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Abstract

We propose the use of a state space search algorithm of the discrete-
time recurrent neural network to learn the short-term foreign exchange
rates. By searching in the neighborhood of the target trajectory in the
state space, the algorithm performs nonlinear optimization learning pro-
cess to provide the best feasible solution for the nonlinear least square
problem. The convergence analysis shows that the convergence of the
algorithm to the desired solution is guaranteed. The stability proper-
ties of the algorithm are also discussed. The empirical results show that
our method is simple and effectively in learning the short-term foreign
exchange rates and is applicable to other applications.
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1 Introduction

Foreign exchange rates are one of the most important economic indices in the
international monetary markets. For years, studying foreign exchange rates
pose many theoretical and experimental challenges that has received much at-
tention from trading and academic communities. The technical analysis and
techniques are popular for studying the short-term foreign exchange markets
because the technical indicators have been developed to chart patterns in cap-
turing the trends of price movements. However, most conventional econometric
models and traditional statistical models are not able to forecast exchange rates
with significantly higher accuracy than a naive random walk model (see [18],
[8]). Since neural networks are trainable analytic tools that attempt to mimic
information processing patterns in the brain, they can be used effectively to
automate both routine and ad hoc financial analysis tasks, such as financial
and economical forecasting. Recent evident has shown that the neural network
forecasting models have proven, with empirical evidence (see [3], [8], [12] and
[18]), are applicable to the forecasting of exchange rates effectively. Moreover,
recurrent neural networks (RNNs) have richer dynamical structures and sim-
ilar to a linear time series model with moving average term. Hence RNNs
can learn extremely complex temporal patterns to yield good results. Because
recurrent architecture proves to be superior to the windowing technique of
overlapping snapshots of data. The short-term memory retains features of the
input series relevant to the forecasting task and captures the network’s prior
activation history, which can provide beneficial foresee ability ([12]).

In this paper, we first focus on the development of a state space search algo-
rithm for the proposed discrete-time recurrent neural network (RNN) model.
The idea is, instead of moving in the parameter space of the connection weight
matrices, we search in the neighborhood of the desired trajectory in the state
space for each iteration. Our approach provides the best feasible solution for
the nonlinear optimization problem. Unlike the conventional gradient meth-
ods, there is no computation of the partial derivatives along the target tra-
jectory in our method. Hence, the state space search algorithm is fast and
accurate. The convergence analysis shows that it guarantees the convergence
to the desired solution. The rates of asymptotic convergence are provided and
the stability properties are discussed in the analysis. In our empirical exam-
ples, data consist of the daily exchange rates of six major currencies, Euro
(EUR), Sterling (GBP), Swiss Franc (CHF), Australian dollar (AUD), Cana-
dian dollar (CAD) and Japanese Yen (JPY) compared to the U.S. dollar from
the beginning of May 2003 to the end of September 2005. The examples illus-
trate that it is possible to predict the opening exchange rates using the rates
from the previous day. The relationship is obviously nonlinear which neural
networks could provide flexible models. Therefore, the model is substantially



State space search algorithm 1707

appropriate for the application of learning the short-term foreign exchange
rates.

The organization of the paper is as follows. In Section 2, we first develop
the state space search algorithm of the discrete-time RNNs, then we present
the theory behind the stability analysis, and provide the convergence analysis
for the proposed algorithm. In Section 3, some examples are used to illustrate
how the state space search algorithm of the discrete-time RNNs can be used to
learn the short-term foreign exchange rates. The relative merits of the method
is discussed in the concluding Section 4.

2 The State Space Search Algorithm of the
Discrete-Time RNNs

Consider the discrete-time model of the RNN described by a nonlinear system
of the form

yit + 1) = (1= hyay)ys(t) + hibioc (> wigy;(t) + 6),
i=1 (2.1)

i=1,2,3,..n,

where y; represents the internal state of the ith neuron. W = [wy;] . is the
synaptic connection weight matrix. A =diag|ay, as, ..., a,], B=diag[by, ba, ..., b,]
and H =diag[hy, hs, ..., h,| are diagonal matrices with positive diagonal entries.
o is a neuronal activation function that is bounded, differentiable and mono-
tonic increasing on [-1, 1]. We assume that o(z) = tanh(z), which is the
symmetric sigmoid logistic function. 6 = [0, 0, ...,Gn]T is the input bias or
threshold vector of the system.

