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Abstract. We prove that a bounded stack can be specified in process algebra
with just the operators alternative and sequential composition and iteration. The
bounded bag cannot be specified with these operators, but can be specified if we
add the parallel composition operator without communication (free merge). The
bounded queue cannot even be specified in this signature; we need a form of vari-
able binding such as given by general communication and encapsulation, the state
operator, or abstraction.

1 Introduction

We investigate the definability of bounded bags, stacks and queues in process
algebras with iteration. In particular, it is shown that a bounded stack can be
specified in process algebra with just the operators alternative and sequential
composition and iteration. The bounded bag cannot be specified with these op-
erators, but can be specified if we add the parallel composition operator without
communication (free merge). The bounded queue cannot even be specified in
this signature; we need a form of variable binding such as given by general com-
munication and encapsulation, the state operator, or abstraction.

This situation is remarkably similar to the situation we have with the spec-
ification of the unbounded versions with recursion instead of iteration. There,
we have that the unbounded stack is not a regular process, but is finitely defin-
able using alternative and sequential composition and recursion (see [4]). The
unbounded bag cannot be finitely specified using alternative, sequential compo-
sition and recursion, but can be so specified if we use the free merge in addition
(see [3]). The unbounded queue cannot be finitely specified using the signature
including free merge (see [5]), but can be specified if we add an operator that
features some form of variable binding, such as general communication with
encapsulation, renaming or abstraction (see [1]).



From [2] we know that in process algebra with alternative, sequential and
parallel composition (with communication) and iteration, not all regular pro-
cesses can be defined. That paper also shows that we gain expressivity, each
time we add one of these operators. The present paper shows that some well-
known processes, namely bounded buffers, can serve to show the difference in
expressivity.

2 Process Algebra with Iteration

The simplest process algebra is BPA, Basic Process Algebra. Its signature just
contains a number of constants, called atomic actions, and two binary operators,
+ which is alternative composition and · which is sequential composition. The
axioms of BPA are the five axioms A1-5 in Table 1 below.

We extend BPA to BPAδ by adding the constant δ denoting inaction with
axioms A6,7 in Table 1. We extend BPA to PA by adding the parallel composition
operator ‖, free merge (merge without communication) with axioms M1-4. These
axioms make use of the auxiliary operator ‖ , left merge. The combination of
BPAδ and PA is PAδ. A denotes the set of atomic actions, Aδ = A ∪ {δ}.

x + y = y + x A1 x ‖ y = x‖ y + y‖ x M1
(x + y) + z = x + (y + z) A2 a‖ x = a · x M2
x + x = x A3 a·x‖ y = a · (x ‖ y) M3
(x + y) · z = x · z + y · z A4 (x + y)‖ z = x‖ z + y‖ z M4
(x · y) · z = x · (y · z) A5
x + δ = x A6 x∗y = x · (x∗y) + y BKS
δ · x = δ A7

Table 1. Axioms of PA∗
δ (a ∈ Aδ).

Finally, we have in Table 1 the iteration operator * or binary Kleene star with
defining equation BKS. In x∗y, we can iterate x and terminate by executing y.
Much more about iteration can be found in [2]. Iteration gives a limited form of
recursion, since p∗q is the solution of the recursive equation

X = p ·X + q.

BPA∗
δ is BPAδ plus iteration.

Below we will occasionally use recursive equations. They will always be linear,
i.e. of the form

X =
n∑

i=1

ai ·Xi +
m∑
j=1

bj



for variables X,Xi and ai, bj ∈ Aδ. The key assumption we will need concerning
linear recursive equations is that they have a unique solution.

We can use the axioms above and the assumption about unique solutions in
order to prove that two process expressions denote the same process. Conversely,
we will also need a way to tell when two process expressions cannot denote the
same process. Certainly, two processes that are equal must be able to perform
the same sequences of actions (must have the same traces. Even more, any state
of one process must have a corresponding similar state in the other process. This
equality is captured by the well-known notion of bisimulation (see [6]).

