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Abstract

Matroids are a modern type of synthetic geometry in which the behavior of points, lines, planes,
and higher-dimensional spaces are governed by combinatorial axioms. In this paper we describe our
work on two well-known classification problems in matroid theory: determine all binary matroids M
such that for every element e, either deleting the element ( ) or contracting the element ( ) is
regular; and determine all binary matroids M having an element e such that, both  and  are
regular.

1. Introduction

Matroid theory can trace its origins to the 1935 paper by Hassler Whitney On the abstract properties of linear

dependence [1]. Whitney gave an axiomatic treatment of matroids and approached it as a generalization of
graphs and matrices. He defined a matroid M as a set E of n elements and a family of subsets of E called inde-

pendent sets such that; the empty set is independent; any subset of an independent set is independent; and if
I1 and I2 are independent sets such that , then there exists  such that  is indepen-
dent. A set that is not independent is called dependent. A simple matroid is one for which all the 1-element and
2-element sets are independent.

The first example of a matroid usually given is that of an r by n matrix A over a field F with its columns
labeled . Let E be the set of column labels and let I be subsets of column labels that cor-
respond to linearly independent sets of columns in the vector space . Then I satisfies the three matroid
axioms and the resulting matroid, denoted by , is called a vector matroid.

A second example is a graph G with edges labeled . Let E be the set of edges and let I be subsets
of edges that correspond to tree subgraphs of G. Then I satisfies the three matroid axioms and the resulting
matroid, denoted by , is called a graphic matroid. Thus, matroids encompass matrices and graphs, both
well-established subjects in their own right.

A maximal independent set is called a basis and a minimal dependent set is called a circuit. In a graph, a basis
corresponds to a spanning tree and a circuit corresponds to a cycle. The rank of a set X, denoted by , is
the cardinality of a largest independent set contained in X. The closure of X, denoted by , is defined by

. Almost immediately after Whitney’s paper, Birkhoff showed that a sim-
ple matroid can be interpreted as a geometric lattice (that is, a finite semi-modular lattice in which each ele-
ment is a join of atoms) [2]. MacLane showed that a simple matroid can be interpreted as a schematic
geometric figure composed of points, lines, planes, and so forth with certain combinatorially defined inci-
dences [3]. Thus, for example, a rank 3 matroid is a collection of points and subsets of points (called lines) that
satisfy three conditions: any two distinct points belong to precisely one line; any line contains at least two dis-
tinct points; and there are at least three non-colinear points. The many different perspectives on matroids
makes them interesting objects that underlie other well-studied mathematical objects. For more information
on matroids see the survey article by Kingan [4]. The notation and all unexplained concepts are available in
the books on matroid theory by J.G. Oxley [5] and by G. Gordon and J. McNulty [6].
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Our story of the two problems begins in 1980 when Paul Seymour developed a decomposition theory for the
class of regular matroids [7]. A regular matroid is one that can be represented by a totally unimodular matrix

over the reals. That is, a matrix each subdeterminant of which is . In 1958 Tutte proved that a
matroid is representable over all fields if and only if it can be represented by a totally unimodular matrix over
the reals [8]. This result suggested that such matroids would be important in matroid structure theory, thus he
called them regular. Totally unimodular matrices are also important in linear programming because if the
constraint matrix is totally unimodular, then we are guaranteed an integer optimal solution.

A minor of a graph is a special type of substructure obtained by deleting edges (and any resulting isolated ver-
tices) or by contracting edges. Contraction of edges amounts to taking the two vertices of an edge, identifying
them, and throwing away the resulting loop. A minor in a matroid is defined in a similar manner. We denote
the deletion of an element by  and contraction of an element by . Consider a class of matroids M that
is closed under minors and isomorphism; such as graphic matroids, regular matroids, or F-representable
matroids. A matroid M is a minimal excluded minor for M, if it is not in M, but for every element e, both 
and  are in M. In 1930 Kuratowski proved that a graph is planar if and only if it has no subgraph that is
a subdivision of K5 or K3,3 [9]. A few years later, in 1937, Wagner proved that a graph is planar if and only
if it had no minor isomorphic with K5 or K3,3 [10]. This result is considered the first of many excluded minor
characterization for classes of graphs and matroids. In 1959 Tutte proved that a matroid is binary if and only
if it has no U2,4-minor and a binary matroid is regular if and only if it has no F7, or -minor [11]. The
matroid F7 is the well-known Fano matroid. The matroid  is the dual of F7.

