
tions, which normalize the maximum of value to be 1. The
WF2 was introduced by Laamanen et al. [17]. Consider

𝑤

2
(𝜆) =

𝑥 (𝜆) + 𝑦 (𝜆) + 𝑧 (𝜆) + 1

3.14631

,
(9)

because values of CIE1931 𝑥(𝜆), 𝑦(𝜆), and 𝑧(𝜆) color-
matching function are not less than zero. According to (7), we
proposed the third weight function 𝑤

3
(𝜆) (WF3) generated

by calculating the square root of adding the three matching
functions, which normalize the maximum of value to be 1:

𝑤

3
(𝜆) =

√𝑥 (𝜆) + 𝑦 (𝜆) + 𝑧 (𝜆)

1.46503

.

(10)
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Figure 1: The weigh function 𝑤(𝜆).

3. Experiments and Procedure

To evaluate the performance of nonweighted LabPQR
(ICS NW) and wLabPQR with three different weight func-
tions (ICS WF1, ICS WF2, and ICS WF3), all the four ICS
were constructed, respectively. The CIE1931 2∘ standard
observer was adopted for all four ICSs. The CIE standard
illuminant D65 was employed to construct the first three
dimensions of the four ICSs.

The spectral reflectance of Munsell (1269 chips) and
spectral image (fruits and flowers) [19] were adopted to
construct and assess the performance of the ICSs. For most
applications, these continuous functions could be sampled at
10 nm intervals without a signification loss of accuracy [20].
So, all the spectrums, light sources, and illuminants were
sampled at 10 nm intervals between 400 and 700 nm. After
that, all the parameters of the four ICSs were determined; the
spectrums of the testing samples were converted to the four
ICSs and then transformed back to spectral reflectance.

The color difference is a more powerful tool to access
the performance of ICS as the eventual criterion for evalu-
ating the spectral color reproduction accuracy is the human
color vision under various illuminating environments [8].
Therefore, the CIELAB color differences between the orig-
inal and reconstructed spectrum of Munsell and spectral
image testing samples are calculated under the CIE standard
illuminants, light emitting diode (LED) light sources, and
tungsten halogen (TH) light source. The dominant spectral
power distributions (SPDs) of the selected illuminants and
light sources were relatively smooth and with various distri-
butions, which did not contain much spiky radiance. So only
the CIE illuminants (A, B, C, D50, D55, and D75), the LED
light sources (Sylvania Concord 2048794, Photon Star CS5,
ErcoOptec Spotlights, Synergy 1003605 S12, Synergy 1003607
NF34, Cooper DL11-WS-WW, GE Par 30, Philips EnduraLED
MR16, Erco Light Board V01, MSI iPAR3830021D, Erco
ERCO Large Flood, Philips Philips Par38, Solais LR38, and
Philips MASTER LEDspot MV), and the TH light sources
(Solux 12VDiachroic, Philips 50Par30L-WFL40, Osram 12V

Diachroic, Concord 2627632 MK41, DAL Baltic 64005, Syl-
vania TrueAim-TitanMR16, Erco Eclipse-Clear Lens, Philips
Philips 50W MR16, GE EYC 71W MR16, GE Par38 (11878),
Luxina EXZ-CG-M250MR16, GE Par 38 80W Flood, Osram
Par 38 120W, GE Par 38 80W Spot, and GE Standard
Tungsten) were selected [21]. The root mean square error
(RMSE) and goodness of fit coefficient (GFC) were employed
to evaluate the spectral difference between the original and
reconstructed testing samples [22].The smaller the RMSE the
closer the original spectrum,while theGFC is just the reverse.

4. Results and Discussion

The performance and feasibility of wLabPQR ICSs were
tested by odd and even chips of Munsell as training and
testing samples, respectively, comparing the results with
the nonweighted LabPQR. The CIELAB color differences
between the original and reconstructed spectrum of Munsell
testing samples were calculated under various illuminants
and light sources. The statistical results are shown in Table 1.
It illustrated that wLabPQR ICSs results outperform non-
weighted LabPQR ICS and ICS WF3performs best according
to the experimental result. The mean color difference, the
maximum color difference, and the percentage of testing
samples with color differences greater than 3 of ICS WF1
and ICS WF2 are not much numerical difference, but these
are a much smaller than that of ICS NW. It indicated that
the ICS NWhas obviously illuminant selective phenomenon.
The last row of Table 1 shows the variance of the color
difference statistics under all the illuminants and light sources
of the four ICSs.The variances could represent the robustness
of the four ICSs: the smaller the variance, the more robust
the performance of the ICS under various illuminants and
light sources [8]. The variance results indicate that ICS WF3
is with the highest robustness and then are ICS WF2 and
ICS WF1. The LabPQR is with relatively low robustness.