First, we describe which actions a process expression can perform. We do this
by defining an operational semantics for process expressions. This semantics is
given by means of Plotkin style action rules (see [7]).

For each atomic action a we have two predicates on process expressions: a
binary relation a→ and a unary relation a→ √

. Intuitively, they have the following
meaning:

– p
a→ q means that p can perform an a-step and evolve into q

– p
a→ √

means that p can perform an a-step and terminate successfully

The action rules defining these predicates by structural induction are given in
Table 2 (x, y range over process expressions). In the following sections, we will
use this operational semantics in a rather informal way: when we say that process
expression p can do an a-step to process expression q, we mean p

a→ q.

a
a→ √

x
a→ x′

x · y a→ x′ · y
x

a→ √

x · y a→ y

x
a→ x′

x + y
a→ x′, y + x

a→ x′
x

a→ √

x + y
a→ √

, y + x
a→ √

x
a→ x′

x ‖ y
a→ x′ ‖ y, y ‖ x

a→ y ‖ x′, x‖ y
a→ x′ ‖ y

x
a→ √

x ‖ y
a→ y, y ‖ x

a→ y, x‖ y
a→ y

x
a→ x′

x∗y
a→ x′ · (x∗y)

x
a→ √

x∗y
a→ x∗y

y
a→ y′

x∗y
a→ y′

y
a→ √

x∗y
a→ √

Table 2. Operational rules for PA∗
δ (a ∈ A).



On the basis of these action rules, we define the notion of bisimulation: we
say a symmetric binary relation R on process expressions is a bisimulation iff
the following holds for all process expressions p, p′, q and all actions a ∈ A:

– if p a→ p′ and R(p, q), then there is a process expression q′ such that q
a→ q′

and R(p′, q′)
– if p a→ √

and R(p, q), then q
a→ √

Then, we say that process expressions p and q are bisimilar, p↔q, iff there
exists a bisimulation R with R(p, q). From [2] we know that bisimulation is a con-
gruence relation on process expressions, and that the set of process expressions
modulo bisimulation constitutes a model for PA∗

δ .

3 Stack

We first give a system of linear equations for the stack. We have given a finite
data type D. We use bounded sequences over D to parametrize the process
variables. We use the following notations for such sequences:

– [ ] denotes the empty sequence
– [d] denotes the singleton sequence, for each d ∈ D
– � denotes concatenation of sequences
– |σ| denotes the length of sequence σ

The n-bounded stack (n ≥ 1) has a specification with variables Sn(σ), for
each sequence σ with |σ| ≤ n. The input of an element d is denoted by action
r(d) (read d), the output of d by s(d) (send d). An alternative composition with
one summand for each element of D is abbreviated by sum notation.

Sn([ ]) =
∑
d∈D

r(d) · Sn([d])

Sn([d]�σ) = s(d) · Sn(σ) +
∑
e∈D

r(e) · Sn([e]�[d]�σ)

(for each d ∈ D and sequence σ, if |σ| < n− 1)

Sn([d]�σ) = s(d) · Sn(σ)

(for each d ∈ D and sequence σ, if |σ| = n− 1).
It can be noted that this case distinction can be avoided, if we specify op-

erators head, tail on sequences, and use a conditional operator that allows one
or both summands depending on the length of the sequence. We refrain from
doing this here, since we do not want to deal with the relationship between error
handling in data type specifications and process algebra.

Theorem 1 The bounded stack can be specified in BPA∗
δ .



Proof Consider the following specification.

Stack(n) =

⎛
⎝ ∑

d1∈D

r(d1) ·
( ∑

d2∈D

r(d2) ·
(
. . .

( ∑
dn∈D

r(dn) · s(dn)

)∗

. . .

)∗

s(d2)

)∗

s(d1)

⎞
⎠

∗

δ

Inductively, we can define these processes as follows.

Elt(1) =
∑
d∈D

r(d) · s(d)

Elt(n + 1) =
∑
e∈D

r(e) · Elt(n)∗s(e)

Stack(n) = Elt(n)∗δ.