System (2.1) is an Euler approximation of the Leaky integrator RNN model

of the system of nonlinear equations

dy,

7 = —a;y; + bl-a(z Wi;Y; + 0;),

=t (2.2)
i=1,2,3,..n,
and h; of (2.1) is the step size in approximating the derivative

dyi yit +1) —ui(t)
dt h;
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for each i = 1,2,...,n. In other words, system (2.1) is a numerical discret-
tization of the continue-time model (2.2) ([6], [?], [7], [8]). It can be shown
([9]) that there exists at least one equilibrium point of the (2.2) and the set
of solutions of (2.2) is a positive invariant and attractive set. Although the
continuous-time model (2.2) and its numerical discretization of model (2.1)
need not share the same dynamical behavior, system (2.1) will inherit the
same dynamics of system (2.2) when h; — 0 (see [16]).

To see the connection of system (2.1) with the forecasting models, we rewrite
(2.1) in matrix form,

y(t+1)= (I - HA)y(t)+ HBo(Wy(t) +0). (2.3)

If we let A =B = I,, the identity matrix, H = 0,,»,, the zero matrix, then
system (2.3) becomes

y(t+1) = y(1), (2.4)

which represents the last-value forecasting of y(t + 1). Hence, it is the usual
naive model in forecasting ([8]). On the other hand, if A = B = H = I,,x,,, we
have

y(t+1) =c(Wy+0), (2.5)

which is the nonlinear regression model since ¢ is nonlinear. These mod-
els are used to capture the behavior of the linear internal mechanism of the
financial market ([8]). Therefore, we may consider system (2.3) as the gen-
eralized convex combination of two forecasting models (2.4) and (2.5) for
0 < azh; < 1,5 = 1,2,...,n. The positive entries of the diagonal matrix H
of (2.3) can also be used to represent the different economic cycles. It implies
that if we choose appropriate hs, the discrete-time RNN model (2.1) and
(2.3) should be at least as good as any time series models. After Rumelhart,
Hinton and Williams ([13]) introduced in 1986 the learning algorithms ‘error
back-propagation’ and the ‘delta rule’, it is easier to find a temporal model for
short-term prediction. This adaptive property is very important for real-time
modelling in stocks and foreign exchange markets. Since the discrete-time
RNN model is easily implemented in digital hardware and easily simulated
in computers, it presents advantages over the continuous-time model. We fo-
cus, in this section, on the discrete-time model (2.1) to develop a new robust
learning algorithm — the state space search algorithm.

Before introducing the state space search algorithm, we first discuss some
stability properties of the discrete-time RNN model (2.3) and provide the con-
vergence analysis afterward. The stability and bifurcation properties of the
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discrete-time RNNs were analyzed by Wang and Blum [16], Li [?], Jin, Niki-
foruk and Gupta [5]. We provide here the absolute stability analysis for system
(2.3) in the spirit of [5].

Definition 1. A point z* € [a,b]” C R" is defined as an equilibrium point of
the discrete-time RNN system (2.3) if

z* = (I —HA)x"+ HBo(Wzx* +0). (2.6)

Definition 2. The function f(y) = (I — HA)y + HBo(Wy + 6) has only
asymptotically stable equilibrium point if all the eigenvalues of the Jacobian
are inside the unit circle for all the states y, a given connection weight matrix
W, and the input 6.

Definition 3. If the discrete-time RNN system (2.3) has only asymptotically
stable equilibrium points for a given connection weight matrix W and €, then
the system (2.3) (or 2.1) is said to be absolutely stable.

