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Abstract. Our earlier paper provided an introduction to basic ideas relating topological techniques
to chaos theory. In the present paper we provide additional details on a number of these techniques.
We go into more detail on properties of inverse limits related to chaos. In particular, we provide
a detailed outline of the result of Jubran on producing a chaotic embedding of the Whitehead
continuum. This paper was partially motivated by a talk given by the second author at the 8th
international summer school and conference Chaos 2011: Let’s Face Chaos Through Nonlinear
Dynamics (CAMTP, University of Maribor, Slovenia, 26 June - 10 July 2011).
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1. INTRODUCTION

After summarizing the topics covered in our previous paper on topology and chaos [12],
we review and outline the standard topological results on inverse limit spaces that are
useful in the study of chaos.

Dynamical systems have invariant sets and induced maps on these invariant sets that
can often be viewed as maps on inverse limit spaces. These techniques are then used
to show how Jubran, Garity and Schori [10, 11] produced a chaotic embedding of the
Whitehead continuum in R3.

Our previous paper [12] covered the basic examples of the squaring map from the
unit circle to itself and of the dyadic solenoid. Some of the properties of inverse limits
discussed in [12] are gone into in more detail in the present paper.

A basic reference for the topological terms we use is Munkres’ book on topology
[19]. A more comprehensive text such as Kuratowski’s [18] gives details on some of
the inverse limit concepts discussed. Two books that provide a good introduction to
dynamical systems are Devaney’s text and Falconer’s text [8, 9]. Another excellent
reference for the topology of chaos is Gilmore’s and Lefranc’s text [14]. Schori’s paper
[20] is a good reference for a focus on inverse limits.

2. DYNAMICAL SYSTEMS AND CHAOS

See [9] for an introduction to dynamical systems. For completeness, we review the
basic terminology. For a subset D of Rn and a continuous function f : D → D, the
iterates f , f 2, f 3, . . . f k, . . . form a dynamical system on D where f k = f ◦ f ◦ . . . ◦ f is
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the composition of f with itself k times. We use the word map to refer to a continuous
function and use the symbol ∼= to represent homeomorphism. A closed subset A of D is
an attractor for this system if f (A) = A and if for each point p∈D, the distance between
the iterates f k(p) and A converges to 0. The orbit of a point p is the set consisting of the
iterates f k(p). The point p is periodic if f k(p) = p for some k.

For an attractor A as above, the restriction of f to A, f |A is chaotic if the following
three conditions hold:

1. The orbit of some point p in A is dense in A;

2. The periodic points of f in A are dense in A; and

3. The map f is sensitive to initial conditions on A. That is, there is a δ > 0 such that
for every p ∈ A, and for every neighborhood U of p, there is a point x ∈U and an
iterate f k(x) of x so that the distance between f k(p) and f k(x) is greater than δ .

For compact A, the first condition can be replaced by:

(1a) Topological transitivity, that is, for each pair of neighborhoods U and V there is an
iterate f k such that f k(V )∩U �= /0.

See section 1.8 of Devaney [8] for a discussion. In 1992, Banks, Brooks, Cairns, Davis,
and Stacey [1] showed that (1a) and (2) imply (3).

3. TOPOLOGICAL TECHNIQUES

3.1. Properties of Inverse Limits

Setting: Even though inverse limits are later defined for maps between sequences of
spaces, we focus here on the situation most applicable to dynamics. That is, the case
in which each space and each map is the same. Let f : X → X be a surjective map
from a compact metric space to itself. Let (X , f ) be the associated inverse system with
inverse limit Y . Recall that Y is the subspace of the product ∏∞

i=1 Xi (where each Xi ∼= X),
consisting of points (x1,x2, . . . ,xn, . . .) with the property that for each n ≥ 2, f (xn) =
xn−1. Let f ′ be the associated shift map from Y to Y given by f ′(x1,x2, . . . ,xn, . . .) =
( f (x1), f (x2), . . . , f (xn), . . .) = ( f (x1),x1, . . . ,xn−1, . . .).
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The following results capture the relationship between the dynamics on X and the
dynamics on Y . See any of the standard references such as [8, 18, 20] for more details
on these standard results. For completeness, we include an outline of the proof.