Now we have to prove that Stack(n) = Sn([ ]) holds for each n. In order to
do this, we have to provide an expression for each state of the stack in terms of
the variables Stack(n), Elt(n). We define these expressions Tn(σ) inductively:

Tn([ ]) = Stack(n)

Tn([d]�σ) = (Elt(n− k − 1)∗s(d)) · Tn(σ)

(for each d ∈ D and sequence σ with |σ| = k < n− 1)

Tn([d]�σ) = s(d) · Tn(σ)

(for each d ∈ D and sequence σ with |σ| = n− 1).
Now it is straightforward to show that the set of variables Tn(σ) form a

solution for the linear equations Sn(σ). By uniqueness of solutions, we obtain
Tn(σ) = Sn(σ), so in particular Stack(n) = Sn([ ]). �

4 Bag

We proceed to give a system of linear equations for the bag. We now use bounded
bags or multi-sets over data set D to parametrize the process variables. We use
the following notations for such bags:

– ∅ denotes the empty bag
– {d} denotes the singleton bag, for each d ∈ D

– ∪ denotes bag union, − bag difference
– |β| denotes the size of bag β



The n-bounded bag (n ≥ 1) has a specification with variables Bn(β), for each
multi-set β with |β| ≤ n. As before, the input of d is denoted r(d), the output
of d by s(d).

Bn(∅) =
∑
d∈D

r(d) ·Bn({d})

Bn(β) =
∑
d∈β

s(d) ·Bn(β − {d}) +
∑
e∈D

r(e) ·Bn({e} ∪ β)

(for each multi-set β with 0 < |β| < n)

Bn(β) =
∑
d∈β

s(d) ·Bn(β − {d})

(for each multi-set β with |β| = n)

Theorem 2 The bounded bag can be specified in PA∗
δ .

Proof Consider the following specification.

Bag(n) =
n

‖
i=1

(∑
d∈D

r(d) · s(d)
)∗

δ

Or, defined by induction:

Bag(1) = Elt(1)∗δ

Bag(n + 1) = Bag(n) ‖ Bag(1)

Now we have to prove that Bag(n) = Bn(∅) holds for each n. In order to
do this, we will provide an expression for each state of the bag in terms of the
variables Bag(n). We define these expressions Cn(β) as follows:

Cn(∅) = Bag(n)

Cn(β) = Bag(n− k) ‖ ‖
d∈β

(s(d) ·Bag(1))

(for each multi-set β with 0 < |β| = k < n)

Cn(β) = ‖
d∈β

(s(d) ·Bag(1))

(for each multi-set β with |β| = n).
Now it is straightforward to show that the set of variables Cn(β) form a

solution for the linear equations Bn(β). By uniqueness of solutions, we obtain
Cn(β) = Bn(β), so in particular Bag(n) = Bn(∅). �

Next, we want to prove the following theorem.



Theorem 3 Bag(n) cannot be specified in BPA∗
δ , if n ≥ 2 and |D| ≥ 2.

The proof of this theorem is quite involved. We first make a number of
definitions and prove some propositions.

We consider the set of finite transition systems over the set of atomic actions
A that contain no deadlock nodes. Let G be such a transition system, then |G|
denotes the set of states of G. G has a root r ∈ |G| and a transition relation
→⊆ |G|×A×|G|. The domain of → is dom(→) = {s ∈ |G||∃t ∈ |G|∃a ∈ As

a→ t},
the codomain is codom(→) = {t ∈ |G| | ∃s ∈ |G| ∃a ∈ A s

a→ t}.
For p ∈ dom(→), G(p) is the process (modulo bisimulation) represented by

the graph G with p serving as the root. We notice that states in G are not
labeled.

Example 4 Let |G| = {0, 1, 2, 3, 4}, A = {a, b, c, d},→= {0 a→ 1, 1 b→ 2, 2 c→
1, 1 d→ 3, 3 a→ 4} with root 0, then G(0) = a · ((b · c)∗(d · a)), G(1) = (b · c)∗(d ·
a), G(2) = c ·G(1), G(3) = a. Note 4 �∈ dom(→).

