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Abstract—Accelerated computing has become pervasive for in-
creasing the computational power and energy efficiency in terms
of GFLOPs/Watt. For application areas with highest demands,
for instance high performance computing, data warehousing and
high performance analytics, accelerators like GPUs or Intel’s
MICs are distributed throughout the cluster. Since current anal-
yses and predictions show that data movement will be the main
contributor to energy consumption, we are entering an era of
communication-centric heterogeneous systems that are operating
with hard power constraints. In this work, we analyze data
movement optimizations for distributed heterogeneous systems
based on CPUs and GPUs. Thread-collaborative processors like
GPUs differ significantly in their execution model from general-
purpose processors like CPUs, but available communication
models are still designed and optimized for CPUs. Similar to
heterogeneity in processing, heterogeneity in communication can
have a huge impact on energy and time. To analyze this impact,
we use multiple workloads with distinct properties regarding
computational intensity and communication characteristics. We
show for which workloads tailored communication models are
essential, not only reducing execution time but also saving
energy. Exposing the impact in terms of energy and time
for communication-centric heterogeneous systems is crucial for
future optimizations, and this work is a first step in this direction.

I. INTRODUCTION

The end of Dennard scaling has led to the transition to
multi-core and many-core, since the increasing transistor count
described by Moore’s Law can no longer be kept within a
fixed power budget. In general, power consumption will be the
main limitation for future computing systems, from handheld
devices to ultra-large scale data centers, which increases the
importance of optimizing energy efficiency.

Energy efficiency is one of the main reasons to employ ac-
celerators like GPUs or Intel’s Many-Integrated-Cores (MICs)
in high performance computing systems. Such specialized
processors offer much higher performance per Watt compared
to general-purpose processors like CPUs. Large-scale clusters
currently consume up to 17.8MWatts [1], and as a rule of
thumb one MWatt costs about one Million USD per year. Thus,
the operational expenditures over the lifetime of such systems

can easily exceed the initial capital expenditures. Besides such
economic reasons, other good reasons for improved energy
efficiency include ecological and technical ones.

We are now facing an era where most of the energy is
not spent on computation; instead communication tasks will
dominate power consumption [2] [3] [4]. Predictions show that
this trend will continue and actually intensify in the future.
As a result, we are now observing a fundamental transition
to communication-centric systems composed of heterogeneous
computing units. Hard power constraints will make energy
efficiency a key metric.

GPUs are a prominent example of application-specific ac-
celerators. They differ substantially in their execution model
from CPUs. GPUs only excel in performance and thus energy
efficiency for in-core calculations. Most memory resources
are scarce, and Big Data amplifies this problem. Any off-
device data access suffers from the huge performance disparity
between on-device memory and the PCIe interface. On the
other hand, from a peripheral device’s point of view, the
performance disparity between local and remote accesses is
diminishing. Recent networking technologies like Infiniband
FDR or 100G Ethernet are approaching the performance levels
of intra-host technologies like PCIe. This diminishing disparity
provides an opportunity to overcome limitations by sharing
resources. However, it is essential to expose the costs in terms
of energy and time to users and software layers. Otherwise,
optimizations are hindered, or made impossible due to the lack
of information.

In this work, we use GPU clusters as an example for a
heterogeneous communication-centric system and explore the
impact of different communication paradigms in terms of
energy and time. As we will see, most communication models
are optimized for general-purpose CPUs and poorly match the
requirements of GPUs. Similar to heterogeneity in processing,
communication models have to be tailored, resulting in more
diversity. In particular, we provide the following contributions:

• Reviewing communication models for distributed thread-
collaborative processors like GPUs, including standard
models like MPI but also specialized models.
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• An implementation of multiple workloads using different
communication models, covering different communica-
tion and computation characteristics.

• A quantitative and comparative assessment of different
communication models. Among others, for our 12-node
test system observations include a performance increase
by an average of almost 1.5x and energy savings of
22%, both for 12 nodes and compared to state-of-the-art
communication methods.

• An analysis of the impact of different communication
models on energy consumption, indicating future opti-
mizations. Insights include that (1) specialized models
offer substantial advantages for a variety of workloads,
(2) thread-collaborative models only seem to be limited
by reduced overlap possibilities, and (3) a CPU-bypass
can significantly reduce energy consumption.

The remainder of this work is structured as follows. Section
2 reviews the required background. Section 3 describes the
methodology of our approach. Section 4 reveals the different
workloads. Sections 5 and 6 provide the results in terms of
execution time and energy, respectively. Section 7 discusses
the observations and summarizes key findings. Related work
is presented in section 8, while the last section concludes.

II. BACKGROUND

This section provides detailed information about GPUs and
our custom network interface and reviews current communi-
cation methods for thread-collaborative processors like GPUs.