Theorem 3.1. The following properties hold for the setting described above.
P1: A basis for the topology on Y consists of sets of the form p−1

i (U) where U is open
in X and pi is the canonical projection onto the i− th coordinate.
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P2: Y is a compact metric space.
P3: f ′ is a homeomorphism.
P4: If a is a periodic point of f of order n, then a′= ( a = f n(a), f n−1(a), . . . , f (a), . . . )

is a periodic point of f ′ of order n.
P5: If the periodic points are dense in X, then they are dense in Y .
P6: If p has a dense orbit in X, then there is a point with dense orbit in Y .
P7: If f is topologically transitive, so is f ′.

Proof:

P1: Let U = ∏k
i=1Ui ×∏∞

i=k+1 X be a standard basis element for ∏∞
i=1 X . Let U ′ =

U ∩Y be the corresponding basis element of Y . Let W = ∩k
i=1( f k−1)−1(Ui). Then

U ′ = p−1
k (W ). Conversely, every p−1

i (U) results from a basis element of ∏∞
i=1 X

intersected with Y .

P2: It suffices to show that Y is closed in ∏∞
i=1 X . This follows from the continuity of

f and the fact that a sequence in ∏∞
i=1 X converges if and only if each component

sequence converges.

P3: If x = (x1,x2,x3, . . .) and y = (y1,y2,y3, . . .) are distinct points in Y , then f ′(x) =
( f (x1),x1,x2,x3, . . .) and f ′(y) = ( f (y1),y1,y2,y3, . . .) are distinct. So f ′ is one-
to-one. If x = (x1,x2,x3, . . .) is an arbitrary point of Y , and x0 is chosen so that
f (x0) = x1, then f ′(x0,x1,x2, . . .) = x, so f ′ is surjective. Since f ′ is continuous and
Y is compact, the result follows. Note that ( f ′)−1(x1,x2,x3, . . .) = (x2,x3, . . .).

P4: It follows directly from the definition of f ′ that ( f ′)n(a′) = a′.
P5: Let U ′= p−1

i (U) be a basis element for Y . Choose a such that f n(a) = a and a∈U .

Let x = (xn)
∞
n=1 be the point in Y defined by x j = f k(a) where k = (i− j) mod n.

Then x is a periodic point of f ′ in U ′.
P6: Let a be a point in X with a dense orbit under f . Recursively define a point

x = (xn)
∞
n=1 in Y by letting x1 = a. Having defined x1, . . .xk−1 so that f (xi) = xi−1,

let xk be chosen so that f (xk) = xk−1. The point so defined has a dense orbit in Y .

P7: Let U ′ = p−1
i (U) and V ′ = p−1

j (V ) be arbitrary basic open sets in Y . Choose k so

that f k(V )∩ f−( j−i)(U) �= /0. Then ( f ′)k(V ′)∩U ′ �= /0 as required. �
The next corollary follows immediately from the preceding results.

Corollary 3.2. Let f : X → X be as in the setting above. If f is chaotic, so is f ′ :Y →Y .

The advantage of this point of view is that the chaotic map f ′ is a homeomorphism
whereas the original map f need not be (and in common examples it is not).

For later reference, we give the general definition of inverse limit here. Let a system of
spaces A1,A2,A3, . . . and maps fi : Ai+1→ Ai be given. The inverse limit of this system,
denoted

lim← (Ai, fi)

is the subset of the topological product of spaces ∏∞
i=1 Ai consisting of points

(a1,a2,a3, . . .) with fi(ai+1) = ai for all i.
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3.2. A Chaotic Embedding of the Whitehead Continuum

Consider the torus T1 embedded in the torus T0 as shown below.

FIGURE 1. The Whitehead Link

There is a homeomorphism h : R3 → R3 taking T0 onto T1 . Then h(T1) = h2(T0) is a
self-linked torus contained in the interior of T1 = h(T0). Assume T0,h(T0),h2(T0),. . . are

constructed efficiently to force the 1-dimensionality of their intersection W =
∞⋂

i=0

hi(T0).

Then W is called the Whitehead continuum [22]. We refer to h as a Whitehead map.The
following results along with a history can be found in Jubran’s thesis, [16].

• W is a cell-like noncellular subset of R3;

• R3
/

W is not homeomorphic to R3;

• (R3
/

W )×R1 is homeomorphic to R4;

• W is homeomorphic to the Knaster continuum K; and

• The embedding of K onto W in R3 is inequivalent to the standard embedding of K
in R2×{0} ⊂ R3.