The RMSE and GFC statistics between the original and
reconstructed reflectance of Munsell testing samples are
shown in Table 2. It is shown that ICS NW performed best
and next is ICS WF2 and ICS WF3; the ICS WF1 performs
worst according to the experiment result. Similar results were
shown by Laamanen et al. [17]: weighting clearly improves
the reproduction of color information, but at the cost of the
reproduction of spectral reflectance curve. The reason is that
the higher the weight function numerical value, the lower the
spectral reproduction error.

Figure 2 shows an example of spectral reconstructions
of one Munsell spectrum formed with four ICSs. From the
results it can be concluded that the middle part of the
weighted spectrum is reconstructedmore accurately than the
nonweighted spectrum, but both ends of the spectrum are
quite the contrary. The reason can be found from the curve
shape of the weight function shown in Figure 1.

To access the medium dependence of the ICS, the
colorimetric and spectral representing accuracy of the four
ICSs were also evaluated with spectral image as testing
samples. All the spectral reflectance of spectral image was
transformed into the four ICSs and then transformed back
to spectral reflectance with the Munsell chips as training
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Table 1: Colorimetric representing accuracy comparison of the four ICSs with odd and even chips of Munsell as training and testing sample,
respectively.

Illuminants
Δ𝐸

𝑎𝑏

ICS NW ICS WF1 ICS WF2 ICS WF3
Meana Maxb % >3c Mean Max % >3 Mean Max % >3 Mean Max % >3

LED

Sylvania Concord 2048794 0.320 4.903 0.316 0.260 2.154 0.000 0.204 3.170 0.158 0.156 1.810 0.000
Photon Star CS5 0.289 4.640 0.316 0.228 1.973 0.000 0.190 2.976 0.000 0.142 1.677 0.000
Erco Optec Spotlights 0.316 4.052 0.316 0.252 2.146 0.000 0.245 2.277 0.000 0.243 1.917 0.000
Synergy 1003605 S12 0.395 3.223 0.158 0.283 2.497 0.000 0.273 2.978 0.000 0.245 2.486 0.000
Synergy 1003607 NF34 0.310 4.881 0.316 0.245 2.102 0.000 0.192 3.113 0.158 0.144 1.640 0.000
Cooper DL11-WS-WW 0.336 3.280 0.158 0.264 2.251 0.000 0.228 2.825 0.000 0.193 2.000 0.000
GE Par 30 0.311 3.269 0.158 0.257 2.275 0.000 0.220 2.262 0.000 0.205 1.705 0.000
Philips EnduraLEDMR16 0.327 3.743 0.316 0.264 2.034 0.000 0.231 2.608 0.000 0.222 2.016 0.000
Erco Light Board V01 0.278 3.371 0.316 0.244 2.031 0.000 0.198 2.222 0.000 0.187 1.681 0.000
MSI iPAR3830021D 0.333 4.122 0.316 0.265 2.491 0.000 0.243 2.145 0.000 0.225 2.109 0.000
Erco ERCO Large Flood 0.279 3.434 0.316 0.249 1.903 0.000 0.197 2.328 0.000 0.184 1.465 0.000
Philips Philips Par38 0.391 4.900 0.473 0.272 2.556 0.000 0.275 2.906 0.000 0.234 2.212 0.000
Solais LR38 0.423 5.552 0.473 0.271 2.535 0.000 0.305 3.041 0.158 0.255 2.294 0.000
Philips MASTER LEDspot MV 0.433 5.499 0.473 0.305 2.812 0.000 0.336 3.203 0.158 0.301 2.659 0.000