A. GPU computing
Modern GPUs are composed of multiple Symmetric Multi-

processors (SMs) that consist of hundreds of so-called CUDA
cores. This large number of physical cores enables thousands
of threads to run in parallel. These threads are organized
in blocks that are tightly bound to the SMs. However, the
entire block is not scheduled at the same time, instead the
block is divided into so-called warps consisting of 32 threads.
Schedulers in recent GPUs are able to concurrently schedule
two independent instructions of up to four warps. Thus, con-
trol flow should be identical within warps, otherwise branch
divergence will decrease the utilization. The large number of
threads allows to efficiently hide memory access latencies,
rendering large cache structures unnecessary. In addition to
small L1 and L2 caches, each SM features a fast scratchpad
memory that is completely administrated by the programmer.
It serves to keep data closer to the cores, increasing the
bandwidth significantly. Accesses to off-chip memory have
to be coalesced to achieve best memory bandwidth, which
is about one order of magnitude higher than what a CPU can
achieve with its system memory.
GPUs are programmed with CUDA, for instance, a computing
platform introduced by Nvidia in 2007. In order to run instruc-
tions on the GPU, the CPU has to launch a parallel kernel.
Data transfers between the host system and the GPU have to be
explicitly marked as well. The GPU instructions are compiled
for the given hardware at run time from a virtual instruction

set called PTX. Alternatives like OpenCL or OpenACC are
possible, but not used in this work.

B. GPU communication models
The key aspect of this work is the analysis of the impact of

different GPU communication models. These communication
models are now examined in more detail.

a) Data transfer and communication control: When an-
alyzing communication models, it is essential to distinguish
between data transfer and communication control. This is
particularly true for heterogeneous systems, as the question
then arises which task is done by which unit.

A data transfer between two GPUs can either be staged,
which requires additional copies in host memory, or direct,
where data is written to the NIC directly. The latter one has
been enabled by GPUDirect RDMA for inter-node GPU data
transfers, introduced with CUDA 5.0 (2012). This technique
brings benefits for small messages, but due to the bad PCIe
peer-to-peer read performance, which is caused by a protocol
issue in current Intel chipsets [5],, the performance of larger
messages is worse then for staged transfers.

The communication control describes where the communi-
cation requests are issued and synchronized. The GPU as well
as the CPU can control communication. If the CPU controls
the communication, every communication request requires a
context switch between the GPU and host domains. On the
other hand, if communication is controlled by the GPU, the
control flow can be kept entirely on the GPU. However, this
adds additional work to the GPU, while in the first case this
work can be offloaded to the CPU.

In the following we will elaborate on how different com-
munication models implement these two approaches.

b) Message Passing: Message Passing is characterized
by the need for explicit send and receive operations, also
known as two-sided communication. The Message Passing
Interface (MPI) has become the standard for inter-node com-
munication in the CPU domain and is also well-known for
distributed GPU programming.

Usually, the communication is controlled by the host and the
data has to be placed in host memory, which results in PCIe
data movements when employing GPUs. The GPU copies the
data to a host buffer and the CPU triggers the network device
to start the data transfer. This approach is shown in Fig. 1a
and used in this work. The measured bandwidth for a standard
two-copy MPI send process is shown in Fig. 2 (MPI).

MVAPICH2 [6] is a well known example for CUDA-aware
MPI libraries using Infiniband. It allows GPU memory buffers
to be used directly within MPI routines. It uses GPUDirect
RDMA [7] for small messages; however, for large messages
the library uses staging buffers in host memory to avoid issues
with PCIe, whereby the peer-to-peer read operation performs
poorly.

Another approach is DCGN [8], which enables message
passing controlled by the GPU. CUDA kernels call messaging
routines, while the data transfer is actually handled by the
CPU. A CPU thread needs to poll on predefined memory
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Fig. 1: Communication models

regions that signal whether a data transfer is supposed to be
started. On the receiving side, the CPU signals the GPU that
new data is available. Note that the authors of [8] explicitly
call for a method for direct communication from the GPU.

c) Put/Get model: While messages require explicit send
and receive calls, the put/get model is one-sided. A put
command writes data directly to remote memory. The main
advantage of this approach is that it allows the communication
to be offloaded to the NIC instead of creating additional work
for the communication source and sink due to tag matching,
address translation and synchronization.

However, the system has to provide memory regions that can
be used for put/get operations and they have to be registered.
This is time consuming and reduces performance.

GPUDirect RDMA enables direct remote memory access
to GPU memory. Normally, this communication is controlled
from the CPU. For example, this approach is implemented in
GPI for GPUs [9].

