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Abstract

A �nite range interacting particle system on a transitive graph is considered.

Assuming that the dynamics and the initial measure are invariant, the normalized

empirical distribution process converges in distribution to a centered di�usion process.

As an application, a central limit theorem for certain hitting times, interpreted as

failure times of a coherent system in reliability, is derived.
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1 Introduction

Interacting particle systems have attracted a lot of attention because of their versatile
modelling power (see for instance [7, 18]). However, most available results deal with
their asymptotic behavior, and relatively few theorems describe their transient regime.
In particular, central limit theorems for random �elds have been available for a long time
[20, 21, 3, 22, 28, 5, 4], di�usion approximations and invariance principles have an even
longer history ([9] and references therein), but those functional central limit theorems that
describe the transient behavior of an interacting particle system are usually much less
general than their �xed-time counterparts. Existing results (see [14, 15, 16, 26]) require
rather stringent hypotheses: spin �ip dynamics on Z, reversibility, exponential ergodicity,
stationarity. . . (see Holley and Strook's discussion in the introduction of [15]). The main
objective of this article is to prove a functional central limit theorem for interacting parti-
cle systems, under very mild hypotheses, using some new techniques of weakly dependent
random �elds.

Our basic reference on interacting particle systems is the textbook by Liggett [17], and
we shall try to keep our notations as close to his as possible: S denotes the (countable) set
of sites, W the (�nite) set of states, X = W S the set of con�gurations, and {ηt , t ≥ 0} an
interacting particle system, i.e. a Feller process with values in X . If R is a �nite subset
of S, an empirical process is de�ned by counting how many sites of R are in each possible
state at time t. This empirical process will be denoted by NR = {NR

t , t ≥ 0}, and de�ned
as follows.

NR
t = (NR

t (w))w∈W , NR
t (w) =

∑
x∈R

Iw(ηt(x)) ,

where Iw denotes the indicator function of state w. Thus NR
t is a NW -valued stochastic

process, which is not Markovian in general. Our goal is to show that, under suitable
hypotheses, a properly scaled version of NR converges to a Gaussian process as R increases
to S. The hypotheses will be precised in sections 2 and 3 and the main result (Theorem
4.1) will be stated and proved in section 4. Here is a loose description of our assumptions.
Dealing with a sum of random variables, two hypotheses can be made for a central limit
theorem: weak dependence and identical distributions.

1. Weak dependence: In order to give it a sense, one has to de�ne a distance between
sites, and therefore a graph structure. We shall �rst suppose that this (undirected)
graph structure has bounded degree. We shall assume also �nite range interactions:
the con�guration can simultaneously change only on a bounded set of sites, and its
value at one site can in�uence transition rates only up to a �xed distance (De�nition
3.2). Then if f and g are two functions whose dependence on the coordinates de-
creases exponentially fast with the distance from two distant �nite sets R1 and R2, we
shall prove that the covariance between f(ηs) and g(ζt) decays exponentially fast in
the distance between R1 and R2 (Proposition 3.3). The central limit theorem 4.1 will
actually be proved in a much narrower setting, that of group invariant dynamics on a
transitive graph (De�nition 3.4). However we believe that a covariance inequality for
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general �nite range interacting particle systems is of independent interest. Of course
the bound of Proposition 3.3 is not uniform in time, without further assumptions.

2. Identical distributions: In order to ensure that the indicator processes {Iw(ηt(x)) , t ≥
0} are identically distributed, we shall assume that the set of sites S is endowed with
a transitive graph structure (see [10] as a general reference), and that both the
transition rates and the initial distribution are invariant by the automorphism group
action. This generalizes the notion of translation invariance, usually considered in
Zd ([17] p. 36), and can be applied to non-lattice graphs such as trees. Several recent
articles have shown the interest of studying random processes on graph structures
more general than Zd lattices: see e.g. [11, 12, 13], and for general references [24, 30].

Among the potential applications of our result, we chose to focus on the hitting time of
a prescribed level by a linear combination of the empirical process. In [23], such hitting
times were considered in the application context of reliability. Indeed the sites in R can be
viewed as components of a coherent system and their states as degradation levels. Then
a linear combination of the empirical process is interpreted as the global degradation of
the system, and by Theorem 4.1, it is asymptotically distributed as a di�usion process
if the number of components is large. An upper bound for the degradation level can be
prescribed: the system is working as soon as the degradation is lower, and fails at the
hitting time. More precisely, let f : w 7→ f(w) be a mapping from W to R. The total
degradation is the real-valued process DR = {DR

t , t ≥ 0}, de�ned by:

DR
t =

∑
w∈W

f(w)NR
t (w).

If a is the prescribed level, the failure time of the system will be de�ned as the random
variable

TRa = inf{t ≥ 0 , DR
t ≥ a }.

Under suitable hypotheses, we shall prove that TRa converges weakly to a normal distri-
bution, thus extending Theorem 1.1 of [23] to systems with dependent components. In
reliability (see [1] for a general reference), components of a coherent system are usually
considered as independent. The reason seems to be mathematical convenience rather than
realistic modelling. Models with dependent components have been proposed in the setting
of stochastic Petri nets [19, 29]. Observing that a Markovian Petri net can also be inter-
preted as an interacting particle system, we believe that the model studied here is versatile
enough to be used in practical applications.

The paper is organized as follows. Some basic facts about interacting particle systems
are �rst recalled in section 2. They are essentially those of sections I.3 and I.4 of [17],
summarized here for sake of completeness, and in order to �x notations. The covariance
inequality for �nite range interactions and local functions will be given in section 3. Our
main result, Theorem 4.1, will be stated in section 4. Some examples of transitive graphs
are proposed in section 5. The application to hitting times and their reliability interpre-
tation is the object of section 6. In the proof of Theorem 4.1, we need a spatial CLT for
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an interacting particle system at �xed time, i.e. a random �eld. We thought interesting to
state it independently in section 7: Proposition 7.1 is in the same vein as the one proved by
Bolthausen [3] on Zd, but it uses a somewhat di�erent technique. All proofs are postponed
to section 8.

2 Main notations and assumptions

In order to �x notations, we brie�y recall the basic construction of general interacting
particle systems, described in sections I.3 and I.4 of Liggett's book [17].

Let S be a countable set of sites, W a �nite set of states, and X = W S the set of
con�gurations, endowed with its product topology, that makes it a compact set. One de�nes
a Feller process on X by specifying the local transition rates: to a con�guration η and a
�nite set of sites T is associated a nonnegative measure cT (η, ·) on W T . Loosely speaking,
we want the con�guration to change on T after an exponential time with parameter

cT,η =
∑
ζ∈WT

cT (η, ζ).

After that time, the con�guration becomes equal to ζ on T , with probability cT (η, ζ)/cT,η.
Let ηζ denote the new con�guration, which is equal to ζ on T , and to η outside T . The
in�nitesimal generator should be:

Ωf(η) =
∑
T⊂S

∑
ζ∈WT

cT (η, ζ)(f(ηζ)− f(η)). (1)

For Ω to generate a Feller semigroup acting on continuous functions from X into R, some
hypotheses have to be imposed on the transition rates cT (η, ·).

The �rst condition is that the mapping η 7→ cT (η, ·) should be continuous (and thus
bounded, since X is compact). Let us denote by cT its supremum norm.

cT = sup
η∈X

cT,η.

It is the maximal rate of change of a con�guration on T . One essential hypothesis is that
the maximal rate of change of a con�guration at one given site is bounded.

B = sup
x∈S

∑
T3x

cT <∞. (2)

If f is a continuous function on X , one de�nes ∆f (x) as the degree of dependence of f on
x:

∆f (x) = sup{ |f(η)− f(ζ)| , η, ζ ∈ X and η(y) = ζ(y) ∀ y 6= x }.
Since f is continuous, ∆f (x) tends to 0 as x tends to in�nity, and f is said to be smooth
if ∆f is summable:

|||f ||| =
∑
x∈S

∆f (x) <∞.
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It can be proved that if f is smooth, then Ωf de�ned by (1) is indeed a continuous function
on X and moreover:

‖Ωf‖ ≤ B|||f |||.
We also need to control the dependence of the transition rates on the con�guration at other
sites. If y ∈ S is a site, and T ⊂ S is a �nite set of sites, one de�nes

cT (y) = sup{ ‖cT (η1, · )− cT (η2, · )‖tv , η1(z) = η2(z) ∀ z 6= y },
where ‖ · ‖tv is the total variation norm:

‖cT (η1, · )− cT (η2, · )‖tv =
1

2

∑
ζ∈WT

|cT (η1, ζ)− cT (η2, ζ)|.

If x and y are two sites such that x 6= y, the in�uence of y on x is de�ned as:

γ(x, y) =
∑
T 3x

cT (y).

We will set γ(x, x) = 0 for all x. The in�uences γ(x, y) are assumed to be summable:

M = sup
x∈S

∑
y∈S

γ(x, y) <∞. (3)

Under both hypotheses (2) and (3), it can be proved that the closure of Ω generates a Feller
semigroup {St , t ≥ 0} (Theorem 3.9 p. 27 of [17]). A generic process with semigroup
{St , t ≥ 0} will be denoted by {ηt , t ≥ 0}. Expectations relative to its distribution,
starting from η0 = η will be denoted by Eη. For each continuous function f , one has:

Stf(η) = Eη[f(ηt)] = E[f(ηt) | η0 = η].