TH

Solux 12V Diachroic 0.127 1.979 0.000 0.060 0.675 0.000 0.068 1.070 0.000 0.040 0.317 0.000
Philips 50Par30L-WFL40 0.189 3.240 0.158 0.179 2.064 0.000 0.094 1.615 0.000 0.073 0.669 0.000
Osram 12V Diachroic 0.266 4.539 0.316 0.222 2.446 0.000 0.143 2.346 0.000 0.096 0.965 0.000
Concord 2627632 MK41 0.269 4.565 0.316 0.248 2.732 0.000 0.139 2.252 0.000 0.106 1.037 0.000
DAL Baltic 64005 0.312 5.271 0.316 0.239 2.567 0.000 0.166 2.677 0.000 0.106 1.024 0.000
Sylvania TrueAim-Titan MR16 0.280 4.749 0.316 0.242 2.644 0.000 0.147 2.378 0.000 0.105 1.039 0.000
Erco Eclipse-Clear Lens 0.301 5.159 0.316 0.280 3.041 0.158 0.151 2.502 0.000 0.119 1.177 0.000
Philips Philips 50WMR16 0.316 5.277 0.316 0.269 2.903 0.000 0.168 2.650 0.000 0.118 1.182 0.000
GE EYC 71WMR16 0.314 5.407 0.316 0.293 3.137 0.158 0.162 2.639 0.000 0.126 1.224 0.000
GE Par38 (11878) 0.334 5.715 0.316 0.304 3.265 0.158 0.173 2.795 0.000 0.130 1.268 0.000
Luxina EXZ-CG-M250 MR16 0.269 4.135 0.316 0.242 2.578 0.000 0.158 2.141 0.000 0.120 1.264 0.000
GE Par 38 80W Flood 0.332 5.676 0.316 0.303 3.242 0.158 0.173 2.781 0.000 0.130 1.271 0.000
Osram Par 38 120W 0.335 5.756 0.316 0.305 3.269 0.158 0.172 2.820 0.000 0.129 1.252 0.000
GE Par 38 80W Spot 0.335 5.739 0.316 0.306 3.270 0.158 0.174 2.809 0.000 0.131 1.274 0.000
GE Standard Tungsten 0.397 6.835 0.631 0.365 3.703 0.158 0.219 3.384 0.158 0.163 1.664 0.000

CIE

A 0.282 4.900 0.316 0.255 2.849 0.000 0.137 2.385 0.000 0.104 0.976 0.000
B 0.108 1.837 0.000 0.081 1.012 0.000 0.050 0.875 0.000 0.039 0.246 0.000
C 0.100 1.411 0.000 0.062 0.670 0.000 0.080 0.913 0.000 0.066 0.687 0.000
D50 0.071 0.954 0.000 0.087 0.966 0.000 0.051 0.661 0.000 0.050 0.596 0.000
D55 0.042 0.528 0.000 0.053 0.590 0.000 0.031 0.392 0.000 0.030 0.365 0.000
D75 0.027 0.304 0.000 0.038 0.427 0.000 0.022 0.263 0.000 0.022 0.266 0.000

Statistic
Mean 0.279 4.081 0.266 0.231 2.280 0.032 0.172 2.297 0.023 0.141 1.355 0.000
Maximum 0.433 6.835 0.631 0.365 3.703 0.158 0.336 3.384 0.158 0.301 2.659 0.000
Variance 0.011 2.623 0.023 0.007 0.712 0.004 0.006 0.692 0.003 0.005 0.404 0.000

aMean means the mean value of testing samples with color differences.
bMax means the maximal value of testing samples with color differences.
c% >3 means the percentage of testing samples with color differences greater than 3 CIELAB units.

Table 2: Spectral representing accuracy comparison of the four ICSs with odd and even chips of Munsell as training and testing samples,
respectively.

ICS NW ICS WF1 ICS WF2 ICS WF3
Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

RMSE 0.0011 0.0080 0.0528 0.0016 0.0148 0.0894 0.0012 0.0091 0.0604 0.0012 0.0115 0.0800
GFC 0.9387 0.9990 1.0000 0.8644 0.9968 1.0000 0.9272 0.9988 1.0000 0.8940 0.9981 1.0000
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Table 3: Colorimetric representing accuracy comparison of the four ICSs with chips of Munsell and spectral image as training and testing
sample, respectively.