We will use the following definitions, where X,Y range over processes and
p, q range over dom(→).

– X  Y iff X + Y = Y
– I(X) ⊆ A is the set of initial actions of X
– X ∈ KG(p, q) iff X ·G(q)  G(p)
– X ∈ K+

G(p, q) iff X ·G(q) = G(p)
– X ∈ K∞

G (p, q) iff X ∈ KG(p, q) and X has an infinite trace
– X ∈ Kf

G(p, q) iff X ∈ KG(p, q) and X has only finite traces
– K+,f

G (p, q) = K+
G(p, q)∩Kf

G(p, q), and similarly for other double superscripts

We notice that δ ∈ KG(p, q) but no X ∈ KG(p, q) has a proper state equal
to δ and δ �∈ K+

G(p, q).
Further, we call G deterministic if p a→ q and p

a→ q′ imply q = q′, and we
call G invertible if p a→ q and p′

a→ q imply p = p′. Next, we call G fully abstract
if G(p) = G(q) implies that p = q. We call G non-stuttering if for no state p and
action a we have p

a→ p.
We extend → to →∗⊆ |G| ×A∗ × |G| in the usual way. If G is deterministic

and s
σ→∗

t we will also denote t with σ(s). Similarly, if G is invertible we will
denote s with σ−1(t). We write σ(p) ↓ if σ(p) is defined, σ(p) ↑ if σ(p) is not
defined.

Lemma 5 (Representation Lemma) Let G be deterministic, then for p ∈ dom(→
) we have

G(p) =
∑

a∈A,a(p)↓,a(p)∈dom(→)

a ·G(a(p)) +
∑

a∈A,a(p)↓,a(p) �∈dom(→)

a



Proof The proof follows straightforwardly from the definitions. �

Next, we prove a series of propositions about the sets KG(p, q).

Proposition 6 Let G be deterministic and fully abstract. If X ∈ KG(p, q) and
X

σ→∗ √
then σ(p) = q.

Proof X · G(q) σ→∗
G(q) and G(p) σ→∗

G(σ(p)), so by determinism
G(q) = G(σ(p)) whence using full abstraction q = σ(p). �

Proposition 7 If X + Y ∈ K∞
G (p, q) then X,Y ∈ KG(p, q) and X ∈ K∞

G (p, q)
or Y ∈ K∞

G (p, q).

Proof If X+Y ∈ K∞
G (p, q) then (X+Y ) ·G(q) = X ·G(q)+Y ·G(q) 

G(p). Thus X ·G(q)  G(p) and Y ·G(q)  G(p), so X,Y ∈ KG(p, q). Further,
if X + Y has an infinite trace then either X or Y has an infinite trace. �

Proposition 8 Let G be deterministic. Let X ∈ KG(p, q), |σ| > 0. If X σ→∗
Y

then Y ∈ K+
G(σ(p), q).

Proof We use induction on the length of σ. If |σ| = 1, let σ = a. Using
the representation lemma for p and X · G(q)  G(p), we find a · Y · G(q) =
a ·G(a(p)) and Y ·G(q) = G(a(p)) which yield Y ∈ K+

G(a(p), q).
If |σ| = n+1, put σ = a·τ . We have X a→ Y

τ→∗
Z. Using the same argument

as above we find Y ∈ K+
G(a(p), q), so certainly Y ∈ KG(a(p), q). Then using the

induction hypothesis: Z ∈ KG(σ(a(p)), q) = KG(aσ(p), q). �

Proposition 9 Let X · Y ∈ K∞
G (p, q). If X does not terminate then X ∈

K∞
G (p, q).

Proof As X does not terminate, X = X · Y . �

Proposition 10 Let G be deterministic and let X · Y ∈ KG(p, q). If X σ→∗ √

then X ∈ KG(p, σ(p)) and Y ∈ KG(σ(p), q). If moreover X · Y has an infinite
trace, then at least one of X,Y has an infinite trace.