Assume now that W is ordered, (say W = {1, . . . , n}). Let M denote the class of all
continuous functions on X which are monotone in the sense that f(η) ≤ f(ξ) whenever
η ≤ ξ. As it was noticed by Liggett (1985) it is essential to take advantage of monotonicity
in order to prove limit theorems for particle systems. The following theorems discuss a
number of ideas related to monotonicity.

Theorem 2.1 (Theorem 2.2 Liggett, (1985)) Suppose ηt is a Feller process on X with
semigroup S(t). The following statement are equivalent :

(a) f ∈M implies S(t)f ∈M, for all t ≥ 0

(b) µ1 ≤ µ2 implies µ1S(t) ≤ µ2S(t) for all t ≥ 0.

Recall that µ1 ≤ µ2 provided that
∫
fdµ1 ≤

∫
fdµ2 for any f ∈M.

De�nition 2.2 A Feller process is said to be monotone (or attractive) if the equivalent
conditions of Theorem 2.1 are satis�ed.
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Theorem 2.3 (Theorem 2.14 Liggett, (1985)) Suppose that S(t) and Ω are respec-
tively the semigroup and the generator of a monotone Feller process on X. Assume
further that Ω is a bounded operator. Then the following two statements are equivalent:

(a) Ωfg ≥ fΩg + gΩf , for all f , g ∈M

(b) µS(t) has positive correlations whenever µ does.

Recall that µ has positive correlation if
∫
fgdµ ≥

(∫
fdµ

) (∫
gdµ

)
for any f, g ∈ M.

The following corollary gives conditions under which the positive correlation property con-
tinue to hold at later times if it holds initially.

Corollary 2.4 [Corollary 2.21 Liggett, (1985)] Suppose that the assumptions of Theorem
2.3 are satis�ed and that the equivalent conditions of Theorem 2.3 hold. Let ηt be the
corresponding process, where the distribution of η0 has positive correlations. Then for
t1 < t2 < · · · < tn the joint distribution of (ηt1 , · · · , ηtn), which is a probability measure on
Xn, has positive correlations.

3 Covariance inequality

This section is devoted to the covariance of f(ηs) and g(ηt) for a �nite range interacting
particle system when the underlying graph structure has bounded degree. Proposition 3.3
shows that if f and g are mainly located on two �nite sets R1 and R2, then the covariance
of f and g decays exponentially in the distance between R1 and R2.

From now on, we assume that the set of sites S is endowed with an undirected graph
structure, and we denote by d the natural distance on the graph. We will assume not
only that the graph is locally �nite, but also that the degree of each vertex is uniformly
bounded.

∀x ∈ S , |{y ∈ S , d(x, y) = 1}| ≤ r ,

where | · | denotes the cardinality of a �nite set. Thus the size of the sphere or ball with
center x and radius n is uniformly bounded in x, and increases at most geometrically in n.

|{y ∈ S , d(x, y) = n}| ≤ r

r − 1
(r−1)n and |{y ∈ S , d(x, y) ≤ n}| ≤ r

r − 2
(r−1)n.

Let R be a �nite subset of S. We shall use the following upper bounds for the number of
vertices at distance n, or at most n from R.

|{x ∈ S , d(x,R) = n}| ≤ |{y ∈ S , d(x,R) ≤ n}| ≤ 2|R|enρ , (4)

with ρ = log(r − 1).
In the case of an amenable graph (e.g. a lattice on Zd), the ball sizes have a subexpo-

nential growth. Therefore, for all ε > 0, there exists c such that :

|{x ∈ S , d(x,R) = n}| ≤ |{y ∈ S , d(x,R) ≤ n}| ≤ cenε.
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What follows is written in the general case, using (4). It applies to the amenable case
replacing ρ by ε, for any ε > 0.

We are going to deal with smooth functions, depending weakly on coordinates away
from a �xed �nite set R. Indeed, it is not su�cient to consider functions depending only
on coordinates in R, because if f is such a function, then for any t > 0, Stf may depend
on all coordinates.

De�nition 3.1 Let f be a function from S into R, and R be a �nite subset of S. The
function f is said to be mainly located on R if there exists two constants α and β > ρ such
that α > 0, β > ρ and for all x ∈ R:

∆f (x) ≤ αe−βd(x,R). (5)

Since β > ρ, the sum
∑

x ∆f (x) is �nite. Therefore a function mainly located on a �nite
set is necessarily smooth.

The system we are considering will be supposed to have �nite range interactions in the
following sense (cf. De�nition 4.17, p. 39 of [17]).

De�nition 3.2 A particle system de�ned by the rates cT (η, ·) is said to have �nite range
interactions if there exists k > 0 such that if d(x, y) > k:

1. cT = 0 for all T containing both x and y ,

2. γ(x, y) = 0.

The �rst condition imposes that two coordinates cannot simultaneously change if their
distance is larger than k. The second one says that the in�uence of a site on the transition
rates of another site cannot be felt beyond distance k.

Under these conditions, we prove the following covariance inequality.

Proposition 3.3 Assume (2) and (3). Assume moreover that the process is of �nite range.
Let R1 and R2 be two �nite subsets of S. Let β be a constant such that β > ρ. Let f and
g be two functions mainly located on R1 and R2, in the sense that there exist positive
constants κf , κg such that,

∆f (x) ≤ κfe
−βd(x,R1) and ∆g(x) ≤ κge

−βd(x,R2).

Then for all positive reals s, t,

sup
η∈X

∣∣∣Covη(f(ηs), g(ηt))
∣∣∣ ≤ Cκfκg(|R1| ∧ |R2|)eD(t+s)e−(β−ρ)d(R1,R2) , (6)

where

D = 2Me(β+ρ)k and C =
2Beβk

D

(
1 +

eρk

1− e−β+ρ

)
.
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Remark. Shashkin [27] obtains a similar inequality for random �elds indexed by Zd.

We now consider a transitive graph, such that the group of automorphism acts transi-
tively on S (see chapter 3 of [10]). Namely we need that

• for any x and y in S there exists a in Aut(S), such that a(x) = y.

• for any x and y in S and any radius n, there exists a in Aut(S), such that a(B(x, n)) =
B(y, n).

Any element a of the automorphism group acts on con�gurations, functions and measures
on X as follows:

• con�gurations: a · η(x) = η(a−1(x)),

• functions: a · f(η) = f(a · η),

• measures:
∫
f d(a · µ) =

∫
(a · f) dµ.

A probability measure µ on X is invariant through the group action if a · µ = µ for any
automorphism a, and we want this to hold for the probability distribution of ηt at all times
t. It will be the case if the transition rates are also invariant through the group action.
In order to avoid confusions with invariance in the sense of the semigroup (De�nition 1.7,
p. 10 of [17]), invariance through the action of the automorphism group of the graph will
be systematically referred to as �group invariance� in the sequel.

De�nition 3.4 Let G be the automorphism group of the graph. The transition rates
cT (η, ·) are said to be group invariant if for any a ∈ G,

ca(T )(a · η, a · ζ) = cT (η, ζ).

This de�nition extends in an obvious way that of translation invariance on Zd-lattices ([17],
p. 36).

Remark. Observe that for rates which are both �nite range and group invariant, the
hypotheses (2) and (3) are trivially satis�ed. In that case, it is easy to check that the semi-
group {St , t ≥ 0} commutes with the automorphism group. Thus if µ is a group invariant
measure, then so is µSt for any t (see [17], p. 38). In other terms, if the distribution of η0

is group invariant, then that of ηt will remain group invariant at all times.

4 Functional CLT

Our functional central limit theorem requires that all coordinates of the interacting particle
system {ηt , t ≥ 0} are identically distributed.
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Let (Bn)n≥1 be an increasing sequence of �nite subsets of S such that

S =
∞⋃
n=1

Bn, lim
n→+∞

|∂Bn|
|Bn|

= 0 , (7)

recall that | · | denotes the cardinality and ∂Bn = {x ∈ Bn , ∃ y 6∈ Bn, d(x, y) = 1}.

Theorem 4.1 Let µ = δη be a Dirac measure where η ∈ X ful�lls η(x) = η(y) for any
x, y ∈ S. Suppose that the transition rates are group invariant. Suppose moreover that the
process is of �nite range, monotone and ful�lling the requirements of Corollary 2.4. Let
(Bn)n≥1 be an increasing sequence of �nite subsets of S ful�lling (7). Then the sequence
of processes {

NBn
t − EµN

Bn
t√

|Bn|
, t ≥ 0

}
, for n = 1, 2, . . .

converges in D([0, T ]) as n tends to in�nity, to a centered Gaussian, vector valued process
(B(t, w))t≥ 0, w∈W with covariance function Γ de�ned, for w, w′ ∈ W , by

Γµ(s, t)(w,w′) =
∑
x∈S

Covµ (Iw(ηs(x)), Iw′(ηt(x))) .

Remark. One may wonder wether such results can extend under more general initial
distributions. The point is that the covariance inequality do not extend simply by inte-
gration with respect to deterministic con�gurations. We are thankful to Pr. Penrose for
stressing our attention on this important restriction. Monotonicity allows to get ride of
this restriction.

