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of air or vacuum, N2 = n + IK is the complex refractive index 
of the lamina material, and 92 is the (complex) angle of refrac­
tion, which is related to 9t by Snell's law: N, sin #, = 
N2 sin 92. Since r2l = -ri2, the reflectance at both interfaces is 
equal to p = rnrf2, where * denotes the complex conjugate. 
The internal transmittance T is related to the (complex) phase 
change 6 by r = exp[-2 Im(6)], where Im denotes the imagi­
nary part. The phase change inside the lamina is 

N2 cos 92 

\ 
(3) 

Reexamination of the Transmittance 
Formulae of a Lamina  

Z. M. Zhang1 

Expressions for the optical properties of laminated layers have 
drawn much attention from researchers in recent years because 
of emerging optoelectronic applications (Chen and Tien, 1992; 
Cunsolo et al., 1992; Zhang and Flik, 1993, Engelbrecht, 1994; 
Grossman and McDonald, 1995; Anderson and Bayazitoglu, 
1996). Different equations must be applied in particular situa­
tions (Chen and Tien, 1992; Zhang, 1994). After carefully exam­
ining the transmittance formulae of a lamina, this work shows 
that the geometric-optics formula may result in a significant 
error for a highly absorbing medium even in the incoherent 
limit (when interference effects are negligible). 

Introduction 

Consider the transmission of electromagnetic radiation 
through a lamina with smooth and parallel surfaces. In the inco­
herent limit when radiation coherence length is much smaller 
than the thickness of the lamina, the transmittance (or re­
flectance) may be obtained either by tracing the multiply re­
flected radiant power fluxes (ray-tracing method) or by separat­
ing the power flux at each interface into an outgoing component 
and an incoming component (net-radiation method), viz. (Siegel 
and Howell, 1992) 

T : 
(1 - P)2T 
1 P V 

(1) 

where p is the reflectance at the interface and r is the internal 
transmittance. This formula is also called the geometric-optics 
formula since it is obtained without considering interference 
effects. For a plane wave, p equals the square of the absolute 
value of the complex Fresnel reflection coefficient (i.e., the ratio 
of the reflected electric field to the incident electric field at the 
interface). The Fresnel reflection coefficient is (Heavens, 1965) 

r\2 = { 

cos 92 — N2 cos f?i 

JVi cos 
N, 

p - polarization for p -
>2 + N2 cos 6\ 

(2) 
N, cos 0, - N2 cos 6*2 , . 

, for s - polarization 
,7V, cos 9t + N2 cos 92 

where 9l is the angle of incidence, /V, = 1 is the refractive index 
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where d is the lamina thickness and X is the wavelength in 
vacuum. 

In the coherent limit, the transmittance of a lamina may be 
obtained from thin-film optics (i.e., wave optics) either by trac­
ing the reflected and transmitted waves (Airy's method) or by 
separating the electric fields into a forward-propagating compo­
nent (forward wave) and a backward-propagating component 
(backward wave), viz. (Heavens, 1965; Born and Wolf, 1980; 
Yeh, 1988) 

T = 
[1 + p2 - 2 Re(r2

2)]r 

1 + p V - IT Re(r2
2e''2*) 

(4) 

where qb = Re(<5) is the real part of the phase change. The 
resulting spectral transmittance oscillates because of interfer­
ence effects. 

As pointed out by Cunsolo et al. (1992), integrating Eq. (4) 
over a period of oscillation yields 

T = 
[1 + p2 - 2 Re(r2

2)]r (1 
2 2 plT 

pfr + 4[Im(r12)]2r 

1 - p V 1 P V 
(5) 

Although the second term at the right is often very small, the 
above equation is different from Eq. (1). It is worthwhile to 
investigate the physical origin of this discrepancy and to discuss 
practical situations where Eq. (5) should be used instead of 
Eq. (1). 

Analysis and Discussion 

The power transmittance at the interface between the air (or 
vacuum) and the medium (lamina) is (Yeh, 1988) 

= Re(JV2 cos 02) 

Re(JV, cos 0,) 
(6) 

where (1 + r!2) is the Fresnel transmission coefficient. The 
power transmittance at the second interface between the me­
dium and the air can be obtained by exchanging the subscripts 
1 and 2 in Eq. (6). At normal incidence, r12 = (1 - n — ('K)/(1 
+ n + IK) and p = [(« - l)2 + K2]/[(« + l)2 + K2]. Therefore, 
r,2 = 4n/[(ra + l)2 + K2] = 1 - p and, 

_ _ 1 4(n2 + K2) 
i 2 , — — • 

n(n + l)2 + K' 
= l - p + 

2K Im[>2i 
(7) 