Remarks. It is important to notice that the asymptotic stability may depend
upon the input #, whereas the absolute stability does not depend upon the
input 6. This is the fundamental difference between the asymptotic stability
and the absolute stability.

Ostrowski’s theorem [4]). Let W = [w;;]|,xn be a complex matrix, v € [0, 1]
be given, and R; and C; denote the delete row and delete column sums of W
as following, respectively,

All the eigenvalues of W are then located in the union of n closed discs in the
complex plane with centers w;; and radii r; = R,"C;'™7,i=1,2,...,n.

Now we show in the following two theorems on absolute stability properties of
the system (2.3).

Theorem 1. Let 5 = max{%h’ = 1,2,...,n}, then there exist at least one
equilibrium point y* € [, 5]" of (2.3) such that

y* = A" Bo(Wy* + 0) (2.7)

for each 6.
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Proof. The result follows by applying the theorem of Jin, Nikiforuk and
Gupta (Theorem 1, [5]). That is, we rewrite the equation,

yi(t +1) = (1 — hsay)y:(t) + hibia(z wijy;(t) +0;) = fi(y) (2.8)

j=1

in an equivalent form and define

b n
= —U(Z wizy; +0;) = yi,
j=1

1=1,2,...,n

(2.9)

Then the fixed points of g(y) are also the fixed points of f(y). Fory € [, 5]",
since |o(z)| = | tanh(z)| < 1, we have

b; u
vi = 9i(y) = |—|lo wiy; +0;) < —,
) =gl (v + 001 < -

i=1,2,...n

That implies g(y) € [—/, 5]™. Since function ¢ is continuous, we can conclude
that for any given # and the connection weight matrix W, g(y) : [, 5]* —
[—/3, B]™ is a continuous function. By the Brouwer’s fixed point theorem ([5]),
g(y) has a fixed point y* € [—f, 5]". Since y* is also a fixed point of f(y),
therefore, y* is an equilibrium point of y(t+1) = (I —HA)y(t)+HBo(Wy(t)+
) with

y* = AT Bo(Wy* + 0).

Theorem 2. If 0 < h;a; < 2 for ¢ = 1,2,...,n, and if the connection weight
matrix W = [w;;] satisfies the inequalities

Zwu<(5 =

(1—H hiail) (2.11)

or

mﬂu- }:\hbmﬂ<5-_

ZZ 1=1,i#7

(1—H—h%D (2.12)

for each ¢ = 1,2,...,n, then the discrete-time RNN model (2.1) is absolutely
stable.



State space search algorithm 1711

Proof. Set ¥ = 1 and v = 0 in the Ostrowski’s theorem, then the results (2.11)
and (2.12) can be obtained by using Gerschgorin’s theorem ([4]) to apply in
Ostrowski’s theorem.

Remarks From Theorem 2, we notice that inequality (2.11) implies that the
solution space of the connection weight matrix W forms n open convex hyper
cones in n-dimensional space. Moreover, §; = ﬁ(l — |1 = hja;]) — oo as
h; — 0. Since the discrete-time model (2.1) and the continuous-time model
(2.2) will share the same dynamical behavior as h; — 0, we can conclude that
as h; — 0 both (2.1) and (2.2) are absolutely stable. It is known that for an
absolutely stable neural network model, the system state will converge to one
of the asymptotically stable equilibrium points regards of the initial state.

We now turn to develop the new learning algorithm-the state space search
algorithm for the discrete-time RNN (2.1). In neural networks, learning is a
process of changing the network parameters so that the system output will
approach to the target trajectory. One of the classic learning algorithm - re-
current back propagation algorithm was derived by Williams and Zipser ([17])
in 1989 for the discrete-time RNNs. More than a decade, the researchers in the
field have applied many numerical optimization methods and techniques, such
as gradient decent, conjugate gradient and Newton’s method etc. as learning
algorithms, to minimizing the error functions of the least square problems. It
is clear that any changes in the parameter w;; of (2.1) may accumulate large
derivations to the whole trajectory. Because of the necessity to compute the
partial derivatives along the trajectory, learning algorithms based on gradient
decent methods are complicated and time consuming for RNNs. Li and his
co-workers presented in [7], [8] some new learning algorithms that takes no
derivatives. Our results further develop and amplify the previous results in
[8]. In addition to the experimental results, the convergence analysis is also
presented to provide the theoretical justifications for the state space search
algorithm.

