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Abstract. This work presents some preliminary results about exploring
and proposing new extensions of common vector based subspace meth-
ods that have been recently proposed to deal with very high dimensional
classification problems. Both the common vector and the discriminant
vector approaches are considered. The different dimensionalities of the
subspaces that these methods use as intermediate step are considered in
different situations and their relation to the generalization ability of each
method is analyzed. Comparative experiments using different databases
for the face recognition problem are performed to support the main con-
clusions of the paper.

1 Introduction

There is a number of pattern classification methods that are supposed to deal
with very high dimensional data by means of projecting the original data in
appropriate subspaces fulfilling certain properties. In particular, some of these
methods rely on the fact that dimensionality is (much) larger than the number
of available samples in each class. This is usually known as the small sample
size problem[1]. This is the case of the face recognition problem when faces are
processed as vectors of pixels and then each face can be seen as a point in a very
high dimensional space where features are supposed to correspond to specific
parts of faces.

Classical approaches using Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA) and extensions have been applied to face recog-
nition. One of the first methods that are worth mentioning is known as the
Eigenfaces approach [2] in which PCA is used to project faces in a lower dimen-
sional space where noise and small variations are discarded. Using LDA instead
of PCA has been also proposed to keep discriminant information instead. As
directly applying LDA is seldom possible in practice, many different ways of
making this feasible gives rise to different approaches as Fisherfaces [3], the Null
Space method [4] or the PCA+NULL method [5].
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Methods based on the concept of common vectors have been recently pro-
posed for classification problems in high dimensional spaces like speech and face
recognition [6–8]. Common vector methods can be thought of as projection meth-
ods that make all samples of a particular class to collapse on a single point (the
common vector). In this subspace, the classification of test samples can be based
on their (usually Euclidean) distance to the common vector in the appropriate
subspace. The reason by which this distance is a good candidate to represent
the degree of membership to a particular class has never been deeply studied.

The goal of this work is to analyze the two main common vector based
methods and compare different options to define classification rules from common
vectors and compare the results with some other subspace-based methods. The
paper is organized as follows. The next section briefly presents the technicalities
of the methods involved. The section 2.2 includes the different options to define
the corresponding classification rules. The experimental comparison is carried
out in Section 3 and final conclusion and further work is given in Section 4.

2 Subspace Methods and Common Vectors

Let suppose we have given mk samples in IRn (with mk ≤ n) corresponding to
the k-th class, {xk

i }
mk
i=1 and k = 1, . . . , c.

Let us refer now to a particular class and drop the superscript k. It is possible
to represent each xi as the sum

xi = xo + x̂i

in which the common vector, xo, represents the invariant properties common
to all samples of the class and x̂i, called the remaining vector, represents the
particular trends of this particular sample.

The decomposition above corresponds to the projection of xi onto two or-
thogonal subspaces whose direct sum gives the whole representation space, IRn.

These projections can be written in terms of the orthonormal projection
operator P and its orthogonal complement P⊥, where P = UUT and U =
[u1, . . . , ur] is the n× r matrix formed with the r eigenvectors corresponding to
nonzero eigenvalues of the k-th class covariance matrix, φk.

In other words, xo is the projection of xi onto the n−r-dimensional null space
of φk and x̂i is the projection onto the corresponding range space (of dimension
r).

Instead of computing xo as P⊥xi, it is possible to use the P = UUT that
usually involves much less eigenvectors as

xo = xi − UUT xi

There is also a more convenient way of obtaining U by using the difference
subspace of each class and the Gram-Schmidt ortho-normalization procedure
instead of eigenanalysis [7].



The above equation projects data onto a linear subspace, Null(φk), and gives
the same common vector, xo for all samples xi in the training set. When an
unseen k-th class sample, x is projected onto the same subspace, it is assumed
that a vector relatively close to xo will be obtained.

The Common Vector approach (CVA) consists of projecting test samples
to the null spaces of covariance matrices of each class and measure Euclidean
distances from these projections and each one of the common vectors in each
class and then assign the class as

arg min
k=1,...,c

(||x− P kx− xk
o ||)

This classifier obviously gives 100% accuracy with the training set but its
generalization ability depends on how unseen k-th class samples are scattered
in the corresponding null spaces and how other class samples are distributed in
these subspaces.

Figure 1 shows four common vectors corresponding to one of the experiments
performed in Section 3.

Fig. 1. Common Vectors corresponding to 4 of the classes in the AR dataset used.