Proof If X
σ→∗ √

then X · Y σ→∗
Y . Using Proposition 8, we find

Y ∈ K+
G(σ(p), q), so certainly Y ∈ KG(σ(p), q). Moreover, it follows that Y ·

G(q) = G(σ(p)). Since X · Y · G(q)  G(p), we get X · G(σ(p))  G(p). This
means X ∈ KG(p, σ(p)). The last remark is immediate. �

Proposition 11 Let G be deterministic, invertible and fully abstract. If X∗Y ∈
KG(p, q), then X ∈ KG(p, p) and Y ∈ KG(p, q).



Proof Y · G(q)  (X · (X∗Y ) + Y ) · G(q) = (X∗Y ) · G(q)  G(p), so
Y ∈ KG(p, q).

For X, we distinguish two cases. If X does not terminate, then X · G(p) =
X = X ·G(q)  (X + Y ) ·G(q) = (X∗Y ) ·G(q)  G(p), so X ∈ KG(p, p).

Otherwise, there is a trace σ with X
σ→∗ √

. This implies X∗Y
σ→ X∗Y . It

follows by Proposition 8 that X∗Y ∈ K+
G(σ(p), q). Applying the same argument

once more we obtain X∗Y ∈ K+
G(σ(σ(p)), q). This means G(σ(p)) = (X∗Y ) ·

G(q) = G(σ(σ(p))). Using full abstraction σ(p) = σ(σ(p)). Using invertibility
p = σ(p) and so X∗Y ∈ K+

G(p, q). This means (X∗Y ) ·G(q) = G(p).
Now X · G(p) = X · (X∗Y ) · G(q)  (X∗Y ) · G(q)  G(p), which means

X ∈ KG(p, p). �

Proposition 12 Let G be deterministic and fully abstract. If there is an infinite
path in G from p that avoids q then K+,f

G (p, q) = ∅.

Proof Suppose X ∈ K+
G(p, q). Let p

a0→ p1
a1→ p2 . . . be an infinite path

avoiding q. Thus σ = a0a1a2 . . . is a trace of G(p) = X ·G(q). Since G(p) does
not deadlock, X does not deadlock either. Let τ be a finite initial segment of σ.

Suppose that X
τ→ √

, then by Proposition 6 q = τ(p) which contradicts the
assumption on σ. We see that after no finite initial trace of σ X terminates,
whence it has an infinite trace. Hence K+,f

G (p, q) = ∅. �

Proposition 13 Let G be deterministic, non-stuttering and fully abstract. Let
X ∈ Kf

G(p, p). If a ∈ I(X), then it is not the case that X
a→ √

. Whenever
X

σ→∗
Y , we have Y ∈ K+,f

G (σ(p), p).

Proof Suppose X
a→ √

. Using X · G(p)  G(p) and determinism, we
find G(p) = G(a(p)). Full abstraction yields p = a(p) which contradicts the
non-stuttering property.

Next, let X
σ→∗

Y then Y ∈ K+
G(σ(p), p) (by Proposition 8). As an infinite

trace for Y implies an infinite trace for X, we obtain finiteness as well. �

Now we need one more definition for the last, highly technical proposition.
Let WG(p, a, b) be the property of graph G, state p and actions a, b that holds
if for each state q there is an infinite path in G from p which avoids q and that
either starts with a step a or with a step b.

Proposition 14 Let X ∈ KG(p, q), suppose a, b ∈ I(X) such that WG(p, a, b)
holds. Then X ∈ K∞

G (p, q).

Proof Let σ be an infinite path starting from p avoiding q. Assume,
without loss of generality, that σ starts with a. Arguing as in Proposition 12, we
find X ∈ K∞

G (p, q). However, instead of X ∈ K+
G(p, q), we now use a ∈ I(X) to

see that X allows the initial a step. �



Now we have collected all ingredients necessary to start the proof for the bag.

Theorem 3 Bag(n) cannot be specified in BPA∗
δ , if n ≥ 2 and |D| ≥ 2.