Another approach is to let the GPU trigger the Remote
Direct Memory Access (RDMA) transfer with a put operation,
as shown in Fig. 1b and as used in this work. The GPU
generates the RDMA work request and directly forwards it
to the NIC. This is enabled by some minor changes in the
low-level device driver. Furthermore, the GPU can directly
consume notifications to obtain status information. The CPU
is released from communication control and can work on other
tasks.

However, there is one drawback: the NIC has to read data
from the GPU, which leads to a performance drop because of
the PCIe issue.

This performance drop is also visible in Fig. 2 (RMA-
Direct, at 1MB). We can avoid this behavior by replacing
the PCIe peer-to-peer data transfer with GPU-triggered cud-
aMemcpys and CPU-to-CPU put operations, as shown in Fig.
2 (RMA-Host). The data transfer is then handled by the CPU,
but still relying on put/get operations.

d) Load/Store model (GGAS): The remote load/store
model allows direct data transfer between GPUs, entirely
controlled by the GPU itself. We introduced GGAS [10],
a communication approach perfectly matching the thread-
collaborative execution model of GPUs. In GGAS, loads and
stores are forwarded by the NIC to a remote GPU. In order
to move data, each thread of a CUDA kernel copies at least
one value to special addresses and the NIC forwards the plain
store operation to the remote memory, as shown in Figure 1c.

Our experiments show that the overhead of this approach
is very low. With our FPGA-based prototype network (Fig. 2)
we achieve an end-to-end bandwidth that is close to theoretical
peak (950MB/s). The network itself has a theoretical peak
bandwidth of about 1.2GB/s, which is much less than the
PCIe interface (8GB/s) and, in particular, than the GPU’s on-
device data paths (208GB/s). A large number of GPU threads
can easily saturate on-chip data paths, therefore leading to
buffer contention for PCIe and network. If store buffers are
full, threads will stall, reducing the number of threads that
are free to perform computational tasks. As a consequence,
possible overlap is reduced.

C. EXTOLL
For this work we use EXTOLL as interconnection network,

because unlike most other interconnects it provides functional
units for one-sided and two-sided communication, address
translation and load/store forwarding. One-sided communica-
tion is performed by the Remote Memory Access (RMA) unit
with advanced notification support, such as hardware gener-
ated notifications and a simple format to keep the memory
footprint very low. The data transfer is completely handled
by the NIC, releasing the CPU to work on other tasks.
The Virtualized Engine for Low Overhead (VELO) provides
mailbox-based send and receive operations for two-sided com-
munication. The NIC also supports distributed shared memory
with its Shared Memory Functional Unit (SMFU). Memory
operations like loads and stores are forwarded by the network
device enabling global address spaces within a cluster. More

3



200

400

600

800

payload [B]

ba
nd

w
id

th
 [M

B/
s]

MPI
GGAS
RMA (Direct)
RMA (Host)

2 4 8 32 128 512 2048 16384 131072 2097152

Fig. 2: Achieved bandwidth of various communication models.
The custom network is implemented in an FPGA with 157
MHz core frequency and 64bit wide data paths.

details about EXTOLL can be found in [11] and [12].

III. METHODOLOGY

Measuring and in particular analyzing power and energy
consumption for standard servers is still nascent. For this
work, we strive to characterize the implications of different
communication models for heterogeneous systems, thus
our requirements include identifying which unit (different
processor types and memory, network, etc.) consumes
how much power with a sample rate that is sufficient
to reveal short-lived effects, since these are common for
fine-grained communication tasks. We prefer a real test-bed
over architectural simulators, as accurate simulation of
distributed systems is still prohibitive in terms of run time.
This is particularly true as we attempt to cover a broad range
of workloads and problem sizes. In addition, recent GPU
models (such as Nvidia Kepler-class) are not yet available in
simulators [13].

A. Measuring power and energy consumption
Two main methods are available for measuring the power

consumption of standard computing systems (based on com-
modity components, including mainboard and chassis). The
first is to use integrated power measurement facilities like
Intel’s RAPL [14] or Nvidia’s NVML [15], which can be used
to characterize single components like CPU, host memory, or a
GPU add-in card. These facilities use power modeling to allow
relatively fine grain instrumentation with a sampling period in
the range of 200ms. The second possibility is to use external
power meters, either for power outlets or specialized for
individual components like add-in cards. Their main advantage
is accuracy, however power meters for power outlets can only
measure aggregated power consumption and prevent a break-
down into single components. Instrumenting each component
with a power meter is at best very cumbersome since probing
is invasive and difficult.