Duality is a central feature of a matroid. Every matroid M is accompanied by a dual matroid, denoted by .
This is because if B is a basis for M, the set  satisfies the basis axioms, and therefore,
determines a matroid (called the dual matroid). The dual of a planar graph is just its geometric dual. The
dual of a non-planar graph does not exist as a graph, but it does exist as a matroid. It is called a cographic

matroid. For example  and  are cographic matroids. For a rank-r, n-element F-represent-
able matroid represented by matrix  over F, the dual is represented by the orthogonal matrix

.

As with most mathematical objects, it is useful to know how to construct new objects from old ones. The
clique-sum of two graphs is obtained by joining the graphs along a common subgraph and then deleting all
identified edges. If G1 and G2 are graphs, each having a Kn-subgraph for , the n-sum of G1 and G2 is
formed by pairing the vertices of the chosen Kn-subgraph of G1 with the vertices of the chosen Kn-subgraph
of G2. The vertices are then identified, as are the corresponding edges, and then all identified edges are deleted
(see [5] page 354). Figure 1 shows examples of a 1-sum, 2-sum, and 3-sum of two graphs, denoted by ", "2,
and "3, respectively. Note that 1-sum is also called direct sum.
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Seymour extended this concept to matroids. A cycle of a binary matroid is a disjoint union of circuits. Let M1
and M2 be binary matroids with non-empty ground sets E1 and E2, respectively. Seymour defined a new
binary matroid  as the matroid with ground set  and with cycles having the form ,
where C1 and C2 are cycles of M1 and M2, respectively. When , then  is called a 1-sum

of M1 and M2. When , , and z is not a loop or coloop of M1 or M2, then 
is called a 2-sum of M1 and M2. When , , and T is triangle in M1 and M2, then

 is called a 3-sum of M1 and M2.

In classification problems we seek to completely identify the members of a particular infinite class of objects.
It is sufficient to determine only the 3-connected members of a class because, in 1972, Bixby proved that
every matroid that is not 3-connected can be constructed from its 3-connected proper minors using direct-
sums and 2-sums [12]. If the class lends itself to a clean classification, then typically there are infinite families
of objects identified based on some pattern. If such a precise determination is not possible, then it may be pos-
sible to decompose members of the class into smaller objects in a well-defined manner. For example, in 1963
Dirac proved that a simple 3-connected graph has no -minor if and only if it is isomorphic with Wn

for some ; , or  for some  [13]. Thus, the class of graphs with no
minor isomorphic with  is completely classified. The graphs are shown in Figure 2. The infinite fam-
ily of wheel graphs, Wn, play an important role in this paper.

It is worth noting that Dirac’s original result talked about 3-connected graphs without two vertex-disjoint
cycles. Excluding two vertex-disjoint cycles in a 3-connected graph is equivalent to excluding  as a
minor. An earlier 1935 result due to Wagner characterizes the class of matroids with no K5-minor. Wagner
proved that a connected graph has no minor isomorphic to K5 if and only if it can be obtained from planar
graphs and subgraphs of V8 by means of 1-sums, 2-sums, and 3-sums. The graph V8 consists of a cycle with
eight vertices with diametrically opposite vertices joined by edges [14].

Seymour proved that a matroid is regular if and only if it can be obtained from graphic matroids, cographic
matroids, or R10 by means of 1-sums, 2-sums, and 3-sums [7]. His 1980 paper is significant, not only for this
result, but because it contained techniques for proving such decomposition results. This was the paper that
introduced the splitter theorem (a generalization of wheels and whirls theorem due to Tutte) and the decom-

position theorem. The splitter theorem describes how 3-connected matroids can be systematically built-up
and the decomposition theorem describes the conditions under which a specific type of separation in a matroid
gets carried forward to all matroids containing it as a minor.

The splitter theorem asserts that if N is a 3-connected proper minor of a 3-connected matroid M such that, if
N is a wheel or whirl then M has no larger wheel or whirl, respectively; then there exists 
such that either  or  is 3-connected and has N as a minor. Therefore, we can build up from N to M
by performing a sequence of deletions and contractions and maintaining 3-connectivity throughout. Oxley
noted that Tan also proved this result in his Ph.D. dissertation in 1981 (see [5], 12.1).

