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Abstract

Consider a closed subset of a complete Riemannian manifold, such that all

geodesics with end-points in the subset are contained in the subset and the subset

has boundary of codimension one. Is it the case that Riemannian barycentres of

probability measures supported by the subset must also lie in the subset? It is shown

that this is the case for 2-manifolds but not the case in higher dimensions: a

counterexample is constructed which is a conformally-Euclidean 3-manifold, for

which geodesics never self-intersect and indeed cannot turn by too much (so small

geodesic balls satisfy a geodesic convexity condition), but is such that a probability

measure concentrated on a single point has a barycentre at another point.

Introduction

Riemannian barycentres and Riemannian centres-of-mass have a long history

stretching back even to the early history of axiomatic probability theory [1, 5]. More

recent references include [12], the very detailed geometric comparison estimates

established in [7] and work relating barycentres (even in a non-Riemannian context)

to convexity [4]. The simplest definition is that x is a barycentre of a probability

measure µ on a Riemannian manifold if it is a local minimum of the ‘energy

functional ’ "
#
!- dist (w, x)#µ(dx). We extend the definition below (in Definition 1±2) to

allow for non-uniqueness (and indeed non-minimality) of geodesics, in order to better

explore non-uniqueness issues: essentially we deem w to be a barycentre of µ if µ can

be lifted by the exponential map Exp
w

to a measure on T
w
- with zero (vector) mean.

Specific applications in probability and statistics include early work by Ziezold on

mean shapes of figures defined by datasets of points [18–20], later developed by [13]

in a geometrical approach to the statistical theory of shape, and also a fully

probabilistic approach to the important nonlinear elliptic variational theory of

harmonic maps [8–11, 15]. Related work [6], deriving from a purely geometric

perspective, uses Riemannian barycentres to provide a dramatic simplification of the
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variational theory which applies to significant infinite-dimensional cases. Finally,

Riemannian barycentres have been exploited to provide an intrinsic approach to

statistical estimation based on the Fisher–Rao metric [14].

In all these cases it is of interest to establish conditions for which barycentres are

unique, or at least constrained to lie on particular subsets. Non-uniqueness is an

essentially global phenomenon, arising either because of cut-locus (consider centres

of mass on a circle) or curvature (an example of non-uniqueness despite absence of

cut-locus is to be found in [10]). Particularly, in statistical contexts (for example, of

intrinsic estimation constrained by a fixed hypothesis), it is of interest to understand

whether or not simple geometric conditions on a subset # ensure that barycentres of

probability measures supported by # also always lie in #. The simplest possible

condition would be that all barycentres of two-point probability measures supported

by # also always lie in #. This corresponds to the requirement that geodesics which

start and end in # also lie in # ; a condition of geodesic convexity. In the following

we investigate the extent to which this condition suffices.

The paper is organized as follows. In Section 1 we define the geodesic convexity

condition above more formally and also give a careful extended definition of

Riemannian barycentre as a critical point of a modification of the ‘energy

functional ’ ; care is required because in our situation we should expect geodesics not

to be uniquely defined by their end-points. Section 2 describes a reduction of the

basic problem to the case where the probability measure in question has support on

a finite point set and indeed such that the number of points (and indeed the number

of geodesics involved) is bounded above by d1 where d is the dimension of the

underlying manifold. Section 3 establishes that the geodesic convexity condition,

together with the condition that the boundary is of codimension 1, forces the

connected components of the complement to be unbounded; this is obtained by a

simple non-stochastic argument using Liouville measure and may be of independent

interest. We exploit this argument in Section 4 to establish a positive result for

dimension 2, using the fact that geodesics can separate points in 2-manifolds. On the

other hand Section 5 delivers a counterexample in dimension 3, using a conformal

metric on 2$ which is flat except on three carefully constructed small ‘ lobes ’. The

construction is so arranged as to provide three geodesics, all emanating from the

origin o, which also meet at a point where their tangents sum to zero as vectors

(hence allowing a barycentre condition to be satisfied). The main work of the

construction is to establish that geodesics in this conformal metric do not intersect

themselves if the lobes are sufficiently small and indeed then cannot turn by too

much; this task is facilitated by a simple description of the differential equations

governing conformal geodesics which are run at unit speed in the original metric. The

paper is concluded by Section 6, which discusses related problems mostly to do with

Γ-martingales (continuous dynamic analogues of Riemannian barycentres).

1. Geodesic convexity and barycentres

Both convexity of sets and the notion of centre of mass or barycentre have varying

definitions in the Riemannian geometry literature. The following definitions capture

(a) in the case of convexity for a set #, that locally length-minimizing paths

beginning and ending in # must stay within # ;
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(b) in the case of a barycentre w of a measure µ, that µ can be viewed as the

projection by the exponential map Exp
w

of a measure µh on the tangent space at

w with zero vector-valued mean.

These notions are of course tuned to our purposes and our underlying (statistical)

motivation: in particular they allow us to deal cleanly with the case where - has

non-negligible cut-locus.

Here and in the following we suppose - to be a smooth complete Riemannian

manifold (without boundary). Consider the following condition of geodesic convexity

for a subset # of -.

Definition 1±1 (Geodesic convexity condition). Let #X- be a subset of a

Riemannian manifold -. We say that # is geodesically convex if the following holds

for all geodesics γ : [0, 1]U- ; whenever γ has both end-points γ(0), γ(1) lying in #

then the whole image Im (γ) is contained in #.