Before we proceed to describe the state space search algorithm, we establish
the following definitions. All the norms used in this paper are either Lo or .

Definition 4. An z-convex set is a union of line segments each with one end
point at x € R", and containing any two segments (unless they go in opposite
directions) together with the entire triangle with two sides of these segments.
The class of all z-convex setsin Z C R" will be denoted by C..(Z).

Definition 5. If a sequence of vectors {zy}, converges to a limit point z*,
then the asymptotic convergence rate (order of convergence) of {xy}y, is defined
as the supremum of the nonnegative number p satisfying

[ 2h1 — 27|

0 <limsup ———— < 0.
P e
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A sequence {x*} is said to be convergence linearly to x* if

_ *
o< i len =l

=< 1.
ey

Remarks C,(7) is compact in R™ if Z is closed and bounded. For the asymp-
totic convergence rate, larger values of the order p, imply more rapid conver-
gence.

Definition 6. A set A* is called attainable of z if s € A", there exist some h
such that x is reachable through s in some neighborhood of x.

For a given trajectory x(t) € R"™, we use (2.1) to approximate x(t) with the
error function E defined by

E(W.h,0) = || y(t, W, h,0) — (1) |*
= ZZ[yi(ta VVa hae) - xi(t)]Q

i=1 t=1

(2.13)

for some positive integer m. Our goal is to minimize the error between the
target trajectory x(t) (in our case, z(t) is the trajectory of the foreign exchange
rates) and the system output y(¢). To simplify the analysis, we let h = h;, i =
1,2, ...,n. We wish to find the optimal connection weight matrix W* = [w;;],xn
such that, for a fixed h and 6, W* satisfies the nonlinear least square problem

E(W*) = min Z D it W) — zi(t)), (2.14)

where W is a feasible solution defined by

1

W+: -1
o [h

(Ciy1 — Di) = DD (D D)7, (2.15)

where matrices Cy1 = [y(t + 1)...y(2)] and D; = [y(t)...y(1)].

If the network is exactly capable, that is, E = E(W?*) = 0, the optimal solution
W* of (2.14) can be reached using a simple optimization strategy by vary h and
repeated solve W7 by (2.15). Then we have W* = W*. If W # 0, equation
(2.14) has no exact solution, which implies z is not reachable for any given h.

The state space search algorithm is developed to provide the best feasible
solution of (2.14). The idea is that instead of moving in the parameter space
of W, we search the class of the z-convex set C,(A™") in the state space for each
iteration, were A™ is the set of attainable points of x in R™. After obtaining
first W from (2.15), we use (2.1) to generate y(W™). In the next iteration,
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instead of approximating x, we use y(W™) to approximate the new trajectory
z7 defined by a convex combination

" =+ (1 —ay)y(WH)

(2.16)
O<a; <1, ;0.

In fact, we store the best solution for each a;. Notice that ™ may not attain-
able even though y(W™) is attainable. By the continuity of W, there exist
some aq* such that

Xi =o'z + (1 — a")y(Wh),
where X is attainable in C,(AT), 0 < a1* < 1, and

E(W3) = min{ E(W,,)} < E(W™)

Repeated the procedures, we obtain a sequence of attainable points { X}, =
{y(Wit1)}r defined by

x, y(Wh), X1 =a1"r + (1 = a")y(Wh),

Xy =yWa),  Xo=a"z+ (1—a")y(Wa),
Xo=y(W3),  Xzg=a3"z+(1—a3")y(Ws),
e (2.17)
X = y(Wi), X1 = 1" + (1 — ag )y (W),
Xk+1 9
To summarize the above procedures, we obtain, for each k,
X1 = a1’z + (1 — ap1")y(Wipa), (2.18)
where
Y(Wi1) = X,
0<a” <1, 1 C{ao;},
o lan’y < {as) (2.19)

E(Wii1) < E(Wi),
OékJrl* = Oék* if E(Wk+1) < E(Wk)

The learning process stops if we obtain a solution Wy such that the error
E(Wy) is less than a prescribed tolerance rather than the true optimal solution
w.