Connectivity plays an important role in decomposition results. Let M be a matroid and X be a subset of the
ground set E. The connectivity function $ is defined by . Observe that

. For , a partition  of E is called a k-separation if , , and
. When , we call  an exact k-separation. When  and 

or  we call  a minimal exact k-separation. For example, a simple matroid is 3-connected if
 for all partitions  with  and .
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The decomposition theorem (see [7], 9.1) is rather long to state, but the idea is easy to understand. If a 3-con-
nected matroid has a non-minimal exact 3-separation,  for which  and , , then
under certain conditions this separation carries forward to all matroids (in the class under consideration) con-
taining it as a minor.

The proof of the decomposition of regular matroids consists of three main parts. The first part establishes that
a 3-connected regular matroid is graphic or cographic or has a minor isomorphic with R10 or R12. Matrix rep-
resentations for R10 and R12 are shown below. These two matroids and other special matroids like them play
a significant role in matroid structure theory.

The matroid R10 is a 4-connected, rank-5, 10-element self-dual matroid. It is a splitter for regular matroids.
This means that no 3-connected regular matroid contains R10 as a proper minor. So the building-up process
stops at R10. The matroid R12 is a 3-connected, rank-6, 12-element self-dual matroid that has a non-minimal
exact 3-separation. The second part of the decomposition result establishes that this 3-separation in R12 car-
ries forward in all regular matroids containing R12 as a minor. The third part establishes that 3-connected reg-
ular matroids can be pieced together from graphic and cographic matroids using the operation of 3-sums.

The two problems in the title of the current paper are related to the notion of a minimal excluded minor. Both
were posed by Seymour and appear in [5].

(1) Determine all binary matroids M such that for every element e,
either  or  is regular.

(2) Determine all binary matroids M having an element e such that,
both  and  are regular.

Matroids that satisfy the first problem are called almost-regular matroids. An element e for which both 
and  are regular is called a regular element.

2. The First Problem

In this section we present our work on the first problem [15]. This problem is an instance of a more general
problem: For a class M that is closed under minors and isomorphism, characterize those matroids that are not
in M, but for every element e, either  or  is in M. Matroids of this type are called almost-M to
reflect their connection to the original class M. When M is the class of graphic matroids or regular matroids,
almost-M is the class of almost-graphic or almost-regular matroids (respectively). There is no reason to
expect that these classes will lend themselves to tidy characterizations. That they do is quite surprising.

For any matroid M not in M, define

.

Thus, M is almost-M if . In this case, define

.

If M is almost-M, then its dual  is almost-M with , , and  =
. Let H be a minor of M such that . Observe that, , , and

.

Now we place additional hypotheses on the class M. Suppose that M is also closed under the operations of
1-sums and 2-sums. Our first result shows that we may focus on just the 3-connected members of the class
almost-M (see [15], 3.1).
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Theorem 2.1: Suppose M is an almost-M matroid. Then, either M is a 3-connected
matroid or M is a series extension or a parallel extension of a 3-connected matroid. j

If, in addition to 1-sum and 2-sum, we require M to be closed under generalized parallel connection (another
operation that the classes of graphic and regular matroids satisfy) then we can give a method for constructing
new almost-M matroids from old ones. Let M be a matroid with a triangle. Label the triangle as follows:

. Consider the rank-n wheel Wn with spokes labeled  and rim elements labeled
. The matroid formed by attaching a type-1 fan across the triangle % is obtained by identifying the

edges s1 and sn of the triangle  in Wn with the edges s1 and sn of the triangle  in M and
deleting the additional rn. It is very similar to the 3-sum operation except we do not delete the spokes in the
triangle. We refer to the spokes as the basis of the fan. The remaining triangles of Wn may be viewed as a fan
attached to M in the place of the triangle. We prove that a matroid obtained by attaching a type-1 fan along a
triangle of an almost-M matroid is also almost-M (see [15], 3.3).

Theorem 2.2: If M is an almost-M matroid and N is obtained from M by attaching a 
type-1 fan across a triangle, then N is almost-M. j

Theorem 2.2 provides a way to construct infinite families of almost-regular matroids from a specified almost-
regular matroid. Consider the Fano matroid, F7. It is almost graphic. View F7 as a single-element extension
of W3 obtained by adding a point that forms a circuit with the three spokes of W3. Consider the infinite family
of binary non-graphic matroids , for , represented by the matrix  where  is
the matrix representing Wn, and the additional element x forms a circuit with all the spokes (darkened in
Figure 3). A matrix representation and a visual aid (not a graph) for  is shown in Figure 3.