Illuminants
Δ𝐸

𝑎𝑏

ICS NW ICS WF1 ICS WF2 ICS WF3
Mean Max % >3 Mean Max % >3 Mean Max % >3 Mean Max % >3

LED

Sylvania Concord 2048794 1.205 6.520 4.917 0.691 3.478 0.037 0.644 5.142 0.797 0.386 2.421 0.000
Photon Star CS5 1.061 5.325 3.104 0.666 3.170 0.016 0.588 3.918 0.219 0.396 1.884 0.000
Erco Optec Spotlights 0.795 6.620 2.313 0.709 3.398 0.026 0.581 4.237 0.370 0.615 2.768 0.000
Synergy 1003605 S12 1.227 7.054 4.438 0.640 3.122 0.005 0.729 6.949 1.828 0.479 3.992 0.229
Synergy 1003607 NF34 1.087 5.671 2.479 0.672 3.405 0.021 0.634 5.712 0.865 0.468 3.349 0.037
Cooper DL11-WS-WW 1.117 7.045 2.552 0.652 3.496 0.026 0.641 6.356 1.354 0.415 3.316 0.026
GE Par 30 0.863 4.661 0.734 0.644 3.346 0.010 0.477 4.277 0.167 0.402 2.428 0.000
Philips EnduraLEDMR16 0.992 4.964 1.875 0.664 3.396 0.016 0.576 4.356 0.255 0.473 2.617 0.000
Erco Light Board V01 0.829 4.027 0.578 0.658 3.189 0.010 0.495 2.864 0.000 0.462 2.208 0.000
MSI iPAR3830021D 0.802 5.847 1.906 0.712 3.529 0.063 0.487 3.509 0.089 0.506 2.391 0.000
Erco ERCO Large Flood 0.888 3.985 0.797 0.663 3.259 0.021 0.514 3.087 0.010 0.442 2.126 0.000
Philips Philips Par38 1.055 6.410 3.276 0.721 3.539 0.063 0.599 4.000 0.380 0.529 2.471 0.000
Solais LR38 1.117 7.657 3.875 0.704 3.367 0.037 0.654 4.810 1.188 0.572 2.423 0.000
Philips MASTER LEDspot MV 1.131 8.575 4.370 0.794 3.867 0.125 0.783 5.667 1.865 0.751 3.297 0.031

TH

Solux 12V Diachroic 0.448 2.420 0.000 0.153 0.731 0.000 0.200 1.415 0.000 0.066 0.332 0.000
Philips 50Par30L-WFL40 0.695 3.654 0.042 0.457 2.300 0.000 0.239 2.122 0.000 0.158 0.680 0.000
Osram 12V Diachroic 0.981 4.876 2.474 0.547 2.764 0.000 0.374 2.839 0.000 0.190 1.042 0.000
Concord 2627632 MK41 0.987 5.005 2.406 0.615 3.078 0.005 0.354 2.839 0.000 0.228 1.083 0.000
DAL Baltic 64005 1.139 5.648 5.646 0.567 2.800 0.000 0.441 3.191 0.005 0.182 1.132 0.000
Sylvania TrueAim-Titan MR16 1.031 5.158 3.323 0.593 2.958 0.000 0.383 2.931 0.000 0.212 1.135 0.000
Erco Eclipse-Clear Lens 1.116 5.581 4.760 0.692 3.412 0.026 0.400 3.110 0.005 0.262 1.236 0.000
Philips Philips 50WMR16 1.154 5.758 5.531 0.651 3.259 0.005 0.435 3.279 0.010 0.238 1.353 0.000
GE EYC 71WMR16 1.162 5.821 5.719 0.710 3.537 0.042 0.418 3.247 0.005 0.271 1.321 0.000
GE Par38 (11878) 1.231 6.099 7.115 0.737 3.699 0.063 0.444 3.407 0.037 0.283 1.369 0.000
Luxina EXZ-CG-M250 MR16 0.962 4.856 1.943 0.576 2.852 0.000 0.380 2.906 0.000 0.226 1.500 0.000
GE Par 38 80W Flood 1.222 6.061 6.964 0.737 3.686 0.063 0.443 3.391 0.037 0.283 1.369 0.000
Osram Par 38 120W 1.234 6.122 7.250 0.743 3.727 0.068 0.445 3.426 0.042 0.283 1.338 0.000
GE Par 38 80W Spot 1.234 6.113 7.177 0.744 3.724 0.068 0.446 3.417 0.037 0.286 1.368 0.000
GE Standard Tungsten 1.484 7.053 11.219 0.861 4.265 0.375 0.568 3.913 0.344 0.350 1.838 0.000