Remark. It is important to note that γ in the above is not constrained to be a local

minimum of the length functional : it may be just a critical point.

Remark. Note that this definition would be too weak if - were not complete.

Definition 1±2 ((Riemannian) barycentre of a probability measure). Consider a

probability measure µ defined on a Riemannian manifold -. We say that a point

w `- is a (Riemannian) barycentre of µ if there exists a probability measure µh on

T
w
- which is mapped onto µ by the exponential map, so µh ((Exp

w
)−"A)¯µ(A)

for all Borel AX-, and which satisfies the ‘criticality condition’

&
Tw

-

vµh (dv)¯ 0. (1±1)

Remark. If µ gives measure zero to the cut-locus of w and if in addition µh is

supported within the cut-locus on T
w

- then w is a critical point of the functional

1(w)¯
1

2&-

dist (w, x)#µ(dx). (1±2)

In this case

&
-

dist (w, x) grad
w

dist (w, x)µ(dx)¯o. (1±3a)

and it can be convenient to re-write (1±3a) informally as

&
-

[(Exp
w
)−" x]µ(dx)¯o. (1±3b)

(Note that Exp−" is not well-defined as a point map when there is cut-locus.)

In order to avoid consideration of tedious conditions relating to the cut-locus, our

definition of barycentre is more generous than this : however our counterexamples

can be specialized to the more stringent case by using perturbation arguments.

Notice also that if the measure µ has a density then it gives measure zero to the cut-

locus, so the distance-based ‘energy’ definition can be used. However even in such

a case the barycentres defined by (1±1) are more general than those defined by
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(1±2), (1±3a, b), since the second case requires µh to be supported within the cut-

locus.

Remark. We use the notion of criticality here rather than the more stringent

requirement that w be a (local) minimum of the ‘energy functional ’ 1(w).

Criticality is more closely tied to the notion of convexity expressed in Definition 1±1
and disposes very naturally of the complications which arise when cut-locus is

present.

Remark. The choice of µh may appear arbitrary and geometrically unnatural to the

reader. However it corresponds simply to the choice of a family of geodesics running

from w to each of the points in the support of µ ; which is certainly a geometrically

natural notion. Note in particular that a probability measure supported by a single

point z can, according to Definition 1±2, have a different point w1 z as barycentre, if

there are several different geodesics running from z to w and if the gradient vectors

of these geodesics at z are not all contained in some single open half-space of T
z
-.

Remark. The geodesic convexity of a set # can be re-expressed in terms of

barycentres as defined in Definition 1±2: it is equivalent to the requirement that all

barycentres of two-point measures supported in # should also lie in #.

This paper sets out to answer the following question: if a probability measure µ has

support supp (µ) contained in a geodesically convex closed set # then to what extent

may we deduce that # contains all barycentres of µ? We shall see that this is the case

when - is two-dimensional (and the boundary ¦# is of codimension 1), but that

it does not hold in general.

2. Reduction to case of atomic measures

In this section we show that it suffices to consider atomic probability measures

whose support is of cardinality restricted by the dimension.

P 2±1 (Probability measures of finite support suffice). Suppose that # is

a closed subset of a Riemannian manifold - of dimension d, such that if µ is a

probability measure on # concentrated on at most d1 points of # then all barycentres

of µ also lie in #. Then the same is true for general probability measures supported by

#.

Proof. Let µ be a general probability measure supported by #, with barycentre w

as defined in Definition 1±2 (we write, supp (µ)X# ). Then there is a probability

measure µh on T
w
- such that µh ((Exp

w
)−"A)¯µ(A) for all Borel AX- and such

that

&
Tw

-

vµh (dv)¯o.

But now o `T
w
- lies in the convex hull of the closed support supp (µh ) of µh . So by a

vector-space proposition (for example theorem 3±25 and the following lemma of [16])

we know that there must be points ξ
!
,…, ξ

d
in the closed support of µh such that

o ` conv ²ξ
!
,…, ξ

d
´ : say p

!
ξ
!
Ip

d
ξ
d
¯o, or ! ξνh (dξ )¯o, where the finitely

supported probability measure νh puts mass p
i
on ξ

i
. By continuity of the exponential
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map we know that x
!
¯Exp

w
(ξ

!
),…, x

d
¯Exp

w
(ξ

d
) all lie in supp (µ) ; and by our

definition of the x
i
and νh it is immediate that

&
Tw

-

uνh (dv)¯o.

Since supp (µ)X#, we can thus define a probability measure ν supported on # with

barycentre w, so that ν(A)¯ νh ((Exp
w
)−"A) for all Borel AX- and ν is supported on

²x
!
¯Exp

w
(ξ

!
),…, x

d
¯Exp

w
(ξ

d
)´X#. *

It follows that if µ is a probability measure supported on # which has a barycentre

outside # then we can find ν supported on # with barycentre outside # and with

finite support.

Remark. In general we cannot simply define ν by ν(x
i
)¯ νh (ξ

i
) for all i, since the map

Exp
w
: ²ξ

!
,…, ξ

d
´U ²x

!
,… , x

d
´ will generally not be injective.

C 2±2. In the above the left measure µh can be chosen so as to be supported on

a set of cardinality d1.

Remark. E! mery has pointed out to one of us that Proposition 2±1 usefully

constrains the scope for counterexamples to possible conjectures relating geodesic

convexity to the existence of convex functions (see, e.g. [3]).