In order to characterize the implications of different commu-
nication models, it is mandatory to distinguish between the dif-

ferent components. Thus, our methodology relies on integrated
power measurement, which does not cover components like
the network. However, this is reasonable since network power
consumption is independent of the actual traffic, and it is
dominated by (de-)serializers, which employ serial link coding
and embedded clocking. Network cards, including the port
fraction of the switch, consume statically about 20-30 Watt,
at least for medium-scale systems. Future work with hardware
optimizations for collectives or link-level power saving might
revisit this topic, though.

B. Comparing communication models
We already presented in previous work ( [10] [16]) that

GPUs can benefit substantially from a tailored communica-
tion model that allows for thread-collective data transfers.
However, such optimizations require small changes in the
network interface to allow for global address space mappings;
therefore, they are not available in commodity networks like
Infiniband and Ethernet. As architectural simulation is not an
option, we rely on an FPGA-based prototype system, which is
customizable and competitive in terms of performance. Each
node of the system is composed of dual Intel Xeon Sandy
Bridge CPUs, DDR3 main memory, one Nvidia Tesla K20
GPU and an FPGA-based custom network card. Associated
pricing and availability limit our system to 12 nodes.

The custom network card is reconfigurable and allows for
GPU-specific optimizations. All functional units (described in
section II-C) are highly optimized and other work has shown
the competitiveness of the implementations [11] [12]. Thus,
the insights in terms of relative improvement can be applied
to other interconnects like Infiniband or Ethernet.

C. Representative set of workloads
Many workloads and benchmarks are available for single

GPUs, but rather few for GPU clusters. Additionally, available
codes rely on standard communication models like MPI. Since
the main objective of this work is to characterize the impact
of alternative communication models, we unfortunately cannot
rely on available codes. In order to ensure a fair comparison
between the different communication models, we chose to
implement our own set of workloads, each optimized for all
three communication methods.

Applications exhibit a large variety of different behaviors,
and with our set we want to cover as many as possible.
The lack of available tests limits our possibilities, though.
Thus, we choose workloads with a variety of characteristics in
terms of the communication pattern, computational intensity,
average network payload size and possibilities for overlap. We
selected a set that includes n-body computations, stencil codes,
global operations and randomized updates. The first three show
communication characteristics that are regular with a static
behavior, including patterns like rings, nearest-neighbor and
all-gather. We add a GPU-based RandomAccess test (similar to
the one in [17]) to cover irregular and dynamic communication
characteristics, as they are often found in emerging codes
like graph computations. Since most tests only cover a small
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range of payloads for a given problem size, we also vary the
problem sizes within the bounds imposed by memory capacity.
As a result, our workload set covers many patterns, payload
sizes, and characteristics and more to make our explorations
as comprehensive as possible.

IV. BENCHMARKS

We use the following benchmarks to assess performance and
energy consumption of different communication methods. This
section gives a short overview of the benchmarks and explains
their implementation for GGAS (load/store forwarding), RMA
(put/get, one-sided) and MPI communication.

A. N-Body
The N-Body benchmark is a well known computationally

intensive benchmark that scales strongly with the number
of processing nodes. The algorithm can be applied to many
physical problems in astrophysics and in molecular dynamics.
The algorithm can be easily mapped to the execution model of
GPU, where high degrees of parallelism can be exploited. This
makes the N-Body problem applicable for distributed GPUs.

All bodies are distributed among the cluster nodes and
communication follows an all-to-all pattern. If the number of
bodies increases, the communication becomes less significant
and the time that is spent for computation develops to be the
dominating factor.

We implemented this benchmark using 3D gravitational
forces. For the GGAS communication model, we did not
place the bodies in global shared memory, because the GGAS
read bandwidth is about a sixth of the write bandwidth [10].
Instead, mailboxes are used to provide send/receive semantics.
To achieve the best overlap for MPI and RMA data transfers,
the communication is done using a ring scheme. This means
that bodies are sent to the successor node while interactions
with the predecessor node are calculated. The compute CUDA
kernels are the same for all communication methods, only the
communication code differs. The computational code is based
on the N-Body example from the Nvidia CUDA SDK [18].

B. Himeno (Stencil)
The Himeno benchmark solves a 3D Poisson equation

on a structured curvilinear mesh and can be regarded as
a 19-point stencil algorithm. Unlike the N-Body test, it is
memory intensive [19], therefore suitable for GPUs as their
memory bandwidth is about one order of magnitude higher
than for CPUs. As GPUs are limited in their on-device memory
capacity, distributed GPUs are helpful for large problem sizes.

The 3D grid is divided into planes in the z-direction. These
planes are permanently assigned to the processing nodes. Each
point of the grid depends on neighbor points that have to
be exchanged with adjacent processing nodes. However, only
single planes are communicated with the nearest neighbor
node.