2.1 The discriminant common vector approach

The CVA is similar to the Eigenfaces method because of the fact that the projec-
tion tries to represent the information in each class in the best way. No explicit
discriminant information is taken into account.

If we consider the within-class scatter matrix, Sw, the between-class scatter
matrix, Sb and the total scatter matrix, St = Sw+Sb, we can think of maximizing
the modified Fisher criterion [8] in the following way:

1. First project data onto the null space of Sw and obtain a (discriminant)
common vector corresponding to each class.

2. Apply PCA to the common vectors in the corresponding null subspace to
maximize its scatter.

In this case, a unique projection and corresponding subspace is obtained for
all classes. Also, test samples are projected onto the same subspace and the cor-
responding (Euclidean) distances from each common vector are supposed to be



representative of their class. By construction, the final subspace obtained in this
case has at most c− 1 dimensions which makes the method more appealing and
opens the possibility of easily visualizing the classification problem in particular
cases.

Figure 2 shows four (discriminant) common vectors obtained in the experi-
ments performed in Section 3.

Fig. 2. Discriminant Common Vectors corresponding to 4 of the classes in the AR
dataset used.

2.2 Generalization Ability of Common Vector based methods

From the formulation of common vector based methods and its properties [7,
8], it is clear that a 100% recognition rate is obtained on the training set (apart
from degenerate cases and linear dependences). Once the original dimension has
been decreased (explicitly or implicitly) and all training samples have collapsed
to their common vectors, classification is based on the Euclidean distance or
variations using angles between subspaces [7, 9]. In the Euclidean case, this relies
on the (strong) assumption that test samples will be isotropically distributed
around its common vector and that all of them will be closer to it than the
projected samples from other classes.

The situation is very different in the two common vector based methods.
In the CVA, there is a different subspace for each class. Moreover, usually the
dimension of these subspaces is quite large (the number of zero eigenvalues or
roughly the original dimension minus the number of training samples) which can
potentially make the use of Euclidean distance useless. In the DCV there is only
one subspace in which all common vector from all classes lie. Also, this subspace
is of relatively low dimension (the number of classes minus one as all Fisher-
based methods). This fact makes possible to illustrate its behavior for a small
3-class subproblem using data from the AR database that will be introduced in
Section 3. In Figure 3 the (discriminant) common vector (bold cercles) are shown
along with the decision boundaries induced by the minimum distance classifier.
Several test samples per class are also shown using different symbols.

It is quite clear from the above explanations and the illustrative example,
that the hypothesis of isotropic distribution is not fulfilled in general (as in
most cases when LDA-based methods are successfully applied). What is worth



studying is to which extent this can be a practical problem and also to start
proposing ways to circumvent this kind of problems.

Fig. 3. Test samples and common vectors projected onto the final 2-dimensional sub-
space corresponding to a 3-class subproblem using the AR database.

3 Experimental Results

Three different standard and publicly available databases have been considered
in this work. First, the Olivetti Research Lab (ORL) face database [10], con-
sisting of 10 different views of 40 different individuals is considered. The images
have been taken at different times and with different lighting conditions, facial
expressions and details. The image resolution is 92 × 112 and all images are
reasonably aligned.

Second, the Yale face database [11] contains a total of 165 frontal face images
from 15 different people (11 images per person). Images include also different
lighting conditions, expressions and other details. The resolution is 243 × 320
and images are approximately aligned. No preprocessing of this database has
been made.

Last, the AR face database [12] is considered. This database contains 26
different views of a number of people from which 20 men and 18 women have
been selected for the experiments. Faces wearing sunglasses or scarfs have been
discarded, keeping only variabilities due to lighting conditions, expressions and
time between pictures. The final size considered is 14 different views of 28 differ-
ent people. The images have been down-sampled at 150× 115 and the margins
of the images with no face information have been trimmed. One example from
each one of the databases considered is shown in Figure 4.

All databases have been used in the same way, different number of training
faces (3, 4, 6, 8 and 9) have been considered and the remaining ones have been
used for testing to obtain holdout estimates of the recognition accuracy of each
method. Holdout experiments have been repeated 8, 7, 6, 5 and 5 times (de-
pending on the number of training faces) and the results have been averaged.
All accuracy results shown correspond then to averaged holdout estimates of the
expected accuracy of each method.
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Fig. 4. Example faces from each of the databases considered in this work. From left to
right, ORL, Yale, and AR.