3. Complements of geodesically convex closed sets

In preparation for the positive result of this paper, we show that complements of

geodesically convex closed sets cannot have small connected components, at least if

the closed sets in question have boundary of codimension 1. Of course this is an

easy fact in the Euclidean case! (There is only ever one connected component…)

However the global geometry of a general manifold - makes this result less trivial.

P 3±1 (Unboundedness of connected components of the complement of

a geodesically convex closed set). Suppose that - is a Riemannian manifold. Let # be

a closed subset of -, geodesically convex as in Definition 1±1, and suppose that # has

smooth boundary of codimension 1. Then every connected component of its complement

must be of infinite volume and hence its closure is non-compact.

Remark. This result would not hold if in Definition 1±1 we used only geodesics

which were local minima of the length functional : consider the case of a small

hemisphere in a sphere.

Remark. The smooth boundary condition should not be necessary: we impose it in

order to avoid involvement in uninformative technicalities about Hausdorff measure.

Proof. Let S(-) be the sphere bundle of unit tangent vectors in -.

Let A be a connected component of the complement # c, and (ZS(¦# )ZS(-)

the set of unit tangent vectors based in ¦# but pointing into A :

(¯²v `S(-) : πv ` ¦#, Expπv
(tv) `A for all small enough t" 0´

¯ ²v `S(-) : πv `#, Expπv
(tv) `A for all small enough t" 0´.

5

6
7

8

(3±1)
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(Here π : S(-)U- is induced by the tangent map projection.) Note that ( has non-

empty interior, when viewed as a subset of S(¦# ), because # has smooth boundary.

Note further that the geodesically convex condition means that (3±1) is equivalent

to

(¯²v `S(-) : πv `#, Expπv
(tv) `A for all t" 0´. (3±2)

Consider the geodesic flow map f :(¬(0,¢)US(-) determined by f(v, t)¯
(Expπv

)k (tv). The above shows that Im ( f )ZS(A). Furthermore f must be injective,

since failure of injectivity would deliver a periodic closed geodesic which could not

be reached from ( by f.

Now select an open subset B of (XS(¦# ) such that ² f(v, t) : v `B, t ` (0, ε)´ZS(A).

Topologically the set ² f(v, t) : v `B, t ` ((n®1)ε,nε)´ can be viewed as a product

subset of S(# )¬2, using geodesic convexity and properties of the geodesic flow.

Since the open sets B and ((n®1)ε,nε) are both non-empty, and the codimension of

S(# ) is 1, it follows that the product is a non-empty open subset in S(M ). Thus if

m is Liouville measure on S(-) then

m² f(v, t) : v `B, t ` (n®1)ε,nε)´

is positive. Moreover by the invariance of Liouville measure under the geodesic flow

it does not depend on n. Finally, since f is injective it follows that m(S(A))¯¢ and

hence that A is of infinite volume, as required.

Remark. The above proof extends to the case of # a singleton set in - when - is

of dimension 2, if the geodesic convexity condition is strengthened. We then

require not only that geodesics can hit the singleton set # once only, but also that

geodesics which do not hit # cannot come arbitrarily close to it. This is equivalent

to requiring geodesic convexity for small geodesic balls centred on the singleton point

of #. It is thus a local version of the Γ-geodesic Liouville property (D«) described in

[9].

Remark. For the proof to apply to closed sets # of general codimension we must

impose a kind of strict geodesic convexity: the set #ε must be geodesically convex for

all sufficiently small ε, where

Cε ¯ 5
x`#

ball (x, ε).

The proof then works by application to each of the geodesically convex Cε.

4. The two-dimensional case : a positive result

The question posed by this paper has a positive answer in dimension 2, essentially

because geodesics can separate points in 2-manifolds.

T 4±1 (Barycentres and geodesically convex closed sets in 2-manifolds).

Suppose that - is a two-dimensional Riemannian manifold. Let #X- be geodesically

convex as in Definition 1±1 and suppose that # has smooth boundary of codimension 1.

Let µ be a probability measure supported in #. Then every barycentre of µ is contained

in #.

Proof. First observe that # is path-wise connected, as a direct consequence of
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being geodesically convex in the sense of Definition 1±1. (Riemannian geometry

shows that for x, y `# there is at least one geodesic of minimal length connecting x

to y in - and by geodesic convexity such geodesics must lie entirely in #.)

Minimality of the geodesics involved is not required for barycentres defined

according to Definition 1±2. Consequently we can take universal covers, so that there

is no loss of generality in supposing that - is simply connected, which is to say that

- is a topological plane.

We now argue by contradiction. Suppose that µ is a probability measure supported

on # with a barycentre w lying outside #. By Proposition 2±1 we may suppose that

µ is actually supported on a three-point set ²p, q, r´X#. We need to refer to the

actual geodesics realizing the barycentre condition: if w is a barycentre according to

Definition 1±2 then there are points ph , qh , rh `T
w
- and weights α

p
, α

q
, α

r
(with

α
p
α

q
α

r
¯ 1 and α

p
& 0, α

q
& 0, α

r
& 0) such that:

(i) Exp
w

ph ¯p, Exp
w

qh ¯ q, Exp
w

rh ¯ r ;

(ii) α
p
ph α

q
qh α

r
rh ¯o in T

w
-.

We define geodesics γ
p
(t)¯Exp

w
(tph ), γ

q
(t)¯Exp

w
(tqh ), γ

r
(t)¯Exp

w
(trh ), for

t ` [0, 1], so

3
p

α
p
γ!
p
(0)¯α

p
ph α

q
qh α

r
rh ¯o. (4±1)

We may suppose that ph , qh , rh all have positive weights, since otherwise the two

geodesics with non-zero weight combine to produce a single geodesic with end-points

in # and passing through w ¡#. This would violate the geodesic convexity of #.