Let h : R3→ R3 be an arbitrary Whitehead map. Let Λ =
∞⋂

i=0

hi(T0).

While Λ is a local attractor for h, it can be shown that the restriction of h to Λ is not
necessarily chaotic in general. (See [16].)

What goes wrong is the failure of topological transitivity: there is an open set U of Λ
that gets mapped into itself under h.
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3.3. Modifying the Construction:

Our goal here is to describe a modification of the above construction to produce an
embedding of the Whitehead continuum in R3 in a chaotic manner. See [10] and [16]
and for more complete details.

Let T = S1×D be such that T ⊂ B3 where D is a 2-cell and B3 is a 3-cell. The
construction proceeds via the following steps:

Step 1: There is a map H : B3 → B3 that is a near homeomorphism, i.e. there is a
sequence of homeomorphisms Hri : B3 → B3 converging uniformly to H. In addition,
each Hri is a Whitehead map.

Step 2: There exists a homeomorphism F : lim←(B3,H) → lim←(B3,Hri) such that
F
(
lim←(T1,H)

)
= lim←(T1,Hri).

Step 3: Taking S1 to be the quotient space of [0,1] generated by identifying the endpoints
{0} and {1}, then the restriction of H to S1×{0}, where {0} is the center of D, is the
function h : S1→ S1 defined by

h(x) =

{
2x, for 0≤ x≤ 1

2 ;

2−2x, for 1
2 ≤ x≤ 1.

which is known to be chaotic.

Step 4: The set lim←(T,H) is a local attractor for Ĥ : lim←(B3,H)→ lim←(B3,H).

Step 1 discussion:

FIGURE 2. Steps in the Whitehead Construction
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As a first step, imagine the homeomorphism G from R3 to itself that takes T to a
Whitehead link in T arising as follows. (See Figure 2 for an illustration.) Twist a flexible
3 -cell B in such a way that the boundary stays fixed and the interior is twisted and so
that a top view of S1 ⊂ Int(B2) goes through the following stages:

• A half twist is introduced;

• Another half twist is introduced; and

• The top loop is folded down over the bottom loop which produces the desired self-
linking.

We now define three pseudo-isotopies P1
t ,P2

t and P3
t .

The map P1
1 shrinks the solid torus G(T ) to G(S1) leaving G(S1) fixed. The map P2

1

eliminates the self-linking of G(S1). The map P3
1 shrinks the torus T to its core S1.

Define the near-homeomorphism H : B3 → B3 by H = P3
1 ◦P2

1 ◦P1
1 ◦G. (See Figure

3 for an illustration.) The map H is the one needed previously to construct the chaotic
embedding of the Whitehead continuum.

FIGURE 3. Steps in the Near-homeomorphism Construction
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Step 2 discussion:

Note that (2) implies that lim←(T,H) is embedded in lim←(B3,H) just as the standard
Whitehead continuum is embedded in B3.

The homeomorphism F : lim←(B3,H)→ lim←(B3,Hri) such that F
(
lim←(T1,H)

)
=

lim←(T1,Hri) is obtained by a technical result on inverse limits showing that the two
inverse limits are homeomorphic. See [16] for details.

(B3,T ) (B3,T )
Hr1�� (B3,T ) · · ·Hr2�� · · ·(B3,T ) (B3,T )

Hrn�� · · · (B3,W )

F∼=
��

(B3,T ) (B3,T )
H

�� (B3,T ) · · ·
H

�� · · ·(B3,T ) (B3,T )
H

�� · · · (B3,W ′)

Step 3 discussion:

W ′ obtained as an inverse limit of T under the map H has an induced map H ′ :W ′ →W ′
as in the section on inverse limit properties. The key point of Step 3 is that this induced
map on the inverse limit is chaotic. This follows from the homeomorphism between the
inverse limit of the spaces T and the inverse limit of the spaces S1 and from the fact that
the map on the inverse limit of the spaces S1 is chaotic.

(B3,T ) (B3,T )H�� (B3,T ) · · ·H�� · · ·(B3,T ) (B3,T ) · · ·H�� (B3,W ′)

F ′∼=
��

(B3,S1) (B3,S1)
H

�� (B3,S1) · · ·
H

�� · · ·(B3,S1T ) (B3,S1T ) · · ·
H

�� (B3,W ′)

Thus (3) implies that H restricted to lim←(T,H) is chaotic and thus produces the
chaotic embedding of the Whitehead continuum.
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