For GGAS and RMA, the control flow always remains on
the GPU. Planes that have to be shared with other nodes are
computed first and then sent to the neighbors to maximize

overlap. This also applies to the MPI implementation, but
the communication is handled by the CPU; therefore, data
has to be copied to system memory before communication
takes place. The computation is divided into three kernels (top,
middle and bottom), as each has its own communication case.

C. Global Sum (Reduce)
The global sum benchmark is based on collective allreduce

operations, which are very common in scientific simulations.
This benchmark accumulates an array of input values, which
is distributed over the GPUs. First, every GPU reduces its own
field of input values, then an allreduce operation with one input
value is used to determine the global sum.

In the GGAS version we used an all-gather approach for the
allreduce operation, where all GPUs send their input data to
all other GPUs, which then perform the reduction operation on
their own local memory. Results in [16] have shown that this
is the most efficient way for a small number of input values
and a small number of GPUs. For a larger number of GPUs,
the tree-based approach may be more efficient, however, our
tests show that this was not the case for up to 12 GPUs.

In the MPI version, the local accumulation result is copied
to host memory, and then an MPI-allreduce operation (with a
single floating value) is used to determine the global sum.

This benchmark was not implemented for RMA commu-
nication, because only one value has to be communicated
for each node. The RMA transfer requires a descriptor to be
written to the NIC, therefore the overhead for one value is too
high to perform the communication efficiently.

D. RandomAccess
The RandomAccess benchmark was introduced with the

HPC Challenge Benchmark Suite [20] and implemented for
MPI to assess network performance. Each node generates
random indices to modify values of a distributed table. This
results in random accesses and a lot of pressure on the network
(device). Here, we port it to GPUs.

In general there are two kinds of accesses: local and remote.
Local accesses directly modify the partition of the table that
is kept by that node. Remote accesses are updates that target a
different partition on another node. Communication is random
but uniform due to the randomized updates. The message size
is also random, because the rules allow the creation of up to
1024 indices (called look-ahead) at once, resulting in message
sizes of up to 1024 elements.

For GGAS, in a naı̈ve approach, the table could be accessed
directly by all participating GPUs, meaning that the table is
accessible by the global address space provided by GGAS.
However, there are no atomic operations for remote accesses
to ensure mutual exclusion. In addition, remote read operations
are slow [10] and therefore remote-store programming should
be used. To address these issues, we used the same mailbox
approach as for N-Body. The MPI version stores the table in
GPU memory, too, but creates all indices on the CPU. The
table is updated by the target GPU. The RMA version keeps
the control flow on the GPU and sends the indices directly
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TABLE I: Overview of benchmark characteristics. The prob-
lem size is referred to as n and the number of nodes as N .

N-Body Himeno global sum Rnd.Access
Computation O(n2

) O(n) O(n) O(n)
Memory O(n) O(n) O(n) O(n)
Communication O(n) O(

3
p
n2

) O(logn) O(n)
Communication Pattern Ring Neighbor All-gather Rnd. Unif.
Avg. Payload n

N
3
p
n2 1 val. 0-1024 vals.
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Fig. 3: Benchmark results to characterize overlap capabilities
of different communication methods. nbody-S refers to 4K
bodies, M to 15K and L to 128K. The benchmarks were
executed on all 12 nodes. The average does not consider
nbody-S, this benchmark serves as a reference at this point.

to the target GPU. For a look-ahead of 1024, every CUDA
block runs 1024 threads and creates all indices in parallel.
Decreasing the number of threads also decreases the look-
ahead and therefore performance. For our experiments we
always use a look-ahead of 1024.

E. Comparison and summary
We chose benchmarks with different characteristics

to cover a broad range of applications. The comparison
of these benchmarks is done in Table I. As shown, N-
Body and Himeno offer lots of overlap and differ in
communication complexity and patterns, while the global
sum and RandomAccess benchmarks rely on small messages
with almost no exploitable overlap. This diversity provides a
good baseline to assess the different communication methods.

V. PERFORMANCE ANALYSIS

This section presents and analyzes the performance of
our benchmarks with regard to different characteristics. The
test system consists of 12 dual-socket nodes with 10 nodes
equipped with two Intel E5-2630 and two nodes with two
Intel E5-2609 processors. Every node is supplied with one
Nvidia K20 GPU. We use EXTOLL network cards based on
an FPGA with 157 MHz core frequency and 64 bit wide data
paths. The NIC and the GPU use PCIe 2.0 and share one root
complex.

Fig. 4 shows the performance of all benchmarks and node
counts to provide an overview of our experiments. N-Body and

global sum are shown with two problem sizes each, one for
significant long communication periods and one rather focused
on computation with only less communication. The results lead
to observations that will be analyzed in the following.