Note however that it is possible for some or all of the end-points p, q, r to coincide:

it is the intervening geodesics which must be distinct.

We may re-adjust the positive weights given to the various geodesic directions ph ,
qh , rh and alter their end-points and lengths so as to arrange that p, q, r belong to the

boundary ¦# and the geodesics γ
p
(t), γ

q
t), γ

r
(t) lie outside # for t ` [0, 1). This means

that we may suppose that # c is connected, for otherwise we may add to # all the

connected components of # c apart from the one containing w, without destroying

either the closed-ness or the geodesic convexity (hence connected-ness) of #. We

therefore have simplified the topological setting: - is a plane with non-Euclidean

metric ; # is connected; # c is connected and its closure is not compact; the points p,

q, r lie on the boundary ¦#. Since both # and # c are connected, and C c has non-

compact closure, it follows by planar duality that # is simply-connected.

Suppose now that # is not compact. As # is simply-connected, the (smooth)

boundary ¦# can be viewed as a one-dimensional non-closed curve (if # is not the

closure of its interior – which happens if it is the image of a geodesic – then this

remains true if we replace ¦# by a non-topological potential-theoretic boundary

using equivalence classes of geodesic rays rooted in ¦# but otherwise lying wholly in

# c). Consequently we can use the ordering of the boundary ¦# to argue that two of

p, q, r are connected to each other by a curve in # c which does not intersect γ
p
, γ

q
,

γ
r
and which together with # separates w from infinity. Suppose these two points are

p and q.

There is exactly one infinite component of # c c5
p
Im (γ

p
), say D, and D is bounded

by fragments of the geodesics Im (γ
p
)f# c, Im (γ

q
)f# c, Im (γ

r
)f# c and part of ¦C.

Moreover the angles of intersection of the geodesic fragments are all convex when
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p
r

w

q
#

γ~

Fig. 1. Illustration of γh , p, q, r.

viewed from D. Furthermore the geodesic fragment portion of ¦D must lie between

p and q and separate them in ¦D.

Consider the class of piecewise-smooth continuous curves running from p to q,

which never cross any of γ
p
, γ

q
, γ

r
, which separate w from infinity in # c and

which can be expressed as chains of at most N geodesic fragments each of length at

most δ" 0. Then N, δ can be chosen so that

(a) such curves exist (simply ensure that the total length bound Nδ is sufficiently

large) ;

(b) geodesic segments in the region ball (p,Nδ) are minimal if they are of length at

most 2δ (simply choose δ small enough while keeping the total length Nδ fixed).

The family of all such curves can be viewed as a closed subset of the compact

topological product space ball (p,Nδ)N and therefore its closure contains at least one

curve γh of minimal length. Since dist (w, ²p, q´)" 0 it follows that γh is of non-zero

length; furthermore it is not contained wholly in # (since it separates w from infinity

in # c) ; finally it must be a geodesic because it is possible to shorten the geodesic chain

wherever the join between geodesics is not differentiable and this does not lead to

a curve crossing γ
p
, γ

q
, γ

r
, since the exposed intersections of these geodesics are

convex from infinity (except at p, q, where anyway the curve γh is fixed).

Hence γh is a geodesic from p to q which is not contained wholly in #, contradicting

the geodesic convexity of #.

If # is compact then we argue as above, but using the universal cover of - c ²y´
for some y `#. Again, if # is not the closure of its interior then we need to take care

with the definition of ¦#. *

If # is a singleton then its boundary is clearly not of codimension 1. However

the proof carries through if we can show that a geodesic which does not intersect #

does not come arbitrarily close to #, which is all that we will require in the

counterexample in the following section.

5. Counterexamples

Theorem 4±1 cannot extend to higher dimensions. A four-dimensional counter-

example, using a set of codimension 2, can be based on the two-dimensional

manifold 0 known as the ‘propeller ’ [10] ; geodesics in 0 are uniquely determined

by their end-points and yet it supports a three-point probability measure with at

least three distinct barycentres w
"
, w

#
, w

$
. E! mery has pointed out to us that 0¬0

immediately supplies a counterexample. Geodesics in 0¬0 are uniquely determined

by their end-points (a property inherited directly from 0). Now consider the copy of

0 embedded as a totally geodesic sub-manifold as the diagonal $ in 0¬0. Being
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totally geodesic, this is geodesically convex as required. On the other hand, the three-

point probability measure used as counterexample in [10], when embedded in 0¬0

via $, has barycentres which do not lie in $ (use coordinate barycentre w
"

for the

first coordinate, w
#

for the second and lemma 4 of [4]).

In the remainder of this paper we demonstrate a three-dimensional counterexample

to the higher-dimensional version of Theorem 4±1: geodesics are free of self-

intersections and indeed have uniformly bounded total angle of turning, but there is

a probability measure concentrating on a single point o which has another point as

barycentre. The limit on total turning angle means that this counterexample extends

to small geodesic balls centred on o. This counterexample is obtained from Euclidean

3-space by a conformal change of metric which leaves the Euclidean metric

unchanged except in three small lobes. Its analysis depends on the behaviour of

geodesics in conformally transformed metrics : we therefore commence with a

subsection which summarizes this behaviour.