The next result establishes that  is non-regular when n is odd and cographic when n is even. Moreover,
when  is odd  is almost-graphic with one regular element (see [15], 4.4 and 4.5). When ,
we have the Fano matroid F7 and .

Theorem 2.3: For ,  is non-regular if and only if n is odd. Moreover,
when , , ,
and . j

The infinite family  encapsulates all the single-element extensions of the wheels and allows for their
complete characterization. Denote a binary 3-connected single element extension of Wn by , where S
is the subset of spokes and the new element x forms a circuit with S; that is, the set  is a circuit. The
matrix representing  is , where the non-zero elements of column x correspond to the spokes
in S. Observe that, for ,  is non-regular if and only if  is odd. Moreover, when  is even,

 is graphic if  and cographic otherwise (see [15], 4.4). Most importantly, observe that
 is obtained from  by attaching fans along triangles.

For  the triangles in  have the form , where , , and
.  The re for e ,  f o r  ,   i s  a lmo s t -g raph ic  w i th  ,
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(1) If the three spokes in S are consecutive, say , then  is 
almost-graphic with ;

(2) If only two of the three spokes in S are consecutive, say , then  is 
almost-graphic with ; and

(3) If S has no consecutive spokes, then  is almost-graphic with .

As noted previously, for  we obtain F7, for which deletion and contraction of every element is regular.
Moreover, F7 has triangles that are different from the triangles mentioned above. Construction of infinite fam-
ilies is more complicated in this case. Consider the three triangles with no common elements in F7:

, , and . We can attach fans along these triangles in two different ways to
obtain two different infinite families. For :

(1) The infinite family  obtained by attaching fans along triangles with basis
points s1x, s2x, and r1x; and 

(2)  the infinite family  obtained by attaching fans along triangles with basis
points s1x, s2x, and s3x.

Both infinite families are almost-graphic with zero regular elements. (For details see [8], 4.6, and the preced-
ing discussion.)

As mentioned already, some matroids like R10 and R12 are more important for structural results than others.
We flag three 10-element binary non-regular matroids, S10, E4, and E5 and two 12-element matroids T12 and
X12 that play important roles in the classification of almost-regular matroids. The matroid S10 is a 10-element,
rank-4, almost-graphic matroid with one regular element. The matroid E5 is a self-dual, 10-element, rank-5,
almost-regular (but not almost-graphic) matroid with zero regular elements. The matroid E4 is a self-dual,
10-element, rank-5, almost-graphic matroid with one regular element. The matroid X12 is a self-dual, rank-6,
12-element matroid that is almost-regular (but not almost graphic) with zero regular elements. It is a splitter
for the class of almost-regular matroids with no E5-minor. The matroid T12 is a 4-connected, self-dual, rank-
6, 12-element matroid. It is not almost-regular, but its single-element deletion  and single-element con-
traction  are almost-graphic with one regular element. Matrix representations are shown below.

, , ,

, .

The matroid S10 gives rise to an infinite family, , that forms the centerpiece of the classification. First
consider the well-known bicycle wheel graph with rank  and  elements, , for . This
graph is similar to the wheel graph, except that it has two middle vertices joined by an edge. Label the n edges
of the rim by . Label the spokes originating from one of the middle vertices by  and from
the other by . Label the edge joining the two middle vertices z.
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For ,  is obtained from  by replacing edge cn with an element that forms a circuit with
each of a1, an, z, and b1, bn, z. A binary matrix representation for  and a representation (  is
not a graph) are shown in Figure 4. Observe that, identifying x with a1 and y with b1 gives the graph .
On the other hand, identifying x with b1 and y with a1 gives an illustration of the triangles in the
binary non-regular matroid . It is almost-graphic with ,  =

, and . 

Let A and B be the classes of almost-regular matroids with no S10-minor and no -minor, respectively. We
give a detailed structural characterization of these excluded minor classes. The proof of the next result spans
many sections and consists of several theorems each of which is useful in its own right (see [15], 6.2, 5.3, 7.4,
7.5, 7.2, and 8.1).