For the convergence and the rates of convergence of the state space search
algorithm (2.18), we have the following Theorems. in
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Theorem 3. There exists a limit point X* such that the attainable sequence
{ Xk }r of x converges, that is, limy_,., X = X*. Moreover,

(1) if > ;% = M < o0, then X* =z + M(y(W;) — x);

(ii) if Y7 ou* = oo for nonconstant sequence {ay*}, then X* = z.

Proof. Let A* be the set of all attainable points of z, then the attainable
sequence {Xy}r € C.(A*), where C,(A*) is defined by Definition 4. This
implies that {X}}, is bounded since A* is compact in R". Since 0 < a;* < 1
for all k, we have

|2 = Xesal| = |z — 1™ — (1 — gt ")y (W) ||
= (1= ar1) ||z — y(Wip)|l
< ||z — Xkl (2.20)
S ||ZL’ - Xl”v

the sequence {z— X} }; decays monotonically and hence converges. Thus, there
exists a limit point X* such that the attainable sequence { X} }, converges with

lim X = X",

k—oo

In order to find the explicit expression of the limit point X* of {X}}, we have
the following lemma.

Lemma A. For each positive integer £ and 0 < a;* < 1, we have

k k
=D [ 0= T=]]0 - ).
Jj=11i=j+1 i=1
Moreover,
(a) if 377 o;* < 00, then there exists a constant M with 0 < M < 1 such that
k
klim (1—«a") =M,
=t
o (2.21)
]CILIEO[Z H (1—0;"a;"]=1—-M;
j=1 i=j+1
(b) if 7% oy* = o0, then
k
klim (1—-0a;") =0,
' (2.22)

=1

k k
i ~ )] = 1.
,}ggo[zll_[ (1 - a)ay"]

]:

1=j+1
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Proof of Lemma A. For all k£ and 0 < oy < 1, let ), = [Z?Zl Hf:jﬂ(l -
Odi*>04j*] with Bl = C(l*, then

Be = (1 — o™) Be—1 + ™,
(1=08k) =1 —0a")(1 = Br-),

where 1 — 31 =1 — ay*. Hence

k
1= B =[] - o),
i=1
that is,
ko k k
1= ] =) =T]0 - a). (2.23)
Jj=11i=j+1 i=1

To obtain the results in (a) and (b), we notice that 1 — a3* < e~ for all
0 < ax* < 1, which implies

0< H(l — ;") = exp{— Zai*}. (2.24)

=1

Therefore, (a) if Y .° o;* < 0o, then there exists a constant M with 0 < M < 1
such that

k
lim | |[(1 - ) =M,
k—oo ey
k k
li ok 1 1 _
im0 —af)e]=1-M
7j=11=75+1

by (2.24), (2.23) and (2.25). Hence, (b) if > .° o;* = oo, from (2.24) and (a),
we have

k
klim (1—-0a;") =0,
T
P (2.25)
o) (A
j=1i=j

The proof of Lemma A is completed.
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Now we use Lemma A to finish the proof of Theorem 3, that is, to find the
limit point X*. To further the analysis, we rewrite (2.18) as follows,

k

Z [T = amafe + ] - a)ywr). (2.26)

i=j+1 1=1

Then we have

(i) If D=7 ax* < oo, this implies limy_o a;* = 0. Then by (2.26) and Lemma
6, we have X* —x = M (y(W;) — x); while

(ii) if 377 a™ = oo for non-constant sequence {ay*} with limy_ o* = a # 0,
we have X* = z by (2.26) and (2.22). The proof of Theorem 3 is completed.

