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Abstract

This fixes a gap in the averaging argument in our paper: A note on diffusion limits of

chaotic skew product flows. Nonlinearity (2011) 1361–1367, and moreover shows that the
large deviation estimate assumed there is redundant.

Recall from [2] that Z(ε)(t) =
∫ t
0 g(x(ε)(s), y(ε)(s)) ds where g(x, y) = f(x, y) − F (x).

In [2, Section 3], it is argued that Z(ε) → 0 in L1(C([0, T ],Rd);µ), but the proof is incor-
rect. Specifically, the proof introduces a random variable Jn (see below) that depends on
x(ε)(nε3/2) and y(1)(s), and derives an estimate for E|Jn|. This estimate takes into account
the randomness of y(1)(s) but overlooks the randomness of x(ε)(nε3/2).

In this note, we correct the argument in [2]. Moreover, in contrast to [2], our proof does
not require any large deviation estimates. Hence the weak invariance principle is a sufficient
(as well as necessary) condition for the main result in [2].

Lemma 1 Z(ε) → 0 in L1(C[0, T ],Rd);µ) as ε→ 0 for each T > 0.

Proof Following the calculation in [2, Section 3] with δ = ε3/2, we obtain

max
[0,T ]
|Z(ε)| = I1 + I2 +O(ε3/2) = I2 +O(ε1/2) = ε3/2

[Tε−3/2]−1∑
n=0

|Jn|+O(ε1/2), (1)

where

Jn = ε1/2
∫ (n+1)ε−1/2

nε−1/2

g(x(ε)(nε3/2), y(1)(s)) ds.

(The intermediate expressions I1 and I2 are defined in [2] but the formulas are not required
here.)

For u ∈ Rd fixed, we define

J̃n(u) = ε1/2
∫ (n+1)ε−1/2

nε−1/2

g(u, y(1)(s)) ds = ε1/2
∫ (n+1)ε−1/2

nε−1/2

Au ◦ φs ds, Au(y) = g(u, y).

Note that J̃n(u) = J̃0(u) ◦ φnε−1/2 , and so E|J̃n(u)| = E|J̃0(u)|. By the ergodic theorem,
E|J̃0(u)| → 0 as ε→ 0 for each u.
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Let Q > 0 and write Z(ε) = Z
(ε)
Q,1 + Z

(ε)
Q,2 where

Z
(ε)
Q,1(t) = Z(ε)(t)1Bε(Q), Z

(ε)
Q,2(t) = Z(ε)(t)1Bε(Q)c , Bε(Q) =

{
max
[0,T ]
|x(ε)| ≤ Q

}
.

For any a > 0, there exists a finite subset S ⊂ Rd such that dist(x, S) ≤ a/(2 Lip f) for
any x with |x| ≤ Q. Then for all n ≥ 0, ε > 0,

1Bε(Q)|Jn| ≤
∑
u∈S
|J̃n(u)|+ a.

Hence by (1),

Emax
[0,T ]
|Z(ε)
Q,1| ≤ ε

3/2

[Tε−3/2]−1∑
n=0

∑
u∈S

E|J̃n(u)|+ Ta+O(ε1/2)

= ε3/2
[Tε−3/2]−1∑

n=0

∑
u∈S

E|J̃0(u)|+ Ta+O(ε1/2) ≤ T
∑
u∈S

E|J̃0(u)|+ Ta+O(ε1/2).

Since a > 0 is arbitrary, we obtain for each fixed Q that max[0,T ] |Z
(ε)
Q,1| → 0 in L1, and

hence in probability, as ε→ 0.
Next, since x(ε) −W (ε) is bounded on [0, T ], for Q sufficiently large

µ
{

max
[0,T ]
|Z(ε)
Q,2| > 0

}
≤ µ

{
max
[0,T ]
|x(ε)| ≥ Q

}
≤ µ

{
max
[0,T ]
|W (ε)| ≥ Q/2

}
.

Fix c > 0. Increasing Q if necessary, we can arrange that µ{max[0,T ] |
√

ΣW | ≥ Q/2} < c/4.

By the continuous mapping theorem, max[0,T ] |W (ε)| →d max[0,T ] |
√

ΣW |. Hence there

exists ε0 > 0 such that µ{max[0,T ] |W (ε)| ≥ Q/2} < c/2 for all ε ∈ (0, ε0). For such ε,

µ
{

max
[0,T ]
|Z(ε)
Q,2| > 0

}
< c/2.

Shrinking ε0 if necessary, we also have that µ{max[0,T ] |Z
(ε)
Q,1| > c/2} < c/2. Hence

µ{max[0,T ] |Z(ε)| > c} < c, and so max[0,T ] |Z(ε)| → 0 in probability. Finally, since

|max[0,T ] |Z(ε)||∞ ≤ 2|f |∞T , it follows from the bounded convergence theorem that

limε→0 Emaxt∈[0,T ] |Z(ε)(t)| = 0 as required.

Remark 2 The subsequent paper [1] contains the same error (see [1, Appendix A]). The
gap is fixed in identical manner to above, and the large deviation assumptions throughout [1]
are again unnecessary.
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