Proof Take n = 2 and |D| = 2, say D = {0, 1}. The argument for
larger n,D is not more complicated. Let G be the graph of Bag(2). The states
are multi-sets of data elements of size 0,1 or 2, denoting the contents of the bag,
so ∅, 0, 1, 00, 01 and 11. The graph of Bag(2) is shown in Fig. 1.

0 1

00 11

r (0)

r (0) r (0)

s (0)

s (0) s (0)

s (1)

s (1)

s (1)
r (1) r (1)

r (1)

∅

01

Fig. 1. The graph of Bag(2).

Notice that G is deterministic, invertible and fully abstract. We see B2(∅) ∈
K∞

G (∅, ∅).
We will prove that for all states p, q, no element of K∞

G (p, q) can be defined
by an expression over BPA∗

δ . Since B2(∅) ∈ K∞
G (∅, ∅), this suffices to prove

the theorem. Suppose, for a contradiction, that P is a minimal expression over
BPA∗

δ defining some element of a K∞
G (p, q) for certain states p, q. We use a case

distinction on the form of P .

– P is an atomic action, then P has no infinite trace. This is a contradiction.
– P is a sum, so P = Q + R. Since P ∈ K∞(p, q), at least one of Q and R is

in K∞(p, q) by Proposition 7. This contradicts the minimality of P .
– P is a product, so P = Q · R. Using Proposition 9, either X ∈ K∞

G (p, q) of
for some r we have R ∈ K∞

G (r, q), again contradicting the minimality of P .
– Otherwise, P is an iteration, so P = Q∗R. By Proposition 11, Q ∈ KG(p, p), R ∈

KG(p, q). From minimality of P we conclude Q ∈ Kf
G(p, p).

We claim now that either p = 0 and Q = r(0) · s(0), or p = 1 and Q = r(1) ·
s(1). In order to prove this claim, we first make the following observation.



The only states m,n of the bag for which K+,f
G (m,n) �= ∅ are either m =

00, n = 0 (e.g., process s(0) ∈ K+,f
G (m,n)) or m = 11, n = 1 (e.g., process

s(1) ∈ K+,f
G (m,n)). For, for all other pairs m,n there is, by inspection of

the graph, an infinite path from m avoiding n, and by Proposition 12 this
gives K+,f

G (m,n) = ∅.
Now, to prove the claim, an initial action a of Q ∈ Kf

G(p, p) cannot lead to
termination, by Proposition 13. So action a leads to Y ∈ K+,f

G (a(p), p). By
the previous observation, we must have either a(p) = 00, p = 0 and a = r(0),
or a(p) = 11, p = 1 and a = r(1). By inspection of the graph, we see that in
the one case Y must start with s(0) and in the other case with s(1).
Consider the first case and let Y ∈ Kf

G(0, 0). Due to Proposition 8, if σ is a
non-terminating trace of Y (say Y

σ→∗
Z), we have that Z ∈ K+,f

G (σ(0), 0),
and hence by the observation above σ(0) = 00. Now look at a trace τ of Y .
For a trace of length 1 this is fine. The first action is r(0) and it leads to
state 00. As 00 differs from 0, r(0) is not a terminating trace for Y . Now
consider a larger trace. Inspection of the graph G shows that the second
action in a trace of Y must be s(0). After this second step, termination is
necessary. Otherwise (with σ = r(0)s(0)), σ(0) = 00 must hold which is
false. So r(0)s(0) is the one and only completed trace of the finite process
Y . It follows that Y = r(0) · s(0).
In the following, we again concentrate on the first case. We have (r(0) ·
s(0))∗R ∈ K∞

G (0, q). As (r(0) · s(0))∗R
r(0)s(0)→

∗
(r(0) · s(0))∗R, by Proposi-

tion 8 in fact (r(0)·s(0))∗R ∈ K+,∞
G (0, q). This means r(1), s(0) ∈ I(R) since

both r(1) and s(0) are in I(G(0)). Inspection of G (slightly cumbersome)
yields that WG(0, r(1), s(0)) holds. Thus by Proposition 14 R ∈ K∞

G (0, q)
which contradicts the minimality of P .