A. Overlapping of computation and communication
Overlap is an important aspect of efficient communication,

since communication time can be hidden. MPI offers non-
blocking communication routines to exploit overlap and RMA
transfers offload communication to the NIC, releasing the
processing unit to continue with other work. Furthermore,
in our case MPI can offload communication entirely to the
CPU, releasing the GPU for computation. In order to evalu-
ate overlap capabilities of different communication methods,
performance results of the N-Body and Himeno benchmark
are shown in Fig. 3. Both applications offer enough overlap
to hide data movement costs efficiently.

The figure shows three N-Body runs with different problem
sizes together with the results of the Himeno benchmark.
Regarding nbody-S, GGAS as well as RMA outperform MPI
by being 1.7 respectively 1.5 times faster. Small problem sizes
are more sensitive for communication since the computational
effort is rather low, resulting in low overlap possibilities.
Increasing the problem size leads to longer computing periods
and therefore more overlap can be exploited.

Although GGAS achieves higher bandwidth than both RMA
and MPI, the performance for nbody-M and nbody-L problem
sizes is lower than MPI or RMA. It seems that overlap
possibilities for GGAS are limited. GGAS needs usually one
thread per word to be transferred, and therefore requires lots of
resources for communication. This observation is backed up by
the Himeno benchmark, where again RMA and MPI perform
better than GGAS. RMA is superior than MPI because at some
point communication takes too long and cannot be efficiently
overlapped for MPI anymore. The CPU is still occupied with
communication and the GPU has to idle until this is finished.

B. Irregular communication patterns and small messages
As we have shown in [10], GGAS performs superior for

small messages since latency can be kept very low and
message rates are high. Irregular communication has become
more and more popular, nonetheless due to graph processing
applications. We examined the performance of such irregular
patterns by running the RandomAccess benchmark with dif-
ferent communication approaches. The results, together with
the results of the global sum benchmark, are shown in Fig. 5.

The global sum benchmark calculates the sum of a local
array and determines the global sum by using an allreduce
operation, thus only one value per node has to be communi-
cated across all nodes. For small array sizes, the performance
using GGAS is 2 times better than using MPI. The difference
becomes smaller the larger the array becomes, but GGAS
still performs better. Increasing the array size requires more
computation and communication becomes less important. The
same applies for the RandomAccess benchmark, where GGAS
is again almost 2 times faster than MPI and RMA. This is due
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Fig. 5: Benchmark results to evaluate the performance of
applications based on small messages respectively irregular
patterns. sum-S refers to 128 elements, M to 32K and L to
512K. The benchmarks were executed on all 12 nodes.

to the very low latency that can be achieved with avoiding
context switches and MPI overhead as well as PCIe copies.

C. Specialized communication vs. CPU-tailored communica-
tion

We showed that RMA can exploit overlap very well and
GGAS is suited for small messages and irregular commu-
nication patterns. Regarding Fig. 4, another observation is
that at least one of specialized communication models always
performs better than traditional CPU-tailored communication
like MPI. GPUs differ in their execution model inherently and
additional PCIe copies increase latency significantly. GGAS
perfectly matches the execution model of GPUs and like RMA,
the control flow can be kept on the GPU during the entire
communication process.

Taking scalability into account, the benchmarks behave
differently. While N-Body scales very well for small problem
sizes, the global sum benchmark shows that performance
of GGAS decreases slightly compared to MPI. An increase
of the number of nodes means that transfers between the
GPU and the host become less important than the actual

NB−S NB−L sum−S sum−L RA Himeno avg.
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Fig. 6: Energy analysis results of different benchmarks. Lower
means better than MPI. The benchmarks were executed on all
12 nodes.

communication latency. However, the global sum calculation
using GGAS is still 2 times faster with 12 nodes than MPI.
The RandomAccess benchmark scales very well for GGAS,
but less for RMA. More nodes means more communication
and RMA communication requires system memory accesses,
decreasing performance significantly [21]. For Himeno, the
performance difference of GGAS, RMA and MPI is not
affected by the number of nodes.

VI. ENERGY ANALYSIS

Complementing the performance analysis, the influence of
different communication methods on the energy consumption
is analyzed in the following.

A. Impact of performance on energy consumption

Energy is the product of power consumption and execution
time, and therefore performance advantages while keeping
power consumption constant leads automatically to less energy
consumption. In general, we observe that it is easier to
save time than power. However, direct communication like
GGAS or RMA are promising to additionally save power by
bypassing the CPU. The CPU remains idle or becomes free to
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TABLE II: Power consumption of different benchmarks and
communication methods regarding CPU, DRAM and GPU
power consumption. All given values are in Watts.