5±1. Geodesics and conformal changes of metric

The behaviour of geodesics in conformally changed metrics is a matter of mere

routine calculation: we set it out here for the sake of completeness of exposition, and

also to fix notation.

We describe the following results in complete generality, though we shall only

require the case when the reference metric is that for Euclidean 3-space. In the

following γ«, γ§, etc., and gradφ, refer to the original Levi–Civita connection and

Riemannian metric.

Let - be a Riemannian manifold with Riemannian metric f. Let φ : -U2 be a

smooth function and consider the conformal metric

g¯ exp (2φ)¬f.

Apply the standard variational arguments to the g-length of a path γ
u
: [0, 1]U-,

with u ranging over (®ε, ε) and with end-points held fixed. We suppose that at

u¯ 0 the path γ
!

is of constant f-speed v. The g-length is

L[γ
u
]¯&"

!

eφ of(γ!
u
(s),γ!

u
(s)) ds¯&"

!

eφ of(T,T) ds. (5±1)

where T¯γ!
u

is the tangent vector of γ
u

(the constant f-speed condition implies

rTr
f
¯of(T,T)¯ v at u¯ 0). Let U be the vector-field supplied by the u-variation.

Then

d

du
L[γ

u
]¯&"

!

eφ of(T,T)(Uφ) ds&"

!

eφ
f(T,~

U
T)

of(T,T)
ds (5±2)

and integration by parts (using U¯ 0 at s¯ 0, s¯ 1), together with ~
U

T¯~
T

U

(a consequence of zero torsion for the Levi–Civita connection ~), shows

9 d

du
L[γ

u
]:

u=!

¯ v&"

!

eφ(Uφ) ds®v−"&"

!

eφ f(~
T

T,U) ds®v−"&"

!

eφ f(T,U)(Tφ) ds.

(5±3)
Consequently if γ

!
is a critical path for the g-length then

~
T

T¯ f(T,T) gradφ®(Tφ)T (5±4)

(recall that v¯ rTr
f
¯off(T,T)).
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e

o

lobe

Fig. 2. Three-dimensional counterexample.

The reader may wonder if there is any relationship between these results and the

famous comparison theorem for geodesics. We are not aware of any: the above

results are not only simpler to prove, but also apply only to the special case of a

conformally changed metric.

Specializing to Euclidean space, we see that if we change the metric conformally

to be exp(2φ) times the Euclidean metric then a new geodesic γ, when run at unit

speed in the old Euclidean metric, satisfies the simple second-order differential

equation

γ§¯ [gradφ®©γ«, gradφªγ«]. (5±5)

So a conformal geodesic behaves as if the gradient of φ is subjecting it to a turning

moment but not altering its speed. This simple description is fundamental to the

construction of the required counterexample.

5±2. Three-dimensional counterexample

We will construct a conformal metric for 2$, three-fold symmetric under rotations

through #
$
π about the z-axis, parametrized by ε, such that for small ε we have

(a) all conformal geodesics are simple, and indeed have total angle of turning

bounded above away from π ;

(b) there are three conformal geodesics, permuted by the three-fold symmetry,

begun at o¯ (0, 0, 0) and meeting at e¯ (0, 0, 1), such that their tangent

vectors are parallel to the x :y-plane at e and hence (by three-fold symmetry)

e is a barycentre for the degenerate probability measure concentrated at o.

It follows that e is a barycentre of a measure concentrated on #¯²o´. Furthermore

# is geodesically convex in the sense of Definition 1±1 and small geodesic balls

centred on the point which forms # are also geodesically convex. See Fig. 2 for an

illustration of this construction.

We first describe how to construct a conformal metric on 2$ which has as one of

its geodesics a specified smooth curved (unit-speed) segment α : [®1, 2]U2$ which is

free of self-intersections. We suppose that α is straight-line motion on [®1, 0], [1, 2].

Notice that by differentiation of rα«r#¯ 1 we see that

©α§,α«ª¯©α§,Tª¯ 0.

Let T(t)¯α«(t) be the tangent vector-field for α and let U(t), V(t) be unit vector-

fields along α such that U(t), V(t), T(t) form an orthonormal bass for each t ` [®1, 2].

Finally let n : 2#U [0,¢) be a smooth radially symmetric function, with n(u, v)

decreasing in u#v# and such that n(0)¯ 1, n(u, v)¯ 0 if u#v#& 1. Let n
"
, n

#

denote the two partial derivatives of the function n.
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For each sufficient small ε" 0 we define ψε : 2$U2 by

ψε(α(t)uU(t)vV(t))¯ εn(u}ε, v}ε). (5±6)

(We need ε so small that α(t)uU(t)vV(t)¯ x is solved uniquely for u#v#% ε#.)

Observe that

ψε(α(t))¯ ε

gradψε(α(t))¯ 0

5

6
7

8

(5±7)

for all t, while we can solve the equations for gradψε in general,

©gradψε(α(t)uU(t)vV(t)),T(t)uU«(t)vV«(t)ª¯ 0

©gradψε(α(t)uU(t)vV(t)),U(t)ª¯n
"
(u}ε, v}ε)

©gradψε(α(t)uU(t)vV(t)),V(t)ª¯n
#
(u}ε, v}ε)

5

6
7

8

(5±8)

to establish that gradψε is bounded in norm uniformly in ε.

We must now modify ψε to produce a function φε with the following properties :

(i) its gradient is bounded uniformly in ε ;

(ii) it is supported on the ε-dilation of the set ²α(t) : t ` [®ε, 1ε]´ ;
(iii) it delivers the required turning moment on α.