Apart from the Common Vector approach (CVA) and the Discriminant Com-
mon Vector method (DCV), other well-known related methods have been con-
sidered for the experiments. In particular, Eigenfaces [2], LDA [11] and Fish-
erfaces [3] have been implemented and tested on the same data for comparison
purposes. The data has been normalized to have zero mean and unit variance and
95% of the total energy is preserved when using the Eigenfaces method [11]. The
dimension has been reduced to c(m − 1) using PCA in the Fisherfaces method
and standard regularization techniques have been used to apply the LDA. The
nearest neighbor method using the Euclidean distance has been used in the
reduced subspaces to assign the definitive label in all three methods.
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Fig. 5. Accuracies obtained with the three databases for the different methods consid-
ered and different number of training samples.

The results obtained with the five subspace based methods considered on
the three standard databases in the conditions explained above are shown in
Figure 5 in one graph per database. Standard deviations of the averaged holdout
estimates of the accuracy are also displayed.

As can be seen in the figure, all methods give very similar results (no signif-
icant differences) in the case of the (easy) ORL database.

A significant difference can be observed between the two methods based on
common vectors in the other two databases. As it could be expected, the results



confirm that discriminant common vectors consistently gives better results than
the plain common vector approach.

Relatively surprising is the fact that some of the standard methods like (reg-
ularized) LDA and Fisherfaces (in AR database only) give very similar (insignif-
icantly better for the Yale database) results than the DCV method.

From the computational point of view, the methods considered have very
different behaviors both in training and testing phases. Although the implemen-
tations used (using a very well known matrix based prototyping software system)
are by no means optimized or programmed in a consistent way that allows strict
comparison, approximate CPU times have been measured for illustrative pur-
poses. These time measurements are shown in Figure 6. The most outstanding
trend in this graph is the high computational efficiency of the DCV method
both in training and testing. The CVA approach shows the more asymmetric
behavior: it is the most efficient in training but by far the slower in testing.
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Fig. 6. Approximate CPU times for training (tr) and testing (ts) phases of each of the
methods considered: Eigenfaces (E), Fisherfaces (F), LDA (L), Common Vectors (C)
and Discriminant Common Vectors (D).

To study the ability of the different methods to properly generalize, the above
experiments have been repeated but adding increasing amounts of noise to the
images. In particular, salt and pepper noise and random (small) rotations and
blurring have been considered only with the AR database. The results obtained
are shown in Figure 8 only for 6 training samples. Note that the results for 0
level noise in both cases are just another random realization of the ones shown
in Figure ??. In the case of salt and pepper noise, the noise level means the
probability of having a corrupted pixel. In the second case, noise level means the
amount of degrees (either positive or negative) that a random rotation of the
image can have. Combined with the maximum rotation, a plain average mask of
sizes ranging from 2 to 5. The particular settings used for the results in Figure 8



are shown in Table 1, and an example of an original image from the AR database
and some maximally corrupted images is shown in Figure 7.

Table 1. Settings to generate corrupted images for the experiments to assess general-
ization ability.

Noise type Noise level

Salt and pepper 0 0.1 0.2 0.3 0.4 0.5
Rot.& blur (degrees) 0 3 6 9 12
Rot.& blur (mask size) 1 2 3 4 5

Fig. 7. Example of maximally corrupted images used in the experiment. From left to
right: original, salt and pepper (0.5), rotated (12o) and blurred (5× 5 mask).

From this experiment, it is worth noting the ability of the DCV method to
deal with noise. Even when all other methods exhibit a dramatic drop in their
accuracy (with a very very high level of salt and pepper noise), the DCV still
gives very similar results. The differences among methods when a combination
of blurring and small random rotations are are used is not as significant.

4 Concluding Remarks

In this work, a comparative experimentation of common vector based approaches
and related subspace based methods for face recognition have been considered.
The main features, advantages and drawbacks of these methods have been put
forward and their potential generalization ability has been studied. The exper-
imental setting has been designed on one hand to compare the behavior and
computational efficiency of all methods in several standard databases, and also
to open the way to study the generalization ability of the different approaches.
Experiments with increasing levels of different types of noise have been also con-
ducted to study the way in which the accuracy degrades. The main preliminary
conclusion is that the DCV method is the best option from the different point
of views. From the particular point of view of generalization, the experiments
performed in this work are clearly insufficient. More experimentation and some
particular proposals to introduce more robust classification rules in the trans-
formed subspaces are currently on its way.
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Fig. 8. Results obtained with the AR database with increasing levels of a) salt and
pepper and b) rotation and ll blur noise using all the classification methods considered.
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