N-Body Himeno Gl. Sum RA
CPU 33.21 25.94 18.38 27.60

GGAS DRAM 3.18 2.89 1.63 3.27
GPU 81.01 105.13 63.57 68.67
Total 147.43 133.96 83.59 99.54
CPU 32.16 23.96 NA 28.16

RMA DRAM 3.27 2.60 NA 3.22
GPU 87.91 116.53 NA 79.48
Total 152.22 143.09 NA 110.85
CPU 37.66 34.23 34.00 35.26

MPI DRAM 3.86 3.40 2.97 3.62
GPU 82.93 106.99 57.48 51.79
Total 158.25 144.62 94.44 90.66

perform other work, however the analysis of the latter is left
for future work.

Regarding Fig. 6, the nbody-S benchmark saves up to 80%
energy using GGAS or RMA. Most savings are based on the
high performance benefit of these communication methods.
The same applies to the global sum and RandomAccess bench-
mark, for which GGAS performs remarkably. Benchmarks
that perform similar with different communication methods,
such as N-Body, global sum with large problem sizes and
also Himeno, can benefit from direct communication and save
energy. On average, applications using GGAS or RMA show
savings of about 35 % respectively 25 %.

Interestingly, MPI performs slightly better for large problem
sizes and N-Body, but GGAS and RMA still need less energy
due to power savings. Almost the same is true for Himeno,
where the difference in energy is not as distinct as in perfor-
mance.

B. Power consumption

Besides execution time, power consumption is the second
factor of energy. Table II shows the average power consump-
tion during the execution of the appropriate benchmark using
different communication methods. Regarding CPU power,
GGAS and RMA always need less power than MPI. On
average, GGAS and RMA consume about 9 W less CPU
power than MPI.

In most cases, GPU power is not increased when GGAS
or RMA is used. Only RandomAccess behaves differently,
however, this is due to the implementation, whereas MPI
calculated the indices on the CPU to avoid further PCIe copies.
This design decision was made to stay comparable to the other
direct communication approaches.

Host memory accesses are necessary for MPI, but can be
avoided by using GGAS. RMA enables the GPU to trigger
communication, but still needs to access host memory to
ensure synchronization by polling on notifications. Regarding
Table II, host memory accesses caused by RMA communica-
tion do not increase CPU or DRAM power, but increases the
power consumption of the GPU.

In summary, GGAS and RMA save a significant amount of

power by bypassing the CPU. While GGAS always needs less
power than MPI, RMA consumes roughly the same on aver-
age. RMA communication still requires host memory accesses
to consume notifications and ensure synchronization, adding
power to the GPU. DRAM power is almost not affected.

VII. DISCUSSION

We showed performance and energy results of four bench-
marks: N-Body, Himeno, global sum and RandomAccess. All
benchmarks behave different and rely on distinct communica-
tion patterns. N-Body communicates in an all-to-all manner,
while Himeno exchanges data only with neighbor nodes. The
global sum benchmark uses only very small messages and
RandomAccess puts a lot of pressure on the network by
accessing random values across all nodes.
The performance analysis has identified observations 1-4, each
supported by multiple experiments and summarized in Table
III. This leads to following insights:

1) Specialized communication models like GGAS and RMA
can offer substantial advantages for a variety of work-
loads. The case for which MPI is the better choice seems
limited, and actually seems to be artificially emphasized
by the PCIe peer-to-peer performance issue.

2) Overlap is the main drawback of GGAS as a tailored
communication model for thread-collaborative proces-
sors. A GPU communication library should therefore
combine it with a high-overlap model like RMA.

This strongly supports our statement that specialized proces-
sors like GPUs can benefit from specialized communication
models tailored for these processors. The use of general-
purpose communication models, which are designed and opti-
mized for CPUs, should be avoided to maximize performance.

In terms of energy, performance is still an influential aspect.
It seems that saving time is still much easier than reducing
power consumption. We showed that energy behaves similar
to performance, meaning that if a communication method leads
to a superior performance it likely consumes less energy, too.
In particular, see observations 5-9 in Table III.

If performance is very similar, GGAS and RMA benefit
from the CPU being idle during almost the whole application.
Our experiments show that GGAS as well as RMA need about
9W less CPU power and, except for RandomAccess, the GPU
power is not increased significantly. However, the CPU still
needs about 25W which is about 7W more than idling [16].
This is due to additional PCIe traffic when controlling the NIC
from the GPU.

These observations support the previous insights. Compared
to performance, advantages in terms of energy are even larger
and bypassing components like CPUs allow for significantly
reduced power consumption. In particular, the benefits of a
GPU-tailored communication library are strongly supported
by the energy experiments.

Looking ahead, specialized processors like GPUs will likely
evolve from accelerators to autonomous processors. The Open-
POWER initiative is a prime example for this, in which IBM
Power CPUs and Nvidia Tesla GPUs will be peer devices
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TABLE III: Observations that are supported by our experi-
ments: N-Body (N), Himeno (H), global sum (S), and Rando-
mAccess (R).