Remarks. For any real sequence {a;}; C R, it is clear that one of the
conditions (i) and (ii) must be hold. Theorem 3 shows that the state space
search algorithm of the discrete-time RNN is a fast learning algorithm that
provides the best feasible solution for the least square problem of (2.1). This
follows from the fact that the limit point X* of { X} }, will lead us to obtain the
corresponding best feasible solution W* of (2.1). Meanwhile, the error sequence
|E(W)|| | 0 when limy_.. Xx = 2. An example of case (i) of Theorem 5 is
a* = AP with p < 1, and X € (0, 1]. We notice that limy, . Hle(l -\ =

1)k )
exp[— > 1, ) < expli]
theorem, we discuss the asymptotic rates of convergence of {Xj}5. Our result

shows that the rates of convergence of { X} depends on {ax*}.

< oo for any p < 1 (see [19]). In the next

Theorem 4. If limy_ ., a;* exists, then there exists a nonnegative number
po € (0,1] such that the order of asymptotic convergence rate of { X}y is
po. If Y7 a;* = oo for non-constant sequence {ay*}, then the order of the
asymptotic convergence rate of { X} }y is linear.

Proof. Notice that

o < X — X7
T X = Xl
[ Xk = X7

_ Mo (@ = X7) + (1 — ap ™) (X — X))
| Xk — X7
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By Lemma A and (2.26), we have

X=X =07 [T @ —ar)aye+ [[J0 —a)y(W) - X
j=11i=j+1 ) i=1 (2.28)
=(z—X")+ [H(l — o) (y(Wy) — ).

If limg o ™ exists, we substitute (2.28) into (2.27), and by Lemma A, we
have

s < X = X
[ X — X|P
1" (@ — X¥) + (1 — a1 ") (X — X7
_ o™ )+ it ) (Xi I (2.29)
[ Xk — X[P
(@ = X*) + (1= )T, (1= o) (W) — )]
- * k * ’
Itz = X*) + [[Timy (1 = ai®)[(y(Wh) — @) |7
Hence, there exists a py € (0, 1] such that
X1 — X7
0 < limsup X = X7 < 00. (2.30)

koo [[ Xk — X¥[7

If % a* = oo for non-constant sequence {ax*} with limy_. ap* = a # 0,
we have X* = x by Theorem 5 and (2.22), which implies

[ X — ]
0< lim ———
k1" @ + (1 — ") Xi — |

= lim 2.31
8 % — 2l (231)
o (ol o)
ko0 1 Xk — ]

Therefore, the order of convergence of {X}} is linear at this case. We finish
the proof.

Remarks. For sequence {o;*}; associated with the SSSA, we may choose
{ap*} such that {ax*}x T 1, which implies limy . o* exists. If the order
of asymptotic rate of convergence of sequence {a;*}y is less or equal than
the convergent rate of {1}i, where k are positive integers, then Y % a;* =
00. Theorem 4 provides the asymptotic rate of convergence of { Xy} of the
SSSA. The Theorem 3 and Theorem 4 also imply that the asymptotic rates of
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convergence of { X} of the SSSA depends on {a*};. Furthermore, X} — X*
as ai* T 1.

In the next two sections, we show how the state space search algorithm can be
applied to learn the short-term foreign exchange rates.

3 Examples

Data Collection and Learning Process

Notice that daily quotes of foreign exchange rates are display as time series.
As opposed to the traditional trading methods by human decisions, neural net-
works offer a simple but automatic system in the trading off foreign exchange
markets. Historical data of the foreign exchange rates are available from many
web sites in the form of daily averages. We chose to retrieve the data from
OANDA . .com. In our study, data consist of the daily exchange rates of six ma-
jor currencies, Euro (EUR), Sterling (GBP), Swiss Franc (CHF), Australian
dollar (AUD), Canadian dollar (CAD) and Japanese Yen (JPY) compared to
the U.S. dollar from May 2003 to September 2005. We collected 801 data for
each of the currencies.

