
International Scientific Conference Computer Science’2015

Task-based Asynchronous Pattern with async and await

Mariana Goranova, Elena Kalcheva-Yovkova, Stanimir Penkov
Technical University of Sofia, Sofia, Bulgaria,

mgor@tu-sofia.bg, elena@tu-sofia.bg, spenkov@tu-sofia.bg

Abstract: Asynchronous programming enhances the overall responsiveness of applications
and helps to avoid bottlenecks. .NET Framework supports a simplified approach, async
programming that gets all the benefits of traditional asynchronous programming but with less
efforts from developer. The aim of this paper is to study the power of the Task-based
Asynchronous programming model and to demonstrate the C# language support for
asynchronous programming. The paper illustrates the main advantages of asynchronous
programming with an example of long-running calculation over sequence of values.

Keywords: asynchronous programing model, event-based asynchronous pattern, task-
based asynchronous pattern.

1. INTRODUCTION

Let a program consists of conceptually distinct tasks. The single-threaded
synchronous model is the simplest style of programming where each task is performed
one at a time. When one task is finishing completely, another task is starting.

In the multi-threaded synchronous model each task is performed in a separate thread
of control. The operating system manages the threads.

In the asynchronous model, the tasks are interleaved with one another, but in a single
thread of control. When one task is executing, another task is not.

The asynchronous model has benefits when:

 There are a large number of tasks and there is always at last one task that can
make progress.

 The tasks perform lots of I/O where a synchronous program will waste lots of time
blocking when other tasks could be running.

 The tasks are largely independent from one to another so there is little need for
inter-task communication.

Asynchronous programming is a powerful technique that enables us to more easily
write scalable and responsive applications. When we write everything asynchronously we
can achieve better system utilization and consume recourses only when they are actually
needed for execution. The .NET framework provides asynchronous method
implementation well optimized and good or better performance using existing patterns.

In this work, we examine the Task-based Asynchronous Programming model
introduced with .NET 4 that makes asynchronous programming simpler to develop,
understand, and maintain using async and await keywords.

2. RELATED WORK

The .NET Framework provides three design patterns for asynchronous operations:

 Asynchronous operations that use IAsyncResult objects and require Begin and
End methods (Asynchronous Programming Model – APM) [1].

150

International Scientific Conference Computer Science’2015

 Asynchronous operations that require a method with Async suffix and one or more
events, event handler delegate types, and EventArgs-derived types (Event-based
Asynchronous Pattern – EAP).

 Asynchronous operations that use tasks and require a single method to initiate and
complete the operation (Task-based Asynchronous Pattern – TAP, using
async/await statements – C#, version 5) [2, 3, 4, 5, 6, 7, 8, 9, 10].

APM and EAP are no longer recommended for new development. TAP is the
recommended approach to asynchronous programming in the .NET Framework.

2.1. Class Task

TAP is based on the classes Task<TResult> and Task that are part of the Task
Parallel Library (TPL). Task<TResult> represents the concept of some work that will
produce a result of type TResult in the future. The non-generic Task class represents the
concept of work that will complete in the future but returns no result. These types realize
the basic concept of the TAP [5] – to represent asynchronous operations in a single
method combining both the status of the operation and the interaction with these
operations into a single object. Their method Run(Action action) queues the specified
work to run on the thread pool and returns a task handle for that work, where action is a
delegate encapsulating a method that has no parameters and does not return a value,
i.e. the work to execute asynchronously.

2.2. Async/await Statements

In C# 5, the async and await modifiers were added to work with the Task class to
make it significantly easier to write asynchronous code in our applications and so make
the TAP method even more powerful [3].

The async keyword is a modifier to a method or anonymous method holding an
asynchronous operation. It only enables the await keyword in that method and manages
the method results. It does not run this method on a thread pool.

The await keyword invokes an asynchronous operation. It is like a unary operator that
examines the status of the asynchronous operation. Await evaluates the expression to
obtain an object representing work that will produce a result in the future and immediately
returns the control to the caller. If the operation has already completed, the remaining
statements are executed and the method just continues running synchronously like a
regular method. If the operation has not completed, it acts asynchronously – the current
method can’t continue past that point until the asynchronous operation has completed.

var result = await expression;
statement/s;

The compiler replaces await with some code that sets up a special object – called the
awaiter – to wait for the completion of the awaited operation. The generated code returns
the control to the caller of the awaited method and the execution proceeds while we wait
for the completion of the operation. When the operation completes, the generated code
uses the track of location where execution was suspended and runs the remainder of the
method. The method pauses until the operation is complete, but the actual thread is not
blocked.