Theorem 2.4: Let M be a 3-connected, binary, almost-regular matroid. Then

(1) M has no S10-minor and no -minor if and only if M or  is isomorphic
with , F11, , , or  for  and  
with at least two consecutive spokes, or their 3-connected single-element deletions;

(2) M has no S10-minor if and only if M is isomorphic with  or a coextension
of ,  for , or  for  and  odd;

(3) M has no -minor and  if and only if M is isomorphic with a 
3-connected restriction of , where . Moreover, for ,

 is a 3-connected restriction of ;

(4) If M has both S10- and -minors, then ;

(5) If M has an S10-minor or an -minor, and , then  
or M has an E5-minor. j

In the next two results we identify the almost-regular matroids with at least one regular element (see [15],
7.6). The only almost-regular matroids left to classify must have zero regular elements. We also proved an
excluded minor result that says these matroids must have an E5-minor (see [15], 8.2).

Theorem 2.5: M is a binary, 3-connected, almost-regular matroid with  if and
only if M or  is isomorphic with a 3-connected restriction of  for . j

Theorem 2.6: Suppose M is a 3-connected, binary, almost-regular matroid with no
E5-minor. Then  or M or  is isomorphic with a 3-connected restriction of

 for ; or  or  for . j

The next result is derived from all the previous results and gives a complete characterization of binary, non-
regular, almost-graphic matroids.

Theorem 2.7: A binary, non-regular, 3-connected matroid M is almost-graphic if and only
if M or  is isomorphic with a 3-connected restriction of  for ; or

 or  for . j

We now turn our attention to regular almost-graphic matroids and non-binary, almost-graphic matroids. A
cographic matroid M is almost-graphic if for every element e,  or  is graphic. Because the class of
cographic matroids is closed under minors, this amounts to finding graphic non-planar matroids such that for
every element e,  or  is planar. Their duals will be cographic matroids that are almost-graphic.

In 1996 Bradley Gubser found the almost-planar graphs [16]. For , let  denote the Mobius ladder

with 2n vertices; that is, the graph formed from the cycle with 2n vertices and edges labeled , so
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Figure 4: The infinite family S2n+1
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that every pair of diametrically opposite vertices is joined by an edge. Observe that  and that
. Let  be the graph labeled as shown in Figure 5.

Consider the triangles , , and . For , define  to be
the infinite family obtained by attaching type-1 fans of length m, n, and r along the above triangles with basis
points , , and . Define  to be the infinite family obtained by attaching type-1 fans
of length m, n, and r along the above triangles with basis points , , and . It is an easy conse-
quence of Gubser’s result that if G is a simple, 3-connected, almost-planar graph, then G is isomorphic with
a 3-connected, non-planar minor of  for ,  for , or  or  for

.

Combining Theorem 2.7 with Seymour’s result (a 3-connected regular matroid is either graphic or cographic
or has a minor isomorphic to one of R10 or R12) we obtain the regular, almost-graphic matroids. Observe that,
R10 is almost-graphic since every single-element deletion is isomorphic with  and every single-
element contraction is isomorphic with . Since it is a splitter for regular matroids, no further
matroid with an R10 minor is relevant. The matroid R12 is not almost-graphic since for every element

, both  and  are cographic (see [15], 2.1).

Theorem 2.8: Suppose M is a 3-connected, regular, almost-graphic matroid. Then
 or , where G is isomorphic with a 3-connected, non-planar restric-

tion of  for ,  for ,  or  for . j

Finally, we consider non-binary, almost-graphic matroids. Given a matroid M with a set X that is both a circuit
and a hyperplane, we define a new matroid  whose bases are the original bases of M and the set X. (It is
easy to see that this new family of sets is indeed a set of bases, see [5], page 39). The matroid  is called a
relaxation of M and this operation is called relaxing a circuit-hyperplane. In 1990 Oxley gave a constructive
classification of almost-binary matroids [17]. He proved that M is a 3-connected, almost-binary matroid if and
only if M is isomorphic with  or  for some  or both the rank and corank of M exceed two
and M can be obtained from a 3-connected, binary matroid by relaxing a circuit-hyperplane. It follows that if
M is a binary, almost-M matroid with a circuit-hyperplane and  is obtained from M by relaxing a circuit-
hyperplane, then  is almost-M. Thus, we must determine which of the binary, almost-regular matroids
have circuit-hyperplanes (see [15], 9.3, 9.1, and 9.2).