Set

θε(α(t)uU(t)vV(t))¯ 1©(u}ε)U(v}ε)V,α§(t)ª (5±9)

and choose h :2U [0,¢) to be a smooth monotonic increasing function such that

h¯ 0 on (®¢,®1] and h¯ 1 on [1,¢). Then we define

φε(α(t)uU(t)vV(t))¯ψε(α(t)uU(t)vV(t))

¬θε(α(t)uU(t)vV(t))¬h(t}ε)¬h((1®t)}ε). (5±10)

Boundedness of the gradient follows from boundedness of the gradient of ψε and the

fact that ψε(α(t))¯ ε ; the support property follows from the definition of n and h ;

finally we can compute the normal component (to α) of the gradient of φε at α(t) by

using the fact that gradψε(α(t))¯ 0 and α§(t)¯ 0 unless t ` [0, 1] : differentiating

φε(α(t)uU(t)vV(t)) with respect to u, v,

©gradφε(α(t)),U(t)ª¯
1

2
3

4

©U(t),α§(t)ª if t ` [0, 1],

0 if t% 0 or t& 1
(5±11)

and similarly if U is replaced by V. Hence

(gradφε)rIm(α)
¯ (α§©gradφε,TªT)r

Im(α)
(5±12)

as required.

Together with (5±5) this establishes that the conformal metric

exp (2φε)¬Euclidean

has α as a geodesic curve, alters the Euclidean metric only in an ε-neighbourhood

of the curved part of α and yet is controlled in the sense that gradφε is bounded in

norm uniformly in ε.

The counterexample +ε is constructed as follows. Choose a once-differentiable

curve α
!

in the x :z-plane, starting at o and moving for a while at a constant angle

"
%
π to the z-axis, then curving round through $

%
π radians of angle in a manner which
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α0 support of φε,0
and the lobe

Fig. 3. The curve α
!
, the support of φε,!

and the lobe.

is convex when viewed from the origin o of the x :z-plane and then moving back

to the z-axis in parallel with the x-axis (see Fig. 3). We further require that the

curved portion of α
!
approximates $

)
of a unit-radius circle, in the following sense: for

fixed κ" 0 and fixed x
!
in the x :z-plane, the curved portion of α

!
has tangent less than

distance κ from the tangent for the corresponding $
)
of the unit circle centred at x

!
.

Use α
!
, and its two copies α

"
, α

#
under #

$
π and %

$
π rotation about the z-axis, to

build φε,!
, φε,"

, φε,#
as indicated above and as illustrated in Fig. 2. Set

φε,+
¯φε,!

φε,"
φε,#

.

The resulting conformal metric certainly makes α
!
, α

"
, α

#
into geodesics and so

by construction we see that e is a barycentre for the degenerate probability

measure at o, assigning probability "
$

to each of the three geodesics. In order

to produce a counterexample to the higher-dimensional version of Theorem 4±1, it

only remains to show that, for sufficiently small ε, all geodesics are simple curves

in this conformal metric and cannot turn by too much.

The proof of this amounts to a number of steps which we describe using lemmas

and corollaries. We need some terminology. If γ is a (conformal) geodesic in +ε then

we say it has collisions corresponding to the connected components of

²t `2 : φε(γ(t))" 0´.

The lobes of +ε contain the three connected components of the support of φε ; for

convenience they are slight expansions of the support components, being the ε«-
neighbourhoods of the curved portions of α

!
, α

"
, α

#
, for ε«¯o2ε.

Let U
i
, V

i
be the vector-fields used together with α!

i
to form an orthonormal basis

in the definition of φε,i
near the curved portion of α

i
.

The angle of entry at a collision is defined as follows. Suppose that, in the above

notation, entry to a collision is at (α
i
(t), U

i
(t), V

t
(t)) `2$. Use the (Euclidean!) angle

between the tangent vector of γ on entry and the tangent vector to the appropriate

α
i
at the point α

i
(t) (the perpendicular projection onto α

i
).

There is of course also an angle of exit, defined analogously, which will in general

differ from the angle of entry for the same collision.

Let Cφ be the bound on the norm of gradφε (recall that this bound is uniform in

ν).

L 5±1. For all β ` (0, "
#
π) and sufficiently small δ" 0, there is εk¯ εk(δ,β) such

that for all ε! εk we have : suppose that γ is a geodesic (with respect to the conformal

metric) such that γ(0) is in the lobe corresponding to α
i
. Let γ(0)¯α

i
(t)uU

i
(t)vV

i
(t)
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with u#v#% (ε«)#¯ 2ε#. If γ«(0) makes an angle with α!
i
(t) of at least β then γ(δ) is not

in any of the lobes and γ«(u) differs from γ«(0) in Euclidean norm by at most Cφ\δ for

u ` [0, δ].

Proof. Suppose that γ(0) is in any lobe. Then from (5±5) and the uniform bound

on gradφε we can deduce the following bounds on Euclidean norms:

sγ«(u)®γ«(0)s%Cφ\u for u ` [0, δ]

sγ(δ)®γ(0)®δγ«(0)s%Cφ\
δ#

2
.

5

6
7

8

(5±13)

Thus the bound on the difference between γ«(u) and γ«(0) follows directly and the

lemma is proved completely if we can also show that γ(0)δγ«(0) (representing the

Euclidean geodesic with the same initial conditions) is at distance at least Cφ"
#
δ#

from any lobe.