If both K and Im(r21) are nonzero, T2\ =t= 1 - p. As discussed 
by Salzberg (1948) and Knittl (1976), this inequality is caused 
by the interference effect between the reflected wave and the 
incident wave at the interface for radiation incident from an 
absorbing medium. No incident power flux and reflected power 
flux can be defined in an absorbing medium because of the 
coupling between the incident and the reflected waves, although 
it is always possible to separate the electric field into forward 
and backward components. In addition to the assumption that 
the interference effects are negligible, geometric optics implies 
that the power flux in the medium equals the sum of the power 
fluxes of the forward wave and the backward wave, i.e., the 
coupling term is negligible. 
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Fig. 1 Relative error of Eq. (1) and the transmittance of a LaAI0 3 lamina 
calculated using Eq. (8) at normal incidence 
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Fig. 2 Comparison between the wave-optics formula, Eq. (4) for rwave, 
and the incoherence formula, Eq. (8) for T,„c. The transmittance value is 
also calculated from Eq. (8) 

Zhang (1994) derived an equation for the transmittance in 
the incoherent limit using partial-coherence theory: T = T,2T2,T 

16(n2 + K2)T 

[(n + l)2 + K2]2 
(9) 

Tl2T2iT 

1 PV2 (8) 

The above equation is identical to Eq. (5). However, it is not a 
simple replacement of (1 - p)2 in Eq. (1) with Tl2T2u because 
the ray-tracing method and the net-radiation method inherently 
assume that T,2 = T2l = 1 - p in order to satisfy the first law 
of thermodynamics. For an absorbing medium, T2\ cannot be 
interpreted as the power transmittance at the interface because 
no incident power flux can be defined in the medium. In fact, 
T2i could be greater than 1. Hence, Eq. (8) is distinct from the 
geometric-optics formulation. All the above equations, except 
Eq. (7), are applicable to both normal and oblique incidence. 
The partial-coherence formulation was verified by Anderson 
and Bayazitoglu (1996) for arbitrary angles of incidence and 
polarization states. Taking Eq. (5) or (8) as the exact expression 
for the incoherent limit, the relative error of Eq. (1) can be 
evaluated. At normal incidence, the relative error equals K2/(n2 

+ K2). Since the internal transmittance is T = exp(-4-7rKCIIX), 
the requirements of \ < d and transparency of the lamina often 
exclude large values of K. 

As an example, suppose the lamina is a LaA103 wafer of 
thickness d = 100 p,m. The optical constants are calculated 
from the Lorentian dielectric function determined by Zhang et 
al. (1994). At 1 p,m < \ < 11 p,m, K < 0.01 and n > 1. The 
relative error is less than 0.01 percent, which is smaller than 
the uncertainty of most experiments. The relative error of Eq. 
(1) and the transmittance for a LaA103 lamina at wavelengths 
from 9 to 14 p,m at normal incidence are shown in Fig. 1. As 
the wavelength increases, the relative error increases, but the 
transmittance decreases because of a decreasing n and an in­
creasing K. The relative error of Eq. (1) is less than 1 percent 
for A, < 13 pm, where the transmittance is greater than 0.001. 
The error of Eq. (1) becomes substantial for very low transmit­
tance. 

The difference between the wave-optics formula and the inco­
herent formula is shown in Fig. 2, where rwllvc and Tmc are 
calculated using Eqs. (4) and (8), respectively. Because of an 
increasing K, the strength of oscillation decreases as the wave­
length increases. Notice that N2 = (0.8 + i 0.06) at 12.8 pm 
and (0.44 + / 0.17) at 13.3 pm for LaA103. The agreement 
between the incoherent formula and the wave-optics formula in 
the case with strong absorption further confirms the applicability 
of Eq. (5) or (8). Similar trends can be shown for other dielectric 
materials and/or in different spectral regions. 

For a highly absorbing lamina (i.e., r <§ 1), multiple reflec­
tions may be neglected. The transmittance obtained from Eq. 
(1), when multiple reflections are negligible, is (1 — pfr. The 
transmittance calculated from Eq. (8) for T < 1 is 

where the last expression is for normal incidence only. Eq. (9) 
agrees with the wave-optics equation for r ^ 1 (Born and Wolf, 
1980). The error of using (1 - pfr, instead of Eq. (9), can be 
substantial for a metallic film since K is on the same order of 
n. Take a 50 nm thick free-standing gold film at 2 pm as an 
example. Using n = 0.47 and K - 12.5, from Siegel and Howell 
(1992), the normal transmittance calculated from Eq. (9) is « 2 
X 10~3, whereas (1 - pfr » 2.8 X 10~6. The nearly three 
orders of magnitude discrepancy is caused by the difference 
between T2l - 8.4 and 1 - p = 0.012. 