Theorem 2.9:

(1)  for  are the only 3-connected, regular matroids with a circuit hyperplane:

(2)  for  and  for  and their 3-connected restrictions
have circuit-hyperplanes;

(3)  for  does not have a circuit-hyperplane;

(4) If M is a 3-connected, binary matroid with an E5-minor, then  is a 
circuit-hyperplane. j

Now suppose M is a 3-connected, almost-graphic matroid. If M is regular, then Theorem 2.8 completely iden-
tifies the regular, almost-graphic matroids. If M is binary and non-regular, then Theorem 2.7 completely iden-
tifies the non-regular, almost-graphic matroids. If M is non-binary, then Theorem 2.9 implies that the binary,
almost-regular matroids with circuit-hyperplanes are the 3-connected restrictions of , , and

.6 K3 3,-

.8 V8- M K3 3,
)(( )

Figure 5:  with appropriately labeled trianglesM K
3 3,
)(( )

s1 s5 r5, ,{ } s3 s4 r3, ,{ } s1 s5 r1, ,{ } m n r, , 1# H1 m n r, ,( )

s1s5 s3s4 s1r1 H2 m n r, ,( )
s1s5 s3s4 s1s2

B3n 1+ n 3# .2n n 3# H1 m n r, ,( ) H2 m n r, ,( )
m n r, , 1#

M K3 3,( )
M* K3 3,( )

e 3 4 7 8 11 12, , , , ,{ } R12\e R12/e

M R10- M M* G( )=
B3n 1+ n 3# .2n n 3# H1 m n r, ,( ) H2 m n r, ,( ) m n r, , 1#

M(

M(

U2 n, Un 2– n, n 4#

M(

M(

M Wn( ) n 3#

S3n 1+ n 3# F2 m n r, ,( ) m n r, , 1#

F1 m n r, ,( ) m n r, , 1#

C M( )

S3n 1+ F2 m n r, ,( )
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Wn. The matroid obtained by relaxing the circuit-hyperplane in the wheel graph is the whirl graph . Thus,
we put everything together to obtain a complete characterization of the almost-graphic matroids (a problem
posed by Oxley and published in the first edition of his book in 1992, see [15], 2.2).

Theorem 2.10: A 3-connected matroid M is almost-graphic if and only if M or  is
non-graphic and is isomorphic with
(1) A 3-connected restriction of ,  for ,  or 
for ;
(2) The dual of a 3-connected restriction of  for ,  or

 for ;
(3)  for ,  or  for ; or
(4) A relaxation of a 3-connected, non-graphic restriction of  for  or

 for . j

Finally, although we did not use any of Truemper’s work on almost-regular matroids, we would be remiss if
we did not mention his constructive characterization for a subclass of the almost-regular matroids [18].
Truemper defined:

con elements = 

 del elements = 

and he required that the con elements form a cocircuit-cohyperplane and the del elements form a circuit-
hyperplane. Observe that,  and  with equality if
and only if . Therefore, Truemper’s condition requires the existence of a circuit-hyperplane C
such that  and a cocircuit-cohyperplane D such that .
As we saw already, the infinite family  for  does not have a circuit-hyperplane.

3. The Second Problem

In the second problem, we want to classify all matroids with at least one element e such that  and 
are both regular. In other words, we want to determine all matroids with at least one regular element. As men-
tioned in the introduction, given a class of matroids M that is closed under minors, a minimal excluded minor
for M is a matroid M that is not in M, but for every element e of M, both  and  are in M. The con-
dition in the second problem in a sense weakens the excluded-minor condition with “for every element e of
M” replaced by “for some element e of M.” It would be reasonable to call such matroids weak excluded minors

for M. One would expect these weak excluded minors to be somehow related to the minimal excluded minors
for M. The question is how are they related and whether they lend themselves to some sort of classification.

Recall that Tutte proved a matroid is binary if and only if it has no -minor. In 1987 Oxley proved that
 is the only 3-connected non-binary matroid having an element e such that both  and  are

binary [19]. In this case, the minimal excluded minor and the weak excluded minor coincide. Tutte also
proved a binary matroid is regular if and only if it has no minor isomorphic with F7 or . Thus, one would
expect the weak excluded minors for regular matroids to be somehow related to the Fano matroid. As it turns
out we can show a surprising connection by giving a Seymour-type decomposition result for the class of
matroids with at least two regular elements.

Suppose M is a binary, 3-connected, non-regular matroid. Then Seymour’s splitter theorem implies that M
can be obtained from F7 or  by a sequence of extensions and coextensions. Observe that . The
matroid F7 has no binary 3-connected single-element extensions and two binary 3-connected single-element
coextensions, namely, S8 and , both of which are self-dual. Observe that  is not almost-
regular since every single-element deletion and contraction of  is isomorphic with F7 and ,
respectively. The matroid S8 is almost-graphic with . A matrix representation for S8 is shown
below.