We assume that there exist short-term trends in our foreign exchange series,
and we could use neural network techniques to model the short-term trend
movement of the foreign exchange rates and to make predictions. Our as-
sumption is based on the result of Yao and Tan ([18]), which they show that
statistically the foreign exchange series do not support the random walk hy-
pothesis ([8]).

We use the first 701 days observations to train and validate the RNN model.
After the training, we then used the resulting neural network parameters to
make the out-of-sample forecasts the last 100 observations. Out-of-sample
forecast errors are measured in order to judge how good our model is in terms
of its prediction abilities. The learning dynamic used for the discrete-time
RNN is equation (2.1).

Before the training process, the data needs to be transformed into an appro-
priate form for the networks. We employ a normalization for each component
series in x(¢;). Since the sigmoid chosen as activation function gives an output
in the interval [-1, 1], it was necessary to normalize the data into this interval
to avoid working near the asymptote of the sigmoid. This normalization is
given by

y(t;) — min{y(t:)}
Range of y(ti)
t=1,2,3,..,801,:=1,2,...,6.

() = | —0.5] x 1.90

(3.1)
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as in as in ([8]). The data is then denormalized using the inverse of formula
(3.1).

As we knew that this normalization will generally smooth out the extreme
outliers, and guarantees z(t;) to lie between —0.95 and +0.95, and therefore,
they are inside the range of the neural activation function, o(-), defined in
(2.1). In addition, this normalization process will facilitate the computational
work in the state space learning process.

Instead of using the normalized raw data to feed the system for learning,
we use the moving average series z(t) of order 5, 10, 20, 50, 100 and 250,
respectively, obtained from xz(t). For example, there is approximately 250
business days in a year, we may take a moving average of 250 terms, that is,

zi(t) = 55 23249 2i(7). In general, the moving average is defined as:
1 t—n+1
zi(t) = - Z zi(J)-
=t

Also, since the ranges of the ratios varies for different currencies, we normalize
the ranges of the exchange rates to +0.8. The advantage of using moving
averages t model the short-term trend in foreign exchange rates can be found
in ([18]).

We apply the same learning process to the trajectory of the 5, 10, 20, 50,
100, 250 days moving averages of the exchange rate sequences. For simplicity,
we set the external force 6 to be the zero vector. The results of learning 700
daily exchange rates by the RNN model for AUD/US, CAD/US, CHF/US,
EUR/US, GBP/US and YEN/US are plotted in Figures 1-6, respectively.

In this experiment, the optimal connection weight matrix W the in-sample
training process is given by the following 6 by 6 matrix that from training 701
data and using the 250 days moving average:

We use the different optimal step sizes h;, 7 = 1,2, 3,4, 5, 6 range from 0.0015001
to 0.0201 for each of the currencies. The minimum least square errors of learn-
ing and out-of-sample predictions for each of the six currencies are displayed
in the following table:

| Currencies | errors(learning) | errors(out — of — sample forecasting) |

EUR/US 0.0252 0.7252
AUD/US 103 1.8844
CAD/US 103 1.5079
CHF/US 103 1.5427
YEN/US 10-2) 1.9828
GBP/US 109 0.57779
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Figure 1: Learning 700 Daily Exchange Rate for AUD/US

We used 400 iterations. Software MATLAB was used to do all computations
and plotted graphs.

From Figures 1-6, we notice that in-sample learning values generated by the
RNN model follow very closely with the actual observations for each of the six
exchange rates. While the outcomes of the RNN approximations for the six
foreign exchange rates are plotted in Figures 7-13. The x-axis is scaled from
0 to 100, which in fact represents the prediction of the last hundred original
observations using the RNN model. The y-axis scale varies for each currency
and was automatically adjusted depending on the particular data range.

From these figures, we notice that the RNN approximations of the six foreign
exchange rates are not appearing to be visually accurate comparing with the
original observations. However, the errors are between 0.5779 and 1.5785,
which are reasonably good.