CIE

A 1.041 5.261 3.609 0.635 3.197 0.005 0.362 2.947 0.000 0.230 1.001 0.000
B 0.372 2.244 0.000 0.248 1.087 0.000 0.146 1.258 0.000 0.107 0.483 0.000
C 0.266 2.047 0.000 0.107 0.534 0.000 0.169 1.371 0.000 0.116 0.774 0.000
D50 0.259 1.378 0.000 0.213 1.032 0.000 0.114 0.942 0.000 0.109 0.601 0.000
D55 0.150 0.793 0.000 0.130 0.632 0.000 0.067 0.548 0.000 0.067 0.363 0.000
D75 0.093 0.474 0.000 0.095 0.459 0.000 0.045 0.342 0.000 0.049 0.258 0.000

Statistic
Mean 0.927 5.051 3.211 0.583 2.894 0.034 0.436 3.363 0.283 0.317 1.693 0.009
Maximum 1.484 8.575 11.219 0.861 4.265 0.375 0.783 6.949 1.865 0.751 3.992 0.229
Variance 0.120 3.698 7.375 0.044 1.115 0.004 0.034 2.345 0.270 0.029 0.926 0.002

Table 4: Spectral representing accuracy comparison of the four ICSs with chips of Munsell and spectral image as training and testing sample,
respectively.

ICS NW ICS WF1 ICS WF2 ICS WF3
Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

RMSE 0.0024 0.0117 0.0634 0.0032 0.0194 0.0894 0.0025 0.0131 0.0659 0.0030 0.0162 0.0792
GFC 0.9182 0.9866 1.0000 0.7618 0.9645 0.9999 0.8910 0.9825 1.0000 0.8308 0.9743 1.0000
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Table 5: Overall performance of the four ICSs.

ICS Dimension Spectral accuracy Colorimetric accuracy Robustness
ICS NW 6 Highest Low Low
ICS WF1 6 Low Higher Higher
ICS WF2 6 Higher High High
ICS WF3 6 High Highest Highest
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Figure 2: Example of the spectral reconstructions of one Munsell
spectrum.

samples. The statistics of color and spectral difference under
all the illuminants and light sources between the original
and reconstructed spectrum are illustrated in Tables 3 and
4, respectively. It indicated that the colorimetric and the
spectral representing accuracy of spectral image are lower
than Munsell testing samples as a whole for all four ICSs. As
results presented, the comparative results in the spectral and
colorimetric representing accuracy of the four ICSs for the
spectral image have similar trends with the Munsell testing
samples. The wLabPQR clearly improved the color repro-
duction accuracy comparing to the nonweighted LabPQR,
even though it decreased slightly the spectral reproduction
accuracy. In addition, the robust performance of the ICS WF1
is relatively higher than that of ICS WF2 under various
illuminants and light sources.

The overall performances of the four ICSs are shown
Table 5. It illustrated that the performance orders of the
four ICSs are ICS WF3, ICS WF1, ICS WF2, and ICS NW
according to the experimental results. The ICS NW is with
high spectral but low colorimetric representing accuracy and
robustness, and it is not suitable for spectral color repro-
duction, while the wLabPQR is with low spectral but high
colorimetric representing accuracy and robustness; ICS WF3
is especially most suitable for spectral color reproduction at
low dimension.

5. Conclusion

In this paper, the weighted LabPQR method was presented
for spectral color reproduction. The method is largely based

on nonweighted LabPQR, but it differs from the normal
LabPQR in that PQR dimensions of LabPQR are weighted
by the human color vision. This is done to retain more color
information rather than spectral information in spectral
color reproduction.

To evaluate the performance and feasibility of the
weighed LabPRQ, PQR dimensions are weighted by three
different weight functions based on human color vision com-
posed of the three ICSs (ICS WF1, ICS WF2, and ICS WF3).
The reflectance of the color chips of Munsell and spectral
image was employed as the samples in this study. As results
presented, weighting obviously improves the colorimetric
representing accuracy and robustness, but at the cost of
the spectral representing accuracy. However, the weighted
LabPQR ICSs achievemore accurate reconstruction at higher
human eye sensitive wavelengths that retain an amount
of human color vision information. These results further
imply that weight function WF3 proposed in this study
outperformed the other two weight functions, and ICS WF3
is most suitable for spectral color reproduction.
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