Because the lobes are separated, and we need the result only for sufficiently small

ε, it suffices to prove the result only in so far as it concerns the lobe corresponding

to α
i
. Moreover it suffices to establish conditions such that if γ(0) lies on the curve α

i

then γ(0)δγ«(0) is at least distance ε«Cφ "
#
δ# from α

i
. This is because when γ(0)

¯α
i
(t)uU

i
(t)vV

i
(t) satisfies the conditions of the Lemma then γ(0) is at most ε«

from α
i
(t), which (for ε small enough for γ(0) to avoid focal points) is the closest point

on α
i
to this γ(0).

Since α
i
is smooth and does not intersect itself, it suffices to show that, for small

enough δ and ε% εk(δ,β), the point γ(0)δγ«(0) is at least distance 2ε«Cφ "
#
δ# from

the tangent line running through γ(0)¯α
i
(t) with direction vector α!

i
(t). But this

follows by trigonometry from the condition on the angle between γ«(0) and α!
i
(t), so

long as β" 0 and εk(δ,β) is sufficiently small. (We use 2ε« here rather than ε« to allow

for the deviation of α
i
from its tangent line in Euclidean space.)

C 5±2. For all sufficiently small ε" 0, if a geodesic γ collides with two lobes in

succession then these are the only collisions that occur and moreover the angle between

γ«(®¢) and γ(¢) tends to zero with ε.

Proof. This follows from Lemma 5±1 and the three-dimensional Euclidean geometry

of the construction of +ε : the geodesic segment leading from one lobe to another

cannot have exit, respectively entry, angles too close to zero and so by Lemma 5±1
the difference between entry and exit angles for each of the two lobes tends to zero

with ε.

From Corollary 5±2 it follows that we need consider only those geodesics which hit

just one lobe: without loss of generality we may suppose this to be the lobe of α
!
.

There are three cases to consider:

(i) geodesics which, at some stage in a collision, have tangent directions pointing

substantially away from the x :z-plane (see Lemma 5±3 below);

(ii) geodesics which, at some stage in a collision, have tangent directions pointing

substantially away from the corresponding α
!

tangent when resolved onto the

x :z-plane (see Lemma 5±4 below);

(iii) geodesics which at all stages during collisions have tangent directions

approximately aligned with the corresponding α
!
direction (see the argument

following Lemma 5±4 below).
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We deal with these in the two lemmas and theorem below.

L 5±3. For all β ` (0, "
#
π), for all sufficiently small δ " 0, there is εk¯ εk(δ) such

that for all ε! εk we have the following : suppose that γ is a geodesic (with respect to the

conformal metric) such that γ(0) is in the lobe corresponding to α
!
and this is the only lobe

with which it collides. If γ«(0) makes an angle with the y-axis of at most "
#
π®β then

collisions involve only γr
[−δ,δ]

and for all t the difference between γ«(0) and γ«(t) in

Euclidean norm is at most Cφ\δ.

Proof. We argue as follows. By reversibility of the dynamics of the geodesic

equations for γ, we need consider only γr
[!,

¢)
. From Lemma 5±1 we can choose δ, εk

to ensure that if ε! εk then γ(δ) is not in the lobe and γ«(u) differs from γ«(0) in

Euclidean norm by at most Cφ\δ. Then the y coordinate of γ(δ) is at least

sin (β®2 arcsin (Cφ\"
#
δ))\δ

in absolute value and γ«(δ) makes an angle with the y-axis of at least

"
#
π®β2 arcsin (Cφ\"

#
δ).

So long as δ is small enough for this second quantity to be less than "
#
π and the εk

bound is tightened to ensure that

sin (β®2 arcsin (Sφ\"
#
δ))\δ& εk,

we can be assured that γr
[δ,¢)

cannot experience any collisions (recall we require that

γ has collisions only with the α
!
lobe, which lies entirely in an εk neighbourhood of

the x :z-plane). This proves the lemma. *

From Lemma 5±3 it follows that we need consider only those geodesics which hit

just one lobe and lie approximately in the plane defined by the lobe. We now show

that if such geodesics make a sufficiently non-tangential collision then either on the

entrance or the exit side there are no further collisions.

L 5±4. For all β ` (0, "
#
π), for all sufficiently small δ" 0, there is εk¯ εk(δ) such

that for all ε! εk we have the following : suppose that γ is a geodesic (with respect to the

conformal metric) such that γ(0) is in the lobe corresponding to α
!
and this is the only lobe

with which it collides. Suppose that γ«(0) makes an angle with α
!
which when resolved on

the x :z-plane is at least β. Then at least one of γr
[δ,¢)

,γr
(−¢,−δ]

is involved in no collisions

and on that side γ« differs from γ«(0) by at most Cφ\δ in Euclidean norm. Furthermore,

if β2 arcsin (Cφ\"
#
δ)! "

#
π then the first collision for the other of γr

[δ,¢)
, γr

(−¢,−δ]
must

have entry angle less than "
#
π.

Proof. We arrange for δ to be chosen small enough so that β®2 arcsin (Cφ\"
#
δ) is

positive.

From Lemma 5±1 we know that γ(δ) and γ(®δ) both lie outside the lobe and both

γ«(δ) and γ«(®δ) differ in Euclidean distance from γ«(0) by at most Cφ\δ. When

resolved onto the x :y-plane, one of γ(δ) and γ(®δ) must lie on the non-convex side

of α
!
.