Wn

M*

R10 S3n 1+ n 3 F1 m n r, ,( ) F2 m n r, ,( )
m n r, , 1 

M B3n 1+( ) n 3 M H1 m n r, ,( )( )
M H2 m n r, ,( )( ) m n r, , 1 

Wn n 3 U2 n, Un 2– n, n 4 

S3n 1+ n 3 

F2 m n r, ,( ) m n r, , 1 

e E M( ) : M/e is regular!{ }

e E M( ) : M\e is regular!{ }

del elements C M( ) R M( )"# con elements D M( ) R M( )"#

R M( ) 0=
C M( ) C C M( ) R M( )"# # D M( ) D D M( ) R M( )"# #

F1 m n r, ,( ) m n r, , 1 

M\e M/e

M\e M/e

U2 4,
U2 4, M\e M/e

F7
*

F7
* R F7( ) 7=

AG 3 2,( ) AG 3 2,( )
AG 3 2,( ) F7

*

R S8( ) 6=

S8 I4

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 1

=
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The next result gives us a bound on the number of regular elements (see [15], 5.1 and [20], 3.1).

Theorem 3.1: Let M be a 3-connected, binary, non-regular matroid. Then  for
all matroids other than F7, , and S8. Moreover, if , then  is both a cir-
cuit and a cocircuit. j

Let  and  be the matroids obtained from F7 and S8, respectively, by adding an element in parallel with
an element belonging to at least two triangles. The next result is the main result of this section and completely
classifies non-regular matroids with at least two regular elements. The proof, although not as long as our
results on the first problem, spans several pages and requires a thorough description of 3-separations in the
context of regular elements (see [20], 1.1).

Theorem 3.2: Let M be a 3-connected, non-regular matroid. Then M has at least two 
regular elements if and only if
(1) M is , F7, , or S8; or
(2) M is the 3-sum of F7 or S8 with a 3-connected regular matroid (with the possible 
exception of elements in parallel with the 3-sum triangle); or
(3) M is the 3-sum of  or  with two 3-connected regular matroids (with the possible
exception of elements in parallel with the 3-sum triangle). These two 3-sums are made
along two disjoint triangles of  or . j

The proof of Theorem 3.2 uses a 2004 result by Xiangqian Zhou, in which he determined the internally
4-connected matroids of a subclass of binary matroids [21]. If a class of matroids has too many 3-connected
members with no hope of classifying precisely infinite families, then one strategy is to raise the connectivity.
However, we immediately run into difficulty. The concept of 3-connectivity in matroids corresponds to
3-connected and simple in graphs. This is not the case for 4-connected matroids. By definition, a 4-connected
matroid has no 3-separations and therefore, has no triangle and triad, whereas triangles and triads are permit-
ted in 4-connected graphs. This means the complete graphs and the projective geometries, which for all prac-
tical purposes are highly connected objects, do not meet the definition of 4-connectivity.

An intermediate concept called internal 4-connectivity was developed, in which some 3-separations are
allowed. A 3-connected matroid is internally 4-connected if  for all partitions  with 
and . In this case  is allowed only when either  or  has size at most 3. In other words,
the matroid is 4-connected except for the presence of triangles and triads. Seymour’s decomposition for reg-
ular matroids implies that R10 is the only internally 4-connected non-graphic and non-cographic regular
matroid. Zhou characterized the internally 4-connected matroids in a subclass of binary matroids.

Theorem 3.3: A non-regular, internally 4-connected, binary matroid other than F7 and 
contains one of the following matroids as a minor: , or . j

Here we see again those same matroids flagged as important. As we have already seen , and
 each have one regular element and E5 has zero regular elements. Combining Theorem 3.3 with Theo-

rem 3.2 gives us the following result (see [9], 1.4).

Theorem 3.4: If M is an internally 4-connected, binary, non-regular matroid having at least
two regular elements, then M is isomorphic with F7 or . j

Thus, if we raise the connectivity, the excluded minors and the weak-excluded minors are once again the
same. Such a neat characterization does not exist for non-regular matroids with one regular element because
there are infinite families of internally 4-connected matroids with one regular element; for example, .
However, the classification, when it is eventually completed, is bound to be interesting.
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