Concluding Remarks 
By inspecting the energy balance at the second interface, this 

work reveals an implicit assumption associated with Eq. (1), 
that is, the power flux equals the sum of the power fluxes of 
the forward wave and the backward wave. Using the expressions 
given by Eqs. (5) and (8), the relative error of Eq. (1) is evalu­
ated. Corrections are rarely needed since K <S n for most engi­
neering applications when interference effects may be ne­
glected. For a highly absorbing lamina however, the power 
transmittance and reflectance at the second interface cannot be 
defined. Hence, for applications that involve very low transmit­
tance laminae, Eq. (1) is inappropriate even though interference 
effects are negligible. 

Certain important applications require the determination of 
transmittance below 10~4. Examples are in the characterization 
of attenuation filters, bandpass filters, and materials with strong 
absorption bands (Frenkel and Zhang, 1994; Zhang et al., 1995a, 
b). Infrared transmittance as low as 10-10 can be measured 
using modern spectrometric and laser techniques as reviewed 
by Gentile et al. (1995). 
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Thermal Convection in an Infinite 
Porous Medium Induced by a Heated 
Sphere  

R. Ganapathy1 

This paper investigates the transient behavior of the free con­
vection motion and heat transfer induced by a heated sphere 
with prescribed wall temperature embedded instantaneously in 
an infinite porous medium. Solutions for the velocity and tem­
perature fields have been obtained in the form of series expan­
sions in Rayleigh number which is based on the medium perme­
ability and the temperature of the sphere. All discussions are 
based on the assumption that the flow is governed by Darcy's 
law and the thermal Rayleigh number is small. 

Nomenclature 
a = radius of the sphere (L) 
cp = specific heat of fluid at constant pressure (L 2 r 2 6 _ 1 ) 
/ = function of?] (Eq. 13) 
G = function of 77 (Eq. 18) 
g = gravitational acceleration (LT~2) 
K = medium permeability (L2) 
L = length 
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Q = prescribed wall temperature on the sphere (f?) 
R = nondimensional radial coordinate 

R„ = nondimensional radius of the sphere (aHK) 
Ra = thermal Rayleigh number, (f3gKiK/av)Q 
Re = Reynolds number, (ULIv) 

r = radial coordinate (L) 
T = temperature (6) 
t = time (T) 

U = nondimensional radial velocity 
u = radial velocity (LT^1) 
V = nondimensional transverse velocity 
11 = transverse velocity (LT~') 

Greek Symbols 

a = effective thermal diffusivity of the porous medium 
[L2T-'] 

P = coefficient of thermal expansion [f?~'] 
0 = azimuthal angle 
4> = meridian angle 
V = similarity variable, R/2yt 

Vo = similarity variable R0 

v = kinematic viscosity (L2T~') 
a = heat capacity ratio (eq. 2) 
\\i = stream function [L3T~'] 

Subscripts 

0 = zeroth-order solution 
1 = first-order solution 
co = reference state 

1 Introduction 

Since the work of Yamamoto (1974), there has been a spate 
of research papers on thermal convection due to the presence 
of heated spheres in saturated porous media. Most of them, with 
the possible exception of the work of Ganapathy and Purusho-
thaman (1990), were primarily concerned with steady-state so­
lutions only. However, as the analysis of such flows is essential 
for the solution of many engineering problems such as the hy­
drodynamics of weak thermal explosions, cooling of the compo­
nents of electrical and electronic equipment, and the manage­
ment of nuclear waste, a knowledge of the transient behavior 
of the flow and heat transfer becomes necessary, especially 
when the heated sphere is buried instantaneously. It is towards 
this end that we propose to present a solution to this problem 
of transient convection due to the presence of a heated sphere 
embedded instantaneously in an unbounded porous medium and 
investigate the ensuing flow field and heat transfer in the context 
of thermal flows in porous media. 

2 Mathematical Formulation 

We consider the natural convection around a heated sphere 
of radius a and of constant temperature Q (in excess of the 
reference temperature), buried instantaneously in an unbounded 
fluid-saturated porous medium of low permeability. The me­
dium is assumed to be rigid, homogeneous, and isotropic, and 
the fluid saturating the medium is assumed to be Boussinesq 
incompressible. 

A spherical-polar coordinate system (r, <f>, 9 ) is chosen (Fig. 
1), with the origin of the system at the centre of the sphere and 
the axis qb = 0 vertically upwards. Taking advantage of the 
continuity equation, we define a stream function t/y such that 

u = (r2 sin 4>)~]dijj/dcj), v = (r sin 4>)^^d\pldr (1) 

where u and v are the radial and transverse components of 
velocity and introduce the nondimensional quantities (see no­
menclature) 
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