Observation N H S R
1 RMA and MPI offer a better exploita-

tion of overlap possibilities
X X

2 GGAS performs outstanding for small
payloads, as no indirections are re-
quired like context switches to the
CPU or work request issues to the NIC

X X X

3 The PCIe peer-to-peer read problem
results in MPI performing better than
RMA or GGAS for large payload sizes

X X

4 GGAS in combination with RMA out-
perform MPI substantially (without the
PCIe peer-to-peer read limitation)

X X

5 In practice, the execution time has
an essential influence on energy con-
sumption

X X X

6 Accesses to host memory contribute
significantly to DRAM and CPU
socket power

X

7 Bypassing a component like a CPU
can save enough power to compensate
a longer execution time, resulting in
energy savings

X

8 Staging copies contribute significantly
to both CPU and GPU power, due to
involved software stacks respectively
active DMA controllers

X

9 For irregular communication patterns
or small payloads, GGAS saves both
time and energy

X (X)

connected by a high performance interface [22]. This renders
interactions for supervision of accelerators unnecessary, result-
ing in less coupling between the heterogeneous processors for
complex tasks. The freedom to schedule both computation and
communication freely is highly desirable then, however, it is
only feasible if we have suitable communication models for
the different (specialized) processor types.

VIII. RELATED WORK

Various related work exists in the area of energy-aware
heterogeneous processing, however surprisingly little in the
domain of distributed heterogeneous processing and the influ-
ence of communication models.

Instrumentation for power measurement of single proces-
sors is a key component of this work. Usually, performance
counters are used to model power dissipation. In [23] a linear
model is used, while in [24], the model is based on neural
networks to improve accuracy. In [25], the authors take another
approach by using an empirical power model to predict power
consumption, and the model in [26] allows for analyzing
single components. While we are currently using standard
vendor solutions, we are considering adapting these models to
characterize communication sub-operations in terms of energy.

To the best to our knowledge, analyzing energy consumption
for heterogeneous clusters still has little related work. The
approach in [27] optimizes energy management for hetero-
geneous processors and HPC workloads, but only investigates
intra-node optimizations. Similarly, the authors of [28] explore
the effects of Dynamic Voltage and Frequency Scaling (DVFS)

for a single Nvidia Tesla GPU. The authors of [29] explore
the impact of GPUs in a cluster on energy efficiency, but do
not consider optimized communication models and focuses on
quantifying performance-per-watt improvements.

On the other hand, power analysis of homogeneous clusters
has received plenty of interest ( [30] [31] [32] [33] [34]), in
particular with regard to DVFS. In [35], the energy consump-
tion for certain MPI communication primitives is analyzed.
Compared to this work, these contributions neither address
heterogeneity nor compare different communication models.

Optimizing communication for heterogeneous systems is
currently seeing many contributions. Examples include op-
timizations for message passing [6] [7] and Put/Get models
[36] [37] [9], based on OpenShmem, Global Arrays and the
Global Address Space Programming Interface (GPI), respec-
tively. GGAS [10] seems to be the only model that matches
the thread-collaborative execution model of GPUs. For this
work, we selected MPI, a Put/Get model and GGAS for a
representative comparison.

IX. CONCLUSION

In this work, we compared different communication models
for thread-collaborative processors in terms of energy and
time. We implemented and analyzed three communication
models for four benchmarks: N-Body, Himeno (Stencil),
global sum (Reduce), and RandomAccess. We showed and
analyzed the influence of the communication model on exe-
cution time and energy consumption. Our observations from
performance and energy experiments lead to a set of insights,
in particular about the benefits and drawbacks of each com-
munication model depending on the workload characteristics.

In summary, we found that specialized communication
methods have a significant impact on both energy and time.
Similarly to heterogeneity in processing, heterogeneity in com-
munication allows for more optimizations. General-purpose
communication methods are designed and optimized for CPUs,
which can be cumbersome when applying them to specialized
processors like GPUs. Our experiments show that GGAS and
Put/Get semantics offer substantial advantages.

In the future we plan to design communication abstractions
that switch between models like GGAS and RMA depending
on current demands, resulting in a specialized communication
library for GPUs. Other plans include exploring savings for
concurrent CPU/GPU tasks, and a larger variety of workloads.
In particular, workloads related to data warehousing, graph
processing and the emerging high performance analytics.
While we focus here on performance and energy, improved
productivity by avoiding hybrid programming models is left
for future work, too.
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[10] L. Oden and H. Fröning, “GGAS: Global GPU address spaces for
efficient communication in heterogeneous clusters,” in IEEE Cluster,
2013.
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