151

International Scientific Conference Computer Science’2015

2.3. Asynchronous Method

The TAP model is now the recommended approach for asynchronous programming
and .NET propose many classes with async methods that return Task or
Task<TResult>. Fig. 1 shows how to convert a synchronous method to an asynchronous
method using the TAP model. The asynchronous method has async as a modifier,
includes a suffix Async in the method name and does not permit out and ref parameters.
The return type is:

• Task<TResult>, if the corresponding synchronous method has return expression,
where expression is of type TResult.

• Task, if the corresponding synchronous method does not have return expression.
• void, if the method is asynchronous event handler.
The asynchronous method includes at least one await expression.

void Method() async Task MethodAsync()
{ {
 //… var task = Task.Run(() => Method());
} await task;

 }

<TResult> Method() async Task<TResult> MethodAsync()
{ {
 //… var task = Task.Run(() => Method());
 return <expression>; TResult result = await task;
} }

 Fig. 1.a: Sync method Fig. 1.b: Converting a sync method to an async method

At the beginning the asynchronous method is executed just like any other method –

it runs synchronously until it encounters await or throws an exception. The await keyword
marks a point where the method can’t continue until the awaited asynchronous operation
is complete and the control returns to the method’s caller. When the asynchronous
operation completes the control returns to the marked point.

3. LONG-RUNNING OPERATION EXAMPLE

3.1. Calculation over a Sequence of Values

The extension generic method Accumulate [11] presents a general algorithm for
accumulation of collection elements (Fig. 2). The source collection has to implement the
IEnumerable<T> interface that provides the iteration of the collection. The specified seed
value from the type TAccumulate is used as the initial accumulator value. The collection
elements are from type T which does not have constrains for assignment and add
operations, because C# does not provide generic operators. The accumulation operation
op is represented with the BinaryOperation<TAccumulate, T, TAccumulate> delegate
where the binary operation has two operands of type T1 and T2 correspondingly and
returns a result of type TResult. The synchronous method Accumulate returns a result
of type TAccumulate.

Depending on the source, this method can take a long time and needs to be converted
as asynchronous method. One way to make it asynchronously is to create a method
AccumulateAsync with async modifier and simply change the return type to
Task<TAccumulate>. The method PrintAccumulateAsync is decorated by the keyword
async and it calls AccumulateAsync asynchronously. When it calls, the execution

152

International Scientific Conference Computer Science’2015

immediately returns to the caller and once the long asynchronous operation is completed,
it will get the control back (write the calculated sum over a sequence of values).

namespace AsyncAwaitExample
{
 public delegate TResult BinaryOperation<T1,T2,TResult>(T1 oper1,T2 oper2);

 public static class Accumulator
 {
 public static TAccumulate Accumulate<T, TAccumulate> (this IEnumerable<T> source,
 TAccumulate seed, BinaryOperation<TAccumulate, T, TAccumulate> op)
 {
 TAccumulate acc = seed; // initial accumulator value
 foreach (T item in source) // for each element of collection
 acc = op(acc, item); // executes the operation and saves the accumulator value
 return acc; // return the accumulator value
 }

 public static async Task<TAccumulate> AccumulateAsync<T, TAccumulate>
 (this IEnumerable<T> source, TAccumulate seed,
 BinaryOperation<TAccumulate, T, TAccumulate> op)
 {
 var task = Task.Run(() => source.Accumulate<T, TAccumulate>(seed, op));
 TAccumulate result = await task;
 return result;
 }

 public static async Task PrintAccumulateAsync<T, TAccumulate>
 (this IEnumerable<T> source, TAccumulate seed,
 BinaryOperation<TAccumulate, T, TAccumulate> op, string format)
 {
 var sumTask = source.AccumulateAsync<T, TAccumulate>(seed, op);
 TAccumulate sum = await sumTask;
 Console.WriteLine(format,sum);
 }
 }

 class Program
 { public static void DoSomething()
 { for (int i = 0; i < 50; i++)
 Console.Write(".");
 Console.WriteLine();
 }

 static void Main(string[] args)
 {
 int[] a = { 1, 2, 3, 4, 5 };
 double[] b = { 1.0, 2.0, 3.0};
 var result1 = a.PrintAccumulateAsync<int, int>(0, (seed, element) => seed + element,
 "1+2+3+4+5 = {0}");
 DoSomething();
 var result2 = b.PrintAccumulateAsync<double, double>(1.0, (seed, element) => seed * element,
 "1.0*2.0*3.0 = {0:F3}");
 DoSomething();
 }
 }
}

Fig. 2: Code example

3.2. Example Results

The following steps are executed:

153

International Scientific Conference Computer Science’2015

• The Main method calls the asynchronous method PrintAccumulateAsync in the
main thread.

• PrintAccumulateAsync calls the asynchronous method AccumulateAsync to
calculate the sum of elements of the array a.