5 Examples of graphs

Besides the classical lattice graphs in Zd and their groups of translations, which are con-
sidered by most authors (see [8, 17, 18]), our setting applies to a broad range of graphs.
We propose some simple examples of automorphisms on trees, which give rise to a large
variety of non classical situations.

The simplest example corresponds to regular trees de�ned as follows. Consider the
non-commutative free group S with �nite generator set G. Impose that each generator g
is its own inverse (g2 = 1). Now consider S as a graph, such that x and y are connected
if and only if there exists g ∈ G such that x = yg. Note that S is a regular tree of degree
equal to the cardinality r of G. The size of spheres is exponential: |{y , d(x, y) = n}| = rn.
Now consider the group action of S on itself: x ·y = xy: this action is transitive on S (take
a = yx).

From this basic example it is possible to get a large class of graphs by adding relations
between generators; for example take the tree of degree 4, denote by a, b, c, and d the
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generators, and add the relation ab = c. Then, the corresponding graph is a regular tree
of degree 4 were nodes are replaced by tetrahedrons. The spheres do not grow at rate 4n:
|{y , d(x, y) = n}| = 4 · 3n/2 if n is even and |{y , d(x, y) = n}| = 6 · 3(n−1)/2 if n is odd.

•db
•da

•d 1

a

b

• cdc

•dcd

•
dcdc
•

•dcda •dcdb
cd

cdc

cdbcda

• bd
bda

bdb

bdc

Figure 1: Graph structure of the tree with tetrahedron cells. The graph consists in a
regular tree of degree 4 (bold lines), where nodes have been replaced by tetrahedrons.
Automorphisms in this graph correspond to composition of automorphisms exchanging
couples of branches of the tree (action of generator a for example) and displacements in
the subjacent regular tree.

6 CLT for hitting times

In this section we consider the case where W is ordered, the process is monotone and
satis�es the assumptions in Theorem 4.1, the initial condition is �xed and f is an increasing
function fromW to R. In the reliability interpretation, f(w) measures a level of degradation
for a component in state w. The total degradation of the system in state η will be measured
by the sum

∑
x∈Bn f(η(x)). So we shall focus on the process D(n) = {D(n)

t , t ≥ 0}, where
D

(n)
t = DBn

t is the total degradation of the system at time t on the set R = Bn:

D
(n)
t =

∑
x∈Bn

f(ηt(x)).

It is natural to consider the instants at whichD
(n)
t reaches a prescribed level of degradation.

Let k = (k(n)) be a sequence of real numbers. Our main object is the failure time Tn,
de�ned as:

Tn = inf{t ≥ 0 , D
(n)
t ≥ k(n)}.

10



In the particular case where W = {working, failed} (binary components), and f is the

indicator of a failed component, then D
(n)
t simply counts the number of failed components

at time t, and our system is a so-called �k-out-of-n� system [1].
Let w0 be a particular state (in the reliability w0 could be the �perfect state� of an

undergrade component). Let η be the constant con�guration where all components are in
the perfect state w0, for all x ∈ S. Our process starts from that con�guration η, which
is obviously group invariant. We shall denote by m(t) (respectively, v(t)) the expectation
(resp., the variance) of the degradation at time t for one component.

m(t) = E[f(ηt(x)) | η0 = η] , v(t) = lim
n→∞

VarD
(n)
t

|Bn|
.

These expressions do not depend on x ∈ S, due to group invariance.
The average degradation D

(n)
t /|Bn| converges in probability to its expectation m(t).

We shall assume that m(t) is strictly increasing on the interval [0, τ ], with 0 < τ ≤ +∞
(the degradation starting from the perfect state increases on average). Mathematically,
one can assume that the states are ranked in increasing order, the perfect state being
the lowest. This yields a partial order on con�gurations. If the rates are such that the
interacting particle system is monotone (see [17]), then the average degradation increases.
In the reliability interpretation, assuming monotonicity is quite natural: it amounts to
saying that the rate at which a given component jumps to a more degraded state is higher
if its surroundings are more degraded.

We consider a �mean degradation level� α, such that m(0) < α < m(τ). Assume the
threshold k(n) is such that:

k(n) = α|Bn|+ o(
√
|Bn|).

Theorem 4.1 shows that the degradation process D(n) should remain at distance O(
√
|Bn|)

from the deterministic function |Bn|m. Therefore it is natural to expect that Tn is at
distance O(1/

√
|Bn|) from the instant tα at which m(t) crosses α:

tα = inf{t, m(t) = α}.

Theorem 6.1 Under the above hypotheses,√
|Bn| (Tn − tα)

L−−−−→
n→+∞

N (0, σ2
α),

with:

σ2
α =

v(tα)

(m′(tα))2
.

7 CLT for weakly dependent random �elds

As in section 4, we consider a transitive graph G = (S,E), where S is the set of vertices

and E ⊂
{
{x, y}, x, y ∈ S, x 6= y

}
the set of edges. For a transitive graph, the degree r

of each vertex is constant (cf. Lemma 1.3.1 in Godsil and Royle [10]).
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For any x in S and for any positive integer n, we denote by B(x, n) the open ball of S
centered at x, with radius n:

B(x, n) = {y ∈ S, d(x, y) < n}.

The cardinality of the ball B(x, n) is constant in x and bounded as follows.

sup
x∈S
|B(x, n)| ≤ 2rn = 2enρ =: κn, (8)

where ρ = ln(max(r, 4)− 1): compare with formula (4).
Let Y = (Yx)x∈S be a real valued random �eld. We will measure covariances between

coordinates of Y on two distant sets R1 and R2 through Lipschitz functions (see [6]). A
Lipschitz function is a real valued functions f de�ned on Rn for some positive integer n,
for which

Lip f := sup
x 6=y

|f(x)− f(y)|∑n
i=1 |xi − yi|

<∞.

We will assume the the random �eld Y satis�es the following covariance inequality: for
any positive real δ, for any disjoint �nite subsets R1 and R2 of S and for any Lipschitz
functions f and g de�ned respectively on R|R1| and R|R2|, there exists a positive constant
Cδ (not depending on f g, R1 and R2) such that

|Cov (f(Yx, x ∈ R1), g(Yx, x ∈ R2)| ≤ Cδ Lip f Lip g (|R1| ∧ |R2|) exp (−δd(R1, R2)) . (9)

For any �nite subset R of S, let Z(R) =
∑

x∈R Yx. Let (Bn)n∈N be an increasing
sequence of �nite subsets of S such that |Bn| goes to in�nity with n. Our purpose in this
section is to establish a central limit theorem for Z(Bn), suitably normalized. We suppose
that (Yx)x∈S is a weakly dependent random �eld according to the covariance inequality
(9).
In Proposition 7.1 below we prove that, as in the independent setting, a central limit
theorem holds as soon as VarZ(Bn) behaves, as n goes to in�nity, like |Bn| (cf. Condition
(11) below). So the purpose of Proposition 7.2 is to study the behavior of VarZ(Bn). We
prove that the limit (11) holds under two additional conditions. The �rst one supposes
that the cardinality of ∂Bn is asymptotically negligible compared to |Bn| (cf. Condition
(7) in section 4); the second condition supposes an invariance by the automorphisms of the
group G, of the joint distribution (Yx, Yy) for any two vertices x and y. More precisely we
need to have Condition (10) below,

Cov(Yx, Yy) = Cov(Ya(x), Ya(y)), (10)

for any automorphism a of G.
In order to prove Proposition 7.1, we shall use some estimations of Bolthausen [3] that

yield a central limit theorem for stationary random �elds on Zd under mixing conditions.
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Recall that the mixing coe�cients used there are de�ned as follows, noting by AR the
σ-algebra generated by (Yx, x ∈ R),

αk,l(n) = sup{|P(A1 ∩ A2)− P(A1)P(A2)|, Ai ∈ ARi , |R1| ≤ k, |R2| ≤ l, d(R1, R2) ≥ n},

for n ∈ N and k, l ∈ N ∪∞,

ρ(n) = sup{|Cov(Z1, Z2)|, Zi ∈ L2(A{ρi}), ‖Zi‖2 ≤ 1, d(ρ1, ρ2) ≥ n}.

Under suitable decay of (αk,l(n))n or of (ρ(n))n, Bolthausen [3] proved a central limit
theorem for stationary random �elds on Zd, using an idea of Stein. In our case, instead
of using those mixing coe�cients, we describe the dependence structure of the random
�elds (Yx)x∈S in terms of the gap between two Lipschitz transformations of two disjoint
blocks (the covariance inequality (9) above). Those manners of describing the dependence
of random �elds are quite di�erent. As one may expect, the techniques of proof will be
di�erent as well (see section 8).

Proposition 7.1 Let G = (S,E) be a transitive graph. Let (Bn)n∈N be an increasing
sequence of �nite subsets of S such that |Bn| goes to in�nity with n. Let (Yx)x∈S be a
real valued random �eld, satisfying (9). Suppose that, for any x ∈ S, EYx = 0 and
supx∈S ‖Yx‖∞ <∞. If, there exists a �nite real number σ2 such that

lim
n→∞

VarZ(Bn)

|Bn|
= σ2, (11)

then the quantity
Z(Bn)√
|Bn|

converges in distribution to a centered normal law with variance

σ2.