Overall, the empirical results demonstrate that the RNN approximation was
reasonably good for all of the six currencies. However, it seems that the
RNN model worked the best with CHF /US and the worst with YEN/US and
EURO/US. The different type of output for each currency is due to the fact
that the recurrent neural network performs differently if we change even slightly
either some of the parameters or the data set. The RNN models are extremely
sensitive to their input. That is why, in reality we are not concerned with
the exact predicted values of the short-term foreign exchange rates. Rather,
we examine the pattern of the graphs. We want to know if the exchange rate
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Figure 2: Learning 700 Daily Exchange Rate for CAD/US
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Figure 3: Learning 700 Daily Exchange Rate for CHF /US
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Figure 4: Learning 700 Daily Exchange Rate for EUR/US
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Figure 6: Learning 700 Daily Exchange Rate for YEN/US

(o) 20 40 60 80 100
RNN approximation for forecasting the AUD/US

Figure 7: The RNN Approximation for Forecasting the Exchange Rate
AUD/US
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Figure 8: The RNN Approximation for Forecasting the Exchange Rate
CAD/US
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Figure 9: The RNN Approximation for Forecasting the Exchange Rate
CHF/US
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Figure 10: The RNN Approximation for Forecasting the Exchange Rate
EUR/US



State space search algorithm 1725

(o} 20 40 60 80 100
RNN approximation for forecasting the GBP/US

Figure 11: The RNN Approximation for Forecasting the Exchange Rate
GBP/US
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Figure 12: The RNN Approximation for Forecasting the Exchange Rate
YEN/US
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trend is going up or down. Our results are satisfactory as long as the RNN
approximation curve tags along with the raw data curve reasonably close.

4 Conclusion and the Final Remarks

We propose the use of a state space search algorithm of the discrete-time recur-
rent neural network to learn the short-term foreign exchange rates. We study
and discuss the stability properties and the asymptotic convergence rates of
the state space search algorithm. Six major foreign currencies exchange rates
(1) Euro/US, (2) Yen/US, (3) GBP/US, (4) CHF/US, (5) AUD/US and (6)
CAD/US were chosen to demonstrate how effectively the method works. Our
results show that RNNs are a promising tool for learning the short-term ex-
change rates. Several factors significantly impact the accuracy of the neural
network forecasts. These factors include selection of input variables, preparing
data, RNN’s architecture. There is no consensus on these factors. In differ-
ent cases, various decisions have their own effectiveness. There is no formal
systematic model building approach ([3], [12]).

Model uncertainty comes from three main sources: model structure, param-
eters estimation and data. The nonlinear nature of RNNs may cause more
uncertainties in model building. This learning and generalization tradeoff has
been extensive, and is still an active research topic in the field. To improve
generalization performance we may need to go beyond the model selection
methods.

As we mentioned earlier, the network learns by example, which is the sole
reason for the different approximation output for the six currencies. We de-
cided to use the moving average of 250 and it is not surprising that it worked
better with some of the currencies. The explanation for the better RNN ap-
proximations of the British Pound (GBP), comparing with the EURO (EUR),
Australia Dollar (AUD), Canadian Dollar (CAD) and Swiss Franc (CHF),
Japanese Yen (YEN),could be that there might be a relation between the time
period and the segmentation on the results for a particular currency. However,
all of the empirical results demonstrate reasonably good predictability of using
RNN model for short-term foreign exchange rates.

Overall, our results confirm the reliability and potential of the RNN models
as a forecasting tool. However, while the RNN models offer a promising al-
ternative to traditional techniques, they suffer from a number of limitations.
One of the major disadvantages is the inability to explain their reasoning. In
addition, statistical inference techniques such as significance testing cannot al-
ways be applied, resulting in a reliance on a heuristic approach. Despite their
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limitations, RNNs can add value to the forecasting process. The complexity
of RNN models suggests that they are capable of superior forecasts.
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