Since the collision-free part of γ is actually straight-line motion, γ«(u) is constant on

it and therefore differs from γ«(0) in Euclidean norm by at most Cφ\δ for u ` [0, δ].
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Therefore the corresponding γr
[δ,¢)

, γr
(−¢,δ]

must be free of collisions. (Here we use

the choice of δ at the beginning of the proof.)

The final remark follows directly from the bounds on γ«(δ) and γ«(®δ) and

convexity.

From Lemma 5±4, those geodesics which hit just one lobe and lie approximately in

the plane defined by the lobe can hit the lobe in a substantially non-tangential

manner in at most two places. Such a substantially non-tangential collision must be

closely approximated on at least one side by a geodesic ray with no collisions at all.

On the other side, there are two possibilities. If the next collision is substantially non-

tangential then the arguments of Lemma 5±4 apply again to show there can be no

further collisions and indeed γ« differs from γ«(0) in Euclidean distance by at most

2Cφ\δ.

On the other hand, if the next collision is approximately tangential then the last

part of Lemma 5±4 assures us that the geodesic must still be running along α
!
in the

same sense as in the original collision. There will then be a sequence of approximately

tangential collisions until either the geodesic exits the lobe, or an exit is made with

exit angle exceeding β. The exit angle cannot exceed β2 arcsin (Cφ\"
#
δ), since by

Lemma 5±1 we know exit will commence as soon as the geodesic angle exceeds β. The

same arguments apply in reverse time to the initial entrance angle and this, together

with the geometry of α
!
, assures us that the maximum difference in angle between

start and finish for a geodesic intersecting a single lobe is

$
%
π2β4 arcsin (Cφ\"

#
δ). (5±14)

Thus such a geodesic cannot intersect itself so long as β, δ, and thus the ε bound ε*,

are chosen to be sufficiently small.

This deals with all the possibilities ; so there can be no self-intersecting geodesics

in +ε. We sum up the result in a theorem.

T 5±5. For all small enough ε, the conformally Euclidean 3-manifold +ε

described above has no self-intersecting geodesics but has a geodesically convex closed

subset # (in fact #¯²o´) which supports a probability measure with a barycentre lying

outside #.

Remark. It should be noted that we have not shown that the ‘energy functional ’

1 for the degenerate probability measure at o has a local minimum away from o ;

we have only shown that the ‘criticality’ condition (1±1) holds. However it is a

simple matter to modify the function φε controlling the conformal metric locally to

α
i
so as to ensure that the metric is locally flat for most of the path of the geodesics

α
i
, using the fact that

ds#¯
dr#r# dθ#

r#
(5±15)

delivers a flat metric in the coordinates r and θ. By this means one can ensure that

the critical point is in fact a local minimum of a functional similar to 1, but

computing the distance along specified (possibly non-minimal) geodesics. Notice
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however that the propeller product 0¬0 described at the start of Section 5 provides

a 4-dimensional codimension 2 counterexample which immediately delivers a local

minimum of 1 itself.

6. Conclusion

In this paper we have shown how to construct a three-dimensional counterexample

(Theorem 5±5) to the following assertion: that a geodesically convex closed set with

boundary of codimension 1 can support no barycentres outside itself. As well as

being of interest for its own sake as a part of Riemannian geometry, this is of

significance both in stochastic differential geometry, where barycentres are strongly

related to the concept of Γ-martingales [4, 8–11, 15] and in geometrically based

statistical inference, where barycentres are used as ‘ intrinsic mean values’ [14] and

uniqueness conditions for barycentres are of basic importance.

Its non-triviality is underlined by the result that the assertion is true in two

dimensions (Theorem 4±1). In fact the proof of the two-dimensional result generalizes

to hold for iterated barycentres : it would be interesting to formulate and prove a

result for a suitable class of Γ-martingales in 2-manifolds. However a simple example

shows that care must be taken in formulating the corresponding Γ-martingale result :

Example 6±1. Consider the Euclidean plane 2#. Clearly the singleton st #¯²o´ is

geodesically convex. However the random process ²(B
tgτ, 0) : t& 0´, where B is one-

dimensional Brownian motion begun at 1 and τ is the stopping time when B first hits

0, provides an example of a Γ-martingale which ends up inside the geodesically

convex set # even though it begins (at (1, 0)) outside.

In essence, the problem is that Γ-martingales are really local martingales. Of course

one can get round this by restricting attention to bounded subsets (this is automatic

in the work of [9, 11]), or by installing a condition of Hp type [2, 17]. However we

do not pursue this here.

Finally, we have noticed above that the property (D«) of [9, 11] (the ‘geodesic

Liouville property’ : there are no non-trivial geodesics with coincident end-points,

moreover a geodesic with almost coincident end-points is almost trivial) is a slight

strengthening of the requirement that singleton sets be geodesically convex. The

results of this paper thus provide a 3-dimensional counterexample to a conjecture by

E! mery, that (D«) for a compact manifold with boundary implies a further condition

(A«) ; singleton sets can be realized as zero-sets of bounded non-negative convex

functions. For suppose that y `+ε is barycentre to the degenerate probability

measure concentrated on o. If Φ : ball(o,R)U [0, 1] is convex, with Φ(o)¯ 0 and

y `ball(o,R), then the standard Jensen-type inequality for barycentres shows that

Φ(y)%Φ(o)¯ 0, so Φ(y)¯ 0 also. It would be interesting to pursue the question

of whether E! mery’s conjecture does hold in dimension 2 (for compact manifolds with

boundary): this is related to the Γ-martingale question above using the ideas

discussed in [9, 11].
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