Proposition 7.2 Let G = (S,E) be a transitive graph. Let (Yx)x∈S be a centered real
valued random �eld, with �nite variance. Suppose that the conditions (9) and (10) are
satis�ed. Let (Bn)n be a sequence of �nite and increasing sets of S ful�lling (7). Then∑

z∈S

|Cov(Y0, Yz)| <∞ and lim
n→∞

1

|Bn|
VarZ(Bn) =

∑
z∈S

Cov(Y0, Yz).

8 Proofs

8.1 Proof of Proposition 3.3

Let Γ denote the matrix (γ(x, y))x,y∈S, and let it operate on the right on the space of
summable series `1(S) indexed by the denumerable set S:

u = (u(x))x∈S 7→ Γu = (Γu(y))y∈S ,
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with :
Γu(y) =

∑
x∈S

u(x) γ(x, y).

(We have followed Liggett's [17] choice of denoting by Γu the product of u by Γ on the
right.) Thanks to hypothesis (3), this de�nes a bounded operator of `1(S), with norm
M . Thus for all t ≥ 0, the exponential of tΓ, is well de�ned, and gives another bounded
operator of `1(S):

exp(tΓ)u =
∞∑
n=0

tnΓnu

n!
.

If f is a smooth function, then ∆f = (∆f (x))x∈S, is an element of `1(S). Applying exp(tΓ)
to ∆f provides a control on Stf as shows the following proposition (cf. Theorem 3.9 of
[17]).

Proposition 8.1 Assume (2) and (3). Let f be a smooth function. Then,

∆Stf ≤ exp(tΓ)∆f . (12)

It follows immediately that if f is a smooth function then Stf is also smooth and:

|||Stf ||| ≤ etM |||f ||| ,

because the norm of exp(tΓ) operating on `1(S) is etM .
A similar bound for covariances will be our starting point (cf. Proposition 4.4, p. 34 of
[17]).

Proposition 8.2 Assume (2) and (3). Then for any smooth functions f and g and for all
t ≥ 0, one has,

‖Stfg − (Stf)(Stg)‖ ≤
∑
y,z∈S

(∑
T3y,z

cT

)∫ t

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆g)(z) dτ. (13)

In terms of the process {ηt , t ≥ 0}, the left member of (13) is the uniform bound for the
covariance between f(ηt) and g(ηt).

‖Stfg − (Stf)(Stg)‖ = sup
η∈X

∣∣∣Eη[f(ηt)g(ηt)]− Eη[f(ηt)]Eη[g(ηt)]
∣∣∣.

A slight modi�cation of (13) gives a bound on the covariance of f(ηs) with g(ηt), for
0 ≤ s ≤ t. From now on, we shall denote by Covη covariances relative to the distribution
of {ηt , t ≥ 0}, starting at η0 = η:

Covη(f(ηs), g(ηt)) = Eη[f(ηs)g(ηt)]− Eη[f(ηs)]Eη[g(ηt)].

14



Corollary 8.3 Assume (2) and (3). Let f and g be two smooth functions. Then for all s
and t such that 0 ≤ s ≤ t,

sup
η∈X

∣∣∣Covη(f(ηs), g(ηt))
∣∣∣ ≤ ∑

y,z∈S

(∑
T3y,z

cT

)∫ s

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆St−sg)(z) dτ.

(14)

Proof of Corollary 8.3. We have, using the semigroup property,

Eη[f(ηs)g(ηt)] = Eη[f(ηs)E[g(ηt) | ηs]] = Eη[f(ηs)St−sg(ηs)] = Ss(fSt−sg)(η).

Also,
Eη[g(ηt)] = Stg(η) = Ss(St−sg)(η).

Applying (13) at time s to f and St−sg, yields the result. 2

In order to apply (14) to functions mainly located on �nite sets, we shall need to control
the e�ect of exp(tΓ) on a sequence (∆f (x)) satisfying (5). This will be done through the
following technical lemma.

Lemma 8.4 Suppose that the process is of �nite range. Let R be a �nite set of sites. Let
u = (u(x))x∈S be an element of `1(S). If for all x ∈ S, u(x) ≤ αe−βd(x,R), with α > 0 and
β > ρ, then for all y ∈ S,

|(exp(tΓ)u)(y)| ≤ α exp(2tMe(β+ρ)k) e−βd(y,R).

This lemma, together with Proposition 8.1, justi�es De�nition 3.1. Indeed, if f is mainly
located on R, then by (12) and Lemma 8.4, Stf is also mainly located on R, and the rate
of exponential decay β is the same for both functions.
Proof of Lemma 8.4. Recall that

Γu(y) =
∑
x∈S

u(x)γ(x, y).

Observe that if γ(x, y) > 0, then the distance from x to y must be at most k and thus the
distance from x to R is at least d(y,R)− k. If u(x) ≤ αe−βd(x,R) then:

Γu(y) ≤ 2αeρke−β(d(y,R)−k)M = 2αe(β+ρ)kMe−βd(y,R).

Hence by induction,
Γnu(y) ≤ α2ne(β+ρ)knMne−βd(y,R).

The result follows immediately. 2

Together with (14), Lemma 8.4 will be the key ingredient in the proof of our covariance
inequality.
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End of the proof of Proposition 3.3. Being mainly located on �nite sets, the functions
f and g are smooth. By (14), the covariance of f(ηs) and g(ηt) is bounded byM(s, t) with:

M(s, t) =
∑
y,z∈S

(∑
T3 y,z

cT

)∫ s

0

(exp(τΓ)∆f )(y)(exp(τΓ)∆St−sg)(z) dτ.

Let us apply Lemma 8.4 to ∆f and ∆St−sg.

(exp(τΓ)∆f )(y) ≤ κf exp(τMe(β+ρ)k)e−βd(y,R1) = κfe
Dτe−βd(y,R1). (15)

The last bound, together with (12), gives

∆St−sg(x) ≤ (exp((t− s)Γ)∆g)(x) ≤ κge
D(t−s)e−βd(x,R2).

Therefore :
(exp(τΓ)∆St−sg)(z) ≤ κge

D(τ+t−s)e−βd(z,R2). (16)

Inserting the new bounds (15) and (16) into M(s, t), we obtain

M(s, t) ≤
∑
y,z∈S

(∑
T3 y,z

cT

)
κfκge

−β(d(y,R1)+d(z,R2))

∫ s

0

eD(2τ+t−s) dτ.

Now if d(y, z) > k and y, z ∈ T , then cT is null by De�nition 3.2. Remember moreover
that by hypothesis (2):

B = sup
u∈S

∑
T3u

cT <∞.

Therefore :

M(s, t) ≤ κfκg
BeD(s+t)

2D

∑
y∈S

∑
d(y,z)≤k

e−β(d(y,R1)+d(z,R2)). (17)

In order to evaluate the last quantity, we have to distinguish two cases.

• If d(R1, R2) ≤ k, then∑
y∈S

∑
d(y,z)≤k

e−β(d(y,R1)+d(z,R2)) ≤ 2eρk
∑
y∈S

e−βd(y,R1)

≤ 2eρk
∑
n∈N

∑
y∈S

e−βd(y,R1)Id(y,R1)=n

≤ 4|R1|eρk
∞∑
n=0

e(ρ−β)n

≤ 4|R1|eρk

1− e−(β−ρ)

≤ |R1|
4e(ρ+β)k

1− e−(β−ρ)
e−βd(R1,R2)

≤ |R1|
4e(ρ+β)k

1− e−(β−ρ)
e−(β−ρ)d(R1,R2)
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• If d(R1, R2) > k, then we have, noting that d(y,R1) + d(z,R2) ≥ d(R1, R2)− d(y, z) and
that d(y, z) ≤ k,

∑
y∈S

∑
d(y,z)≤k

e−β(d(y,R1)+d(z,R2))

≤
∑

d(y,R1)≤d(R1,R2)−k

∑
d(y,z)≤k

e−β(d(R1,R2)−k) +
∑

d(y,R1)≥d(R1,R2)−k

∑
d(y,z)≤k

e−βd(y,R1)

≤ 4|R1| eρ(d(R1,R2)−k)eρke−β(d(R1,R2)−k) + 4|R1|eρk
∑

n≥d(R1,R2)−k

e(ρ−β)n

≤ 4|R1| eβk
(

1 +
1

1− e−(β−ρ)

)
e−(β−ρ)d(R1,R2).

By inserting the latter bound into (17), one obtains,

M(s, t) ≤ Cκfκg|R1|eD(t+s)e−(β−ρ)d(R1,R2) ,

with :

C =
2B

D
eβk
(

1 +
eρk

1− e−β+ρ

)
. 2

The covariance inequality (6) implies that the covariance between two functions essentially
located on two distant sets decays exponentially with the distance of those two sets, what-
ever the instants at which it is evaluated. However the upper bound increases exponentially
fast with s and t. In the case where the process {ηt , t ≥ 0} converges at exponential speed
to its equilibrium, it is possible to give a bound that increases only in t − s, thus being
uniform in t for the covariance at a given instant t.

8.2 Proof of Theorem 4.1

8.2.1 Finite dimensional laws

Let G = (S,E) be a transitive graph and Aut(G) be the automorphism group of G. Let
µ be a probability measure on X invariant through the automorphism group action. Let
(ηt)t≥0 be an interacting particle system ful�lling the requirements of Theorem 4.1. Recall
that {St , t ≥ 0} denotes the semigroup and µSt the distribution of ηt, if the distribution
of η0 is µ.