• AccumulateAsync starts the task using

var task = Task.Run(() => source.Accumulate<T, TAccumulate>(seed, op));

This task represents a long operation Accumulate and will run in the working
thread in the thread pool. A thread pool is a collection of threads that can be used
to perform several tasks in the background and the primary thread is free to
perform other tasks asynchronously. AccumulateAsync returns the control to the
PrintAccumulateAsync to avoid blocking the recourses. AccumulateAsync
returns a Task<TAccumulate> where TAccumulate is an integer, and
PrintAccumulateAsync assigns the task to the sumTask variable. The task will
produce an actual integer when the work is complete.

• PrintAccumulateAsync can’t continue until the awaited AccumulateAsync is
complete and with await returns the control to Main. Main calls the synchronous
method DoSomething. The control remains in PrintAccumulateAsync, if
AccumulateAsync completes before awaiting.

• When the long operation finishes, the working thread in the pool completes its task
and it is returned to a queue of waiting threads, where it can be reused. The result
of the long-running operation is saved in the task sumTask of
PrintAccumulateAsync and the result is received with await in sum.

• PrintAccumulateAsync prints the calculated sum.
• PrintAccumulateAsync ends and returns the control to Main.
• All steps are repeated when the Main method calls the asynchronous method

PrintAccumulateAsync to calculate the product of elements of the array b.

Fig. 3 shows the program output:

.1+2+3+4+5 = 15
...
......................................1.0*2.0*3.0 = 6.000
............

Fig. 3: Sample of results

In this example, the program handles long-running operations without blocking the

recourses using TAP. The calculation over sequence of values needs long time, that’s
why the asynchronous method AccumulateAync returns the control to the
PrintAccumulateAsync, PrintAccumulateAsync can’t continue and returns the control
to Main. Main proceeds the execution calling DoSomething after the asynchronous task
has started. When the awaited long operation completes, the remainder code of
PrintAccumulateAsync prints the calculated sum of elements of the array a. The
behavior of the program is similarly when Main calls PrintAccumulateAsync to print the
product of elements of the array b.

The task representing long-running operation doesn’t create additional thread,
because an async method doesn’t run on its own thread. It only uses the thread pool to
complete the task. The system manages all tasks and the thread pool. That’s why TAP is
being more efficient and effective for asynchronous program.

154

International Scientific Conference Computer Science’2015

4. CONCLUSIONS

Performing asynchronous operations is the key to building scalable, responsive and
maintainability applications. When coupled with the thread pool, asynchronous operations
allow us to take advantage of all the CPUs in the machine [12]. The Task-based
Asynchronous Pattern designed by Microsoft makes it easy for developers to take
advantage of these capabilities. This pattern uses the async and await keywords that
simplify the programming in .NET. They allow writing an asynchronous program almost
as if it is a usual synchronous program.

In this paper we discussed the TAP and async/await features for creating
asynchronous functionality that is almost as simple as the synchronous code. The new
trend is to bring the simplicity of synchronous programming models to this asynchronous
programming paradigm. Our future work will study the pattern defined to transition from
Event-based Asynchronous Pattern to TAP.

Acknowledgements
This work is supported by the Scientific and Research Sector of the Technical

University of Sofia, Bulgaria research project 152PD0021-09/2015.

5. REFERENCES

[1] Goranova, M. (2004) Asynchronous Programming with Callbacks in .NET
Framework, Proceedings of the International Conference of Computer Science,
Sofia, Bulgaria, 210-215.

[1] Task-based Asynchronous Pattern (TAP), https://msdn.microsoft.com/en-us/
library/hh873175.aspx.

[2] Asynchronous Programming with Async and Await (C# and Visual Basic),
https://msdn.microsoft.com/en-us/library/hh191443.aspx.

[3] Toub, S. (2012), Task-based Asynchronous Pattern, Microsoft,
http://www.microsoft.com/en-us/download/details.aspx?id=19957.

[4] Marini, D. (2014) Improving Your Asynchronous Code Using Tasks, Async and
Await, http://www.infoq.com/articles/Tasks-Async-Await.

[5] Cleary, S. (2013), Async and Await, http://blog.stephencleary.com/2012/02/
async-and-await.html.

[6] Clearly, S. (2013) Best Practices in Asynchronous Programming, MSDN
Magazine, No 3, https://msdn.microsoft.com/en-us/magazine/jj991977.aspx.

[7] Clearly, S. (2014) Concurrency in C# Cookbook, O’Reily.
[8] Assil (2014) .NET Asynchronous Patterns, http://www.codeproject.com/Articles/

646239/NET-Asynchronous-Patterns.
[9] Rappl, F. (2013) Asynchronous models and patterns,

http://www.codeproject.com/Articles/562021/Asynchronous-models-and-patterns.
[10] Goranova, M. (2009) Generic Programming in C#. Elektrotechnica & Elektronica

(ISSN 0861-4717) No 11-12, 35-42.
[11] Richter, J. (2010) CLR via C#, Microsoft Press.

155

	ilovepdf_merged_final-99-191-with-numbers