Proposition 8.5 Let (Bn)n be an increasing sequence of �nite subsets of S ful�lling (7).
Let assumptions of Theorem 4.1 hold. Then for any �xed positive real numbers t1 ≤ t2 ≤
· · · ≤ tk, the random vector

1√
|Bn|

(
NBn
t1
− EµN

Bn
t1
, NBn

t2
− EµN

Bn
t2
, . . . , NBn

tk
− EµN

Bn
tk

)
17



converges in distribution, as n tends to in�nity, to a centered Gaussian vector with covari-
ance matrix (Γµ(ti, tj))1≤i,j≤k.

Proof of Proposition 8.5. We will only study the convergence in distribution of the
vector

1√
|Bn|

(
NBn
t1
− EµN

Bn
t1
, NBn

t2
− EµN

Bn
t2

)
,

the general case being similar. For i = 1, 2, we denote by αi = (αi(w))w∈W two �xed
vectors of R|W |. We have, denoting by · the usual scalar product,

1√
|Bn|

2∑
i=1

αi ·
(
NBn
ti
− EµN

Bn
ti

)
=

1√
|Bn|

∑
x∈Bn

(
2∑
i=1

(∑
w∈W

αi(w)(Iw(ηti(x))− Pµ(ηti(x) = w))

))

=
1√
|Bn|

∑
x∈Bn

Yx,

where (Yx)x∈S is the random �eld de�ned by

Yx =
2∑
i=1

(∑
w∈W

αi(w)(Iw(ηti(x))− Pµ(ηti(x) = w))

)
=: F1(ηt1(x)) + F2(ηt2(x)). (18)

The purpose is then to prove a central limit theorem for the sum
∑

x∈Bn Yx. For this, we
shall study the nature of the dependence of (Yx)x∈S.

Let R1 and R2 be two �nite and disjoints subsets of S. Let k1 and k2 be two real valued
functions de�ned respectively on R|R1| and R|R2|. Let K1, K2 be two real valued functions,
de�ned respectively on WR1 and WR2 , by

Kj(ν, η) = kj(F1(ν(x)) + F2(η(x)), x ∈ Rj), j = 1, 2.

Let L be the class of real valued Lipschitz functions f de�ned on Rn, for some positive
integer n, for which

Lip f := sup
x 6=y

|f(x)− f(y)|∑n
i=1 |xi − yi|

<∞.

We assume that k1 and k2 belong to L. Recall that

Covη(k1(Yx, x ∈ R1), k2(Yx, x ∈ R2)) = Covη (K1(ηt1 , ηt2), K2(ηt1 , ηt2))

But
|K1(ηt1 , ηt2)−K1(η′t1 , ηt2)| ≤ 4Lip k1

∑
w∈W

|α1(w)|
∑
x∈R1

|ηt1(x)− η′t1(x)|

18



Denote A1(W ) = 4Lip k1

∑
w∈W |α1(w)|. Then, the functions

ηt1 −→ (Lip k1)A1(W )
∑
x∈R1

ηt1(x)± K1(ηt1 , ηt2)

are increasing. Hence, the functions

G±1 : (ηt1 , ηt2) −→ Lip k1

∑
x∈R1

(A1(W )ηt1(x) + A2(W )ηt2(x))± K1(ηt1 , ηt2)

are increasing coordinate by coordinate. This also holds for,

G±2 : (ηt1 , ηt2) −→ Lip k2

∑
x∈R2

(A1(W )ηt1(x) + A2(W )ηt2(x))± K2(ηt1 , ηt2).

Under assumptions of Theorem 2.3 and of its Corollary 2.4, the vector (ηt1 , ηt2) has positive
correlation so that

Covη(G
±
1 (ηt1 , ηt2), G±2 (ηt1 , ηt2)) ≥ 0.

This gives

|Covη(k1(Yx, x ∈ R1), k2(Yx, x ∈ R2))|
≤ Lip k1Lip k2

∑
x∈R1

∑
y∈R2

Covη(A1(W )ηt1(x) + A2(W )ηt2(x), A1(W )ηt1(y) + A2(W )ηt2(y)).

From this bilinear formula, we now apply Proposition 3.3 and obtain the following covari-
ance inequality: for �nite subsets R1 and R2 of S, we have letting δ = β − ρ,

|Covη (K1(ηt1 , ηt2), K2(ηt1 , ηt2))| ≤ CδLip k1Lip k2 (|R1| ∧ |R2|) exp (−δd(R1, R2)) ,

where Cδ is a positive constant depending on β and not depending on R1, R2, k1 and k2.
We then deduce from Proposition 7.1 that 1√

|Bn|

∑
x∈Bn Yx converges in distribution to a

centered normal law as soon as the quantity Var µ(
∑

x∈Bn Yx)/|Bn| converges as n tends to
in�nity to a �nite number σ2. This variance converges if the requirements of Proposition
7.2 are satis�ed. For this, we �rst check the condition of invariance (10):

Covµ(Yx, Yy) = Covµ(Ya(x), Ya(y)),

for any automorphism a of G and for Yx as de�ned by (18). We recall that the initial
distribution is a Dirac distribution on the con�guration η. Then it has positive correlations.
We have supposed that η(x) = η(y) for all x, y ∈ S, hence a·µ = µ and the group invariance
property of the transition rates proves that µ = δη ful�lls (19) below and then (10) will
hold. Condition (19) is true thanks to the following estimations valid for any suitable real
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valued functions f and g,

Eµ(f(ηt1)g(ηt2))

=

∫
dµ(η)St1 (fSt2−t1g) (η)

=

∫
dµ(η) a · St1 (fSt2−t1g) (η) since a · µ = µ

=

∫
dµ(η)St1 ((a · f)St2−t1(a · g)) (η) since a · (Ssf) = Ss(a · f)

= Eµ((a · f)(ηt1)(a · g)(ηt2)) = Eµ(f(a · ηt1)g(a · ηt2)). (19)

Hence Proposition 7.2 applies and gives

σ2 =
∑
z∈S

Covµ(Y0, Yz)

=
2∑

i,j=1

∑
w,w′∈W

αi(w)αj(w
′)
∑
z∈S

Covµ (Iw(ηti(0)), Iw′(ηti(z)))

=
2∑

i,j=1

αtiΓµ(ti, tj)αj,

where Γµ(ti, tj) is the covariance matrix as de�ned in Theorem 4.1; with this we complete
the proof of Proposition 8.5.

8.2.2 Tightness

First we establish covariance inequalities for the counting process. Denote gs,t,w(η, y) =
Iw(ηt(y)) − Iw(ηs(y)) and for any multi-index y = (y1, . . . , yu) ∈ Su, for any state vector
w = (w1, . . . , wu) ∈ W u, Πy,w =

∏u
`=1 gs,t,w`(η, y`). Following (6), for β > ρ, for any

r-distant �nite multi-indices y ∈ Su and z ∈ Sv , for any times 0 ≤ s ≤ t ≤ T and for any
state vectors w ∈ W u and w′ ∈ W v

|Covη (Πy,w,Πz,w′)| ≤ 4C(u ∧ v)e2DT e−(β−ρ)r ≡ c0(u ∧ v)e−cr, (20)

for c = β − ρ and c0 =
4Be2DT e−(β−ρ)r(2− e−c)

Meρk(1− e−c) .

Lemma 8.6 There exist δ0 > 0 and KΩ > 0 such that for |s− t| < δ0:

|Covη (Πx,w,Πy,w′)| ≤ KΩ|t− s|. (21)

Proof. Denote f(η) = Iw(η(x)) then gt+h,t,w(η, x) = Shf(ηt) − f(ηt); the properties of the
generator Ω imply that

lim
h→0

Shf(η)− f(η)

h
= Ωf(η)
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But

|Ωf(η)| ≤
∑
T⊂S

∑
ζ∈WT

cT (η, ζ)|f(ηζ)− f(η)|

≤
∑

T⊂S,x∈T

cT (η) ≤
∑

T⊂S,x∈T

cT ≤ CΩ

so that for h > 0 tending to zero

|gs,s+h,w(η, x)| ≤ CΩh+ o(h)

Because Ω is group invariant, the remainder term is uniform with respect to index x, so
that we �nd convenient δ0 and KΩ uniformly with respect to location. �

From inequality (20) and lemma 8.6, we deduce the following moment inequality:

Proposition 8.7 Choose l and c such that ρ(2l − 1) < c. For (s, t) such that |t − s| <
δ0 ∧ c0e

c/KΩ:

E(NBn
t −NBn

s )2l ≤ (4l − 2)!(c0e
2c)

ρl
c

(2l)!(2l − 1)!(
22l(2l)!(c0e

2c)
ρ(l−1)
c

c1

|Bn|1−l(KΩ|t− s|)1− ρ(2l−1)
c +

(
8

c1

)l
(KΩ|t− s|)l−

ρl
c

)
, (22)

where c1 = ρ ∧ (c− ρ(2l − 1)).

Proof. Recall that NBn
t − NBn

s = 1√
|Bn|

∑
x∈Bn gs,t,w(η, x). Note that the value of Πx

does not depend on the order of the elements x1, . . . , xL. The index x is said to split into
y = (y1, . . . , yM) and z = (z1, . . . , zL−M) if one can write y1 = xσ(1), . . . , yM = xσ(M) and
z1 = xσ(M+1), . . . , zL−M = xσ(L) for some bijection σ : {1, . . . , L} → {1, . . . , L}. We adapt
lemma 14 in Doukhan & Louhichi [6] to the series (gt,s,w(η, x))x∈Bn . For any integer q ≥ 1,
set :

Aq(n) =
∑
x∈Bqn

|EΠx,w| , (23)

then,
E(NBn

s −NBn
t )2l ≤ |Bn|−lA2l(n). (24)

If q ≥ 2, for a multi-index x = (x1, . . . , xq) of elements of S, the gap is de�ned by the
maximum of the integers r such that the index may split into two non-empty sub-indices
y = (y1, . . . , yh) and z = (z1, . . . , zq−h) whose mutual distance equals r: d(y(x), z(x)) =
min{d(ya, zb); 1 ≤ a ≤ h, 1 ≤ b ≤ q − h} = r. If the sequence is constant, its gap is 0.
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De�ne the set Gr(q, n) = {x ∈ Bq
n and the gap of x is r}. Sorting the sequences of indices

by their gap:

Aq(n) ≤
∑
x1∈Bn

E|gs,t,w(η, x1)|q +
n∑
r=1

∑
x∈Gr(q,n)

∣∣Cov
(
Πy(x),w,Πz(x),w

)∣∣ (25)

+
n∑
r=1

∑
x∈Gr(q,n)

∣∣E (Πy(x),w

)
E
(
Πz(x),w

)∣∣ . (26)

Denote

Vq(n) =
∑
x1∈Bn

E|gs,t,w(η, x1)|q +
n∑
r=1

∑
x∈Gr(q,n)

∣∣Cov
(
Πy(x),w,Πz(x),w

)∣∣ .
In order to prove that the expression (26) is bounded by the product

∑
hAh(n)Aq−h(n) we

make a �rst summation over the x's such that y(x) ∈ Bh
n. Hence:

Aq(n) ≤ Vq(n) +

q−1∑
h=1

Ah(n)Aq−h(n).

To build a multi-index x = (x1, . . . , xq) belonging to Gr(q, n), we �rst �x one of the |Bn|
points of Bn, say x1. We choose a second point x2 with d(x1, x2) = r. The third point x3

is in one of the ball with radius r centered in one of the previous points, and so on. . . Thus,
because the maximal cardinality of a ball with radius r writes b(r) ≤ eρr

|Gr(q, n)| ≤ |Bn|b(r)2b(r) · · · (q − 1)b(r) ≤ |Bn|(q − 1)!2q−1eρ(q−1)r.

We use lemma 8.6 to deduce:

Vq(n) ≤ |Bn|

(
KΩ|t− s|+ (q − 1)!2q−1

∞∑
r=1

eρ(q−1)r(c0qe
−cr ∧KΩ|t− s|)

)
.

Let R be an integer to be speci�ed, then

Vq(n) ≤ |Bn|q!2q−1

(
KΩ|t− s|

R−1∑
r=0

eρ(q−1)r + c0

∞∑
r=R

e(ρ(q−1)−c)r

)
.

Comparing those summations with integrals:

Vq(n) ≤ |Bn|q!2q−1

(
KΩ|t− s|
ρ(q − 1)

eρ(q−1)R +
c0

c− ρ(q − 1)
e(ρ(q−1)−c)(R−1)

)
≤ |Bn|q!2q−1KΩ|t− s|

c1

eρ(q−1)R

(
1 +

c0

KΩ|t− s|
ec−cR

)
,
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where c1 = ρ∧ (c− ρ(2l− 1)). Assume that (s, t) ∈ T are such that |t− s| < c0e
c/KΩ and

choose R ≥ 1 as the integer such that ec(R−1) ≤ c0ec

KΩ|t−s|
≤ ecR.

Vq(n) ≤ |Bn|q!
2qKΩ|t− s|e2ρ(q−1)

c1

(
c0

KΩ|t− s|

) ρ(q−1)
c

, (27)

so that Vq(n) is a function of q that satis�es condition (H0) of Doukhan & Louhichi [6].
Then

A2l(n) ≤ (4l − 2)!

(2l)!(2l − 1)!

(
V2l(n) + V2(n)l

)
≤ (4l − 2)!(c0e

2c)
ρl
c

(2l)!(2l − 1)!

(
22l(2l)!(c0e

2c)
ρ(l−1)
c

c1

|Bn|(KΩ|t− s|)1− ρ(2l−1)
c

+

(
8

c1

)l
|Bn|l(KΩ|t− s|)l−

ρl
c

)
,

and Proposition 8.7 is proved. �

To prove the tightness of the sequence of processes NBn , we study its oscillations:

w(δ,NBn) = sup
‖t−s‖1<δ

|NBn
t −NBn

s |

Fix ε and η. We have to �nd δ and n0 such that for all n > n0 :

P(w(δ,NBn) ≥ ε) ≤ η

De�ne n0 as the smallest integer such that |Bn0| > δ−1−ρ/c, then for n > n0, |t − s| < δ,
l = 2 and c > 3ρ, Proposition 8.7 yields:

E(NBn
t −NBn

s )4 ≤ Cδ2(1− ρ
c

)

and we now follow the proof in Billingsley [2] to conclude.

8.3 Proof of Theorem 6.1

The proof is close to that of the analogous result in [23]. The convergence in distribution

of Zn = (Zn(t))t≥0, where Zn(t) = (D
(n)
t − |Bn| ·m(t))/

√
|Bn|, does not directly imply the

CLT for Tn. The Skorohod-Dudley-Wichura representation theorem is a much stronger
result (see Pollard [25], section IV.3). It implies that there exist versions Z∗n of Zn and
non-decreasing functions φn such that for any �xed s such that for Z∗, limit in distribution
of Zn:

lim
n→∞

sup
0≤t≤s

|Z∗n(t)− Z∗(φn(t))| = 0 a.s.
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and:
lim
n→∞

sup
0≤t≤s

|φn(t)− t| = 0 a.s.

Since Z∗ has continuous paths, it is uniformly continuous on [0, s], and hence:

lim
n→∞

sup
0≤t≤s

|Z∗n(t)− Z∗(t)| = 0 a.s. , (28)

We shall �rst use (28) to prove that the distributions of
√
|Bn|(Tn−tα) are a tight sequence.

Let c be a positive constant. On the one hand, if D
(n)

tα+c/
√
|Bn|
≥ k(n), then Tn ≤ tα +

c/
√
|Bn|. Thus:

P[
√
|Bn|(Tn − tα) ≤ c] ≥ P[D

(n)

tα+c/
√
|Bn|
≥ k(n)]

= P[Z∗n(tα + c/
√
|Bn|) ≥

√
|Bn|(α−m(tα + c/

√
|Bn|)) + o(1)]

= P[Z∗n(tα + c/
√
|Bn|) ≥ −cm′(tα) + o(1)]

= P[Z∗(tα) ≥ −cm′(tα)] + o(1) ,

using (28) and the continuity of Z∗. Since m′(tα) > 0, we obtain that:

lim
c→∞

lim inf
n→∞

P[
√
|Bn|(Tn − tα) ≤ c] = 1. (29)

On the other hand, we have:

P[
√
|Bn|(Tn − tα) ≤ −c] = P[∃t ≤ tα − c/

√
|Bn| , Z∗n(t) ≥

√
|Bn|(α−m(t)) + o(1)].

But since the function m is increasing, for all t ≤ tα − c/
√
|Bn| we have:√

|Bn|(α−m(t)) ≥
√
|Bn|(α−m(tα − c/

√
|Bn|)) = cm′(tα) + o(1).

Hence:

P[
√
|Bn|(Tn − tα) ≤ −c] ≤ P[∃t ≤ tα − c/

√
|Bn| , Z∗n(t) ≥ cm′(tα) + o(1)]

≤ P[∃t ≤ tα , Z
∗
n(t) ≥ cm′(tα) + o(1)]

= P[∃t ≤ tα , Z
∗(t) ≥ cm′(tα) + o(1)] + o(1).

The process Z being a.s. bounded on any compact set and m′(t) being positive on [0, τ ],
we deduce that:

lim
c→∞

lim sup
n→∞

P[
√
|Bn|(Tn − tα) ≤ −c] = 0. (30)

Now (29) and (30) mean that the sequence of distributions of (
√
|Bn|(Tn − tα)) is tight.

Hence to conclude it is enough to check the limit.
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Using again (28), together with the almost sure continuity of Z yields:

D
(n)

tα+c/
√
|Bn|

= |Bn|m(tα + u/
√
|Bn|) +

√
|Bn|Z∗(tα + u/

√
|Bn|) + o(

√
|Bn|) a.s.

= |Bn|α + u
√
|Bn|m′(tα) +

√
|Bn|Z∗(tα) + o(

√
|Bn|) a.s.

Therefore:

inf

{
u ;D

(n)

tα+u/
√
|Bn|
≥ k(n)

}
= inf

{
u ;u

√
|Bn|m′(tα) +

√
|Bn|Z∗(tα) + o(

√
|Bn|) ≥ 0

}
= −Z

∗(tα)

m′(tα)
+ o(1).

The distribution of −Z∗(tα)/m′(tα) is normal with mean 0 and variance σ2
α, hence the

result.

8.4 Proof of Proposition 7.1

Let F2,3 be the set of real valued functions h de�ned on R, three times di�erentiable, such
that h(0) = 0, ‖h′′‖∞ < +∞, and ‖h(3)‖∞ < +∞. For a function h ∈ F2,3, we will denote
by b2 and b3 the supremum norm of its second and third derivatives. We �rst need the
following lemma.

Lemma 8.8 Let h be a �xed function of the set F2,3. Let R be a �xed and �nite subset
of S. Let r be a �xed positive real. For any x ∈ R, let Vx = B(x, r) ∩ R. Let (Yx)x∈S be
a real valued random �eld. Suppose that, for any x ∈ S, EYx = 0 and EY 2

x < +∞. Let
Z(R) =

∑
x∈R Yx. Then∣∣∣∣E(h(Z(R)))− VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣∣∣∣
≤
∫ 1

0

∑
x∈R

|Cov (Yx, h
′(tZ(V c

x )))| dt+ 2
∑
x∈R

E|Yx||Z(Vx)| [b2 ∧ b3|Z(Vx)|]

+b2E

∣∣∣∣∣∑
x∈R

(YxZ(Vx)− E(YxZ(Vx)))

∣∣∣∣∣+ b2

∑
x∈R

|Cov(Yx, Z(V c
x ))| , (31)

where V c
x = R \ Vx.

Remark. For an independent random �eld (Yx)x∈S, ful�lling supx∈S EY 4
x < +∞, Lemma

8.8 applied with Vx = {x}, ensures∣∣∣∣E(h(Z(R)))− VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣∣∣∣ ≤ 2
∑
x∈R

E|Yx|2 (b2 ∧ b3|Yx|)+b2

√
|R| sup

x∈S
‖Y 2

x ‖2.
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Proof of Lemma 8.8. We have,

h(Z(R)) = Z(R)

∫ 1

0

h′(tZ(R))dt =

∫ 1

0

(∑
x∈R

Yxh
′(tZ(R))

)
dt

=

∫ 1

0

(∑
x∈R

Yxh
′(tZ(V c

x ))

)
dt+

∫ 1

0

(∑
x∈R

Yx (h′(tZ(R))− h′(tZ(V c
x ))− tZ(Vx)h

′′(tZ(R)))

)
dt

+
∑
x∈R

YxZ(Vx)

∫ 1

0

th′′(tZ(R))dt−
∑
x∈R

E (YxZ(Vx))

∫ 1

0

th′′(tZ(R))dt

+
∑
x∈R

E (YxZ(Vx))

∫ 1

0

th′′(tZ(R))dt−
∑
x∈R

E (YxZ(R))

∫ 1

0

th′′(tZ(R))dt

+
∑
x∈R

E (YxZ(R))

∫ 1

0

th′′(tZ(R))dt.

We take expectation in the last equality. The obtained formula, together with the following
estimations, proves Lemma 8.8.

|h′(tZ(R))− h′(tZ(V c
x ))− tZ(Vx)h

′′(tZ(R))|
≤ |h′(tZ(R))− h′(tZ(V c

x ))− tZ(Vx)h
′′(tZ(V c

x ))|+ |Z(Vx)||h′′(tZ(R))− h′′(tZ(V c
x ))|

≤ 2|Z(Vx)| (b2 ∧ b3|Z(Vx)|) . 2

Our purpose now is to control the right hand side of the bound (31) for a random �eld
(Yx)x∈S ful�lling the covariance inequality (9) and the requirements of Proposition 7.1.

Corollary 8.9 Let h be a �xed function of the set F2,3. Let R be a �nite subset of S. For
any x ∈ R and for any positive real r, let Vx = B(x, r) ∩ R. Let (Yx)x∈S be a real valued
random �eld, ful�lling the covariance inequality (9). Suppose that, for any x ∈ S, EYx = 0
and supx∈S ‖Yx‖∞ < M , for some positive real M . Recall that Z(R) =

∑
x∈R Yx. Then,

for any δ > 0, there exists a positive constant C(δ,M) independent of R, such that

sup
h∈F2,3

∣∣∣∣E(h(Z(R)))− VarZ(R)

∫ 1

0

tE(h′′ (tZ(R)))dt

∣∣∣∣
≤ C(δ,M)

b2|R|e−δr + b3|R|κr + b2|R|1/2κr

 ∞∑
k=[3r]

κke
−δ(k−2r)

1/2

+b2|R|1/2κ3r

[3r]+1∑
k=1

e−δkκk

1/2
 ,

recall that supx∈S |B(x, n)| ≤ κn.
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Proof of Corollary 8.9
We have

V c
x = {y ∈ S, d(x, y) ≥ r} ∩R.

Hence
d({x}, V c

x ) ≥ r.

The last bound together with (9), proves that∑
x∈R

|Cov (Yx, h
′(tZ(V c

x )))| ≤ Cδb2

∑
x∈R

(|V c
x | ∧ 1)e−δd({x},V cx )

≤ Cδb2|R|e−δr. (32)

In the same way, we prove that

b2

∑
x∈R

|Cov(Yx, Z(V c
x ))| ≤ Cδb2|R|e−δr. (33)

Now ∑
x∈R

E|Yx||Z(Vx)| (b2 ∧ b3|Z(Vx)|) ≤ b3M |R| sup
x∈S

E|Z(Vx)|2

≤ b3M |R|κr sup
y∈S

∑
z∈S

|Cov(Yy, Yz)| (34)

The last bound is obtained since |Vx| ≤ κr and supy∈S
∑

z∈S |Cov(Yy, Yz)| <∞ (the proof
of the last inequality is done along the same lines as that of Proposition 7.2) .
It remains to control

E

∣∣∣∣∣∑
x∈R

(YxZ(Vx)− E(YxZ(Vx)))

∣∣∣∣∣ .
For this, we argue as Bolthausen [3]. We have

E

∣∣∣∣∣∑
x∈R

(YxZ(Vx)− E(YxZ(Vx)))

∣∣∣∣∣
2

= Var (
∑
x∈R

YxZ(Vx))

=
∑
x∈R

∑
y∈R

Cov(YxZ(Vx), YyZ(Vy)).

Hence, since Vx ⊂ B(x, r),

E

∣∣∣∣∣∑
x∈R

(YxZ(Vx)− E(YxZ(Vx)))

∣∣∣∣∣
2

≤
∑
x∈R

∑
x′∈B(x,r)

∑
y∈R

∑
y′∈B(y,r)

|Cov(YxYx′ , YyYy′)| . (35)

We have,

|Cov(YxYx′ , YyYy′)| ≤ |Cov(YxYx′ , YyYy′)| Id(x,y)≥3r + |Cov(YxYx′ , YyYy′)| Id(x,y)≤3r. (36)
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We begin by controlling the �rst term. The covariance inequality (9) together with some
elementary estimations, ensures

|Cov(YxYx′ , YyYy′)| Id(x,y)≥3r ≤
∞∑

k=[3r]

|Cov(YxYx′ , YyYy′)| Ik≤d(x,y)<k+1

≤ 2M2Cδ

∞∑
k=[3r]

e−δd({x,x′},{y,y′})Ik≤d(x,y)<k+1

≤ 2M2Cδ

∞∑
k=[3r]

e−δ(k−2r)Id(x,y)<k+1,

the last bound is obtained since, for any x′ ∈ B(x, r) and y′ ∈ B(y, r), we have,

d({x, x′}, {y, y′}) + 2r ≥ d({x, x′}, {y, y′}) + d(x, x′) + d(y, y′) ≥ d(x, y).

Hence, ∑
x∈R

∑
x′∈B(x,r)

∑
y∈R

∑
y′∈B(y,r)

|Cov(YxYx′ , YyYy′)| Id(x,y)≥3r

≤ 2M2Cδκ
2
r

∞∑
k=[3r]

∑
x∈R

∑
y∈R

e−δ(k−2r)Iy∈B(x,k+1)

≤ 2M2Cδ|R|κ2
r

∞∑
k=[3r]

κk+1e
−δ(k−2r). (37)

We now control the second term in (36). Inequality (9) and the fact that
d({x}, {x′, y, y′}) ≤ d({x}, {x′}), ensure

|Cov(YxYx′ , YyYy′)| Id(x,y)≤3r

≤ |Cov(Yx, Yx′YyYy′)| Id(x,y)≤3r + |Cov(Yx, Yx′)| |Cov(Yy, Yy′)| Id(x,y)≤3r

≤ 2M2Cδe
−δd({x},{x′,y,y′})Id(x,y)≤3r.

We deduce, using the last bound, that

|Cov(YxYx′ , YyYy′)| Id(x,y)≤3r

≤
[3r]+1∑
k=1

|Cov(YxYx′ , YyYy′)| Id(x,y)≤3rIk−1≤d({x},{x′,y,y′})<k

≤ 2M2Cδ

[3r]+1∑
k=1

e−δ(k−1)Id(x,y)≤3rId({x},{x′,y,y′})<k. (38)

We have
Id({x},{x′,y,y′})≤k ≤ Id({x},{x′})≤k + Id({x},{y})≤k + Id({x},{y′})≤k.
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Hence, we check that,∑
x∈R

∑
x′∈B(x,r)

∑
y∈R

∑
y′∈B(y,r)

Id(x,y)≤3rId({x},{x′,y,y′})≤k ≤ 3|R|κ2
3rκk. (39)

We obtain combining (38) and (39),∑
x∈R

∑
x′∈B(x,r)

∑
y∈R

∑
y′∈B(y,r)

|Cov(YxYx′ , YyYy′)| Id(x,y)≤3r

≤ 6eδM2Cδ|R|κ2
3r

[3r]+1∑
k=1

e−δkκk. (40)

We collect the bounds (35), (37) and (40), we obtain,

E

∣∣∣∣∣∑
x∈R

(YxZ(Vx)− E(YxZ(Vx)))

∣∣∣∣∣
≤ C(δ,M)|R|1/2

κr
 ∞∑
k=[3r]

κk+1e
−δ(k−2r)

1/2

+ κ3r

[3r]+1∑
k=1

e−δkκk

1/2
 . (41)

Finally, the bounds (32), (33), (34), (41), together with Lemma 8.8 prove Corollary 8.9.
2

End of the proof of Proposition 7.1. We apply Corollary 8.9 to the real and imaginary
parts of the function x → exp(iux/

√
|Bn|) − 1. Those functions belong to the set F2,3,

with b2 = u2

|Bn|
and b3 =

|u|3
|Bn|3/2

.

We obtain, noting by φn the characteristic function of the normalized sum Z(Bn)/
√
|Bn|,∣∣∣∣φn(u)− 1 +

VarZ(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣∣∣∣
≤ C(δ,M, u)

e−δr +
κr√
|Bn|

+
κr√
|Bn|

 ∞∑
k=[3r]

κke
−δ(k−2r)

1/2

+
κ3r√
|Bn|

[3r]+1∑
k=1

e−δkκk

1/2
 .

Let δ be a �xed positive real such that δ > 12ρ, recall that

sup
x∈S
|B(x, r)| ≤ 2erρ =: κr.
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Hence∣∣∣∣φn(u)− 1 +
VarZ(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣∣∣∣
≤ C(δ,M, u)

e−δr +
erρ√
|Bn|

+
e(ρ+δ)r√
|Bn|

 ∞∑
k=[3r]

e−(δ−ρ)k

1/2

+
e3ρr√
|Bn|

[3r]+1∑
k=1

e−(δ−ρ)k

1/2


≤ C(M,ρ, δ, u)

(
e−δr +

e3rρ√
|Bn|

+
e−(δ−5ρ)r/2√
|Bn|

)
.

For a suitable choice of the sequence r (for example we can take r = 2
δ

ln |Bn|), the right
hand side of the last bound tends to 0 an n tends to in�nity:

lim
n→∞

∣∣∣∣φn(u)− 1 +
VarZ(Bn)

|Bn|
u2

∫ 1

0

tφn(tu)dt

∣∣∣∣ = 0. (42)

We now need the following lemma.

Lemma 8.10 Let σ2 be a positive real. Let (Xn) be a sequence of real valued random vari-
ables such that supn∈N EX2

n < +∞. Let φn be the characteristic function of Xn. Suppose
that for any u ∈ R,

lim
n→+∞

∣∣∣∣φn(u)− 1 + σ2

∫ u

0

tφn(t)dt

∣∣∣∣ = 0. (43)

Then, for any u ∈ R,

lim
n→+∞

φn(u) = exp(−u
2σ2

2
).

Proof of Lemma 8.10. Lemma 8.10 is a variant of Lemma 2 in Bolthausen [3]. The
Markov inequality and the condition supn∈N EX2

n < +∞ imply that the sequence (µn)n∈N
of the laws of (Xn) is tight. Theorem 25.10 in Billingsley [2] proves the existence of a
subsequence µnk and a probability measure µ such that µnk converges weakly to µ as k
tends to in�nity. Let φ be the characteristic function of µ. We deduce from (43) that, for
any u ∈ R,

φ(u)− 1 + σ2

∫ u

0

tφ(t)dt = 0,

or equivalently, for any u ∈ R,

φ′(u) + σ2uφ(u) = 0.

We obtain, integrating the last equation, that for any u ∈ R,

φ(u) = exp(−σ
2u2

2
).

The proof of Lemma 8.10 is completed by using Theorem 25.10 in Billingsley [2] and its
corollary. 2

Proposition 7.1 follows from (11), (42) and Lemma 8.10. 2
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8.5 Proof of Proposition 7.2.

We deduce from (9) that for any positive real δ there exists a positive constant Cδ such
that for di�erent sites x and y of S,

|Cov(Yx, Yy)| ≤ Cδe
−δd(x,y). (44)

Hence, the �rst conclusion of Proposition 7.2 follows from the bound (44), together with
the following elementary calculations, for ρ < δ,∑

z∈S

|Cov(Y0, Yz)| ≤ Cδ
∑
z∈S

exp(−δd(0, z))

≤ Cδ
∑
z∈S

∞∑
r=0

exp(−δd(0, z))Ir≤d(0,z)<r+1

≤ Cδ

∞∑
r=0

exp(−δr)
∑
z∈S

Id(0,z)<r+1

≤ Cδ

∞∑
r=0

exp(−δr)|B(0, r + 1)|

≤ C(δ, ρ)
∞∑
r=0

exp(−(δ − ρ)r), (45)

where C(δ, ρ) is a positive constant depending on δ and ρ.
We now prove the second part of Proposition 7.2. Thanks to (7), we can �nd a sequence
u = (un) of positive real numbers such that

lim
n→+∞

un = +∞, lim
n→+∞

|∂Bn|
|Bn|

exp(ρun) = 0. (46)

Let (∂uBn)n be the sequence of subsets of S de�ned by

∂uBn = {s ∈ Bn : d(s, ∂Bn) < un}.

The bound (4) gives
|∂uBn| ≤ 2|∂Bn|eunρ,

which together with the suitable choice of the sequence (un) ensures

lim
n→+∞

|∂uBn|
|Bn|

= 0, (47)

we shall use this fact below without further comments. Let Bu
n = Bn\∂uBn. We decompose

the quantity Var Sn as in Newman [22]:

1

|Bn|
Var Sn =

1

|Bn|
∑
x∈Bn

∑
y∈Bn

Cov (Yx, Yy) = T1,n + T2,n + T3,n,
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where

T1,n =
1

|Bn|
∑
x∈Bun

∑
y∈Bn\B(x,un)

Cov (Yx, Yy) ,

T2,n =
1

|Bn|
∑
x∈Bun

∑
y∈Bn∩B(x,un)

Cov (Yx, Yy) ,

T3,n =
1

|Bn|
∑

x∈∂uBn

∑
y∈Bn

Cov (Yx, Yy) .

Control of T1,n. We have, since |Bu
n| ≤ |Bn| and applying (44)

|T1,n| ≤ sup
x∈S

∑
y∈S\B(x,un)

|Cov(Yx, Yy)| ≤ Cδ sup
x∈S

∑
y∈S\B(x,n)

exp(−δd(x, y)). (48)

For any �xed x ∈ S, we argue as for (45) and we obtain for ρ < δ,

∑
y∈S\B(x,n)

exp(−δd(x, y)) ≤ C(δ)
∞∑

r=[un]

exp(−(δ − ρ)r) ≤ C(δ, ρ) exp(−(δ − ρ)un) (49)

We obtain, collecting (48), (49) together with the �rst limit in (46) :

lim
n→+∞

T1,n = 0. (50)

Control of T3,n. We obtain using (44) :

|T3,n| ≤
|∂uBn|
|Bn|

sup
x∈S

∑
y∈S

|Cov(Yx, Yy)| . (51)

The last bound, together with the limit (47) gives

lim
n→+∞

T3,n = 0. (52)

Control of T2,n. We deduce using the following implication, if x ∈ Bu
n and y is not

belonging to Bn then d(x, y) ≥ un, that

T2,n =
1

|Bn|
∑
x∈Bun

∑
y∈B(x,un)

Cov(Yx, Yy)

We claim that, ∑
y∈B(x,un)

Cov(Yx, Yy) =
∑

z∈B(0,un)

Cov (Y0, Yz) , (53)
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in fact, since the graph G is transitive, there exits an automorphism ax, such that ax(x) = 0
(0 is a �xed vertex in S). Equality (10) gives∑

y∈B(x,un)

Cov(Yx, Yy) =
∑

y∈B(x,un)

Cov(Y0, Yax(y)).

Now, Lemma 1.3.2 in Godsil and Royle [10] yields that d(x, y) = d(ax(x), ax(y)) =
d(0, ax(y)). From this we deduce that y ∈ B(x, un) if and only if ax(y) ∈ B(0, un). From
above, we conclude that,∑

y∈B(x,un)

Cov(Yx, Yy) =
∑

ax(y)∈B(0,un)

Cov(Y0, Yax(y)) =
∑

z∈B(0,un)

Cov(Y0, Yz),

which proves (53). Consequently,

T2,n =
|Bu

n|
|Bn|

∑
z∈B(0,un)

Cov(Y0, Yz).

The last equality together with the �rst limit in (46) and (47), ensures

lim
n→+∞

T2,n =
∑
z∈S

Cov(Y0, Yz). (54)

The second conclusion of Proposition 7.2 is proved by collecting the limits (50), (52) and
(54). 2
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