�

5 Queue

We give a system of linear equations for the (first in first out) queue. We use the
notation for sequences we also used in the case of the stack.

The n-bounded queue (n ≥ 1) has a specification with variables Qn(σ), for
each sequence σ with |σ| ≤ n.

Qn([ ]) =
∑
d∈D

r(d) ·Qn([d])

Qn(σ�[d]) = s(d) ·Qn(σ) +
∑
e∈D

r(e) ·Qn([e]�σ�[d])

(for each d ∈ D and sequence σ, if |σ| < n− 1)



Qn(σ�[d]) = s(d) ·Qn(σ)

(for each d ∈ D and sequence σ, if |σ| = n− 1).

Theorem 15 Qn(∅) cannot be specified in PA∗
δ , if n ≥ 2 and |D| ≥ 2.

Proof The proof is similar to the proof for the bag. Again take n = 2
and D = {0, 1}. Let G be the graph of Queue(2). The states are sequences of
data elements of size 0,1 or 2, denoting the contents of the queue. See Fig. 2.
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Fig. 2. The graph of Queue(2).

Notice that G is deterministic, invertible and fully abstract. We use the same
induction as in the case of the bag. The cases for atomic action, sum and product
go the same as for the bag. We have two cases left.

– Let P ∈ K∞
G (p, q) be of the form Q · R. We find that Q ∈ KG(p, p), R ∈

KG(p, q). We may assume Q ∈ K+
G(p, p). As in the case of the bag, we can

show that either p = 0 and Q = r(0) · s(0) or p = 1 and Q = r(1) · s(1). The
proof of the claim involves more case distinction than in the case of the bag,
but is straightforward. The proof is finished in a similar way.

– The remaining case is P = Q ‖ R. Since P has an infinite trace, at least one
of Q,R has an infinite trace. Without loss of generality, assume this is Q.
Suppose R has a terminating trace, R σ→∗ √

. Then Q ‖ R
σ→∗

Q and so Q ∈
K+

G(σ(p), q). Since Q has an infinite trace, this contradicts the minimality
of P . It follows that R has no finite terminating traces. If R deadlocks,
say R

σ→∗
δ, then Q ‖ R

σ→∗
Q ‖ δ = Q · δ. Then Q · δ ∈ K+

G(σ(p), q),



so Q · δ = G(σ(p)). As G(σ(p)) cannot deadlock, Q cannot terminate, so
Q · δ = Q and Q ∈ K+

G(σ(p), q). This contradicts the minimality of P so R
cannot deadlock either.
Thus R has no deadlocks and cannot terminate. Symmetrically, the same
holds for Q. Now take a step from Q, say Q

a→ Q′. By Proposition 8 Q′ ‖
R ∈ K+,∞

G (a(p), q), in fact due to nontermination Q′ ‖ R = G(a(p)). Observe
that both actions s(0), s(1) must occur in the alphabet of Q′ ‖ R.

Suppose Q′ has a trace containing s(0), say Q′ σ→∗
Q′′ s(0)→ Q′′′, and R has

a trace containing s(1), say R
ρ→

∗
R′ s(1)→ R′′. Then Q′ ‖ R

σρ→
∗
Q′′′ ‖ R′′

and both s(0), s(1) are possible from this state. This is impossible, since a
queue can only output one action at a time. It follows that R has no traces
containing s(1). As we have a bounded queue, its traces must have some
output, so this must be s(0). The same argument shows that Q′ must show
output s(0) only, but then Q′ ‖ R never allows s(1), which is a contradiction.

�

If we go beyond the signature of PA∗
δ , then finite specifications for a bounded

queue without recursion (but with iteration) can be given. A well-known one is
that an n-bounded queue can be given as a parallel composition of n coupled
one-place buffers. In order to specify this, we need parallel composition with
communication, encapsulation and abstraction. In terms of the chaining operator
of Vaandrager (see [8]), we can give a definition as follows:

Queue(1) = Elt(1)∗δ

Queue(n + 1) = Queue(n) � Queue(1)

.
For more details, we refer to [8].
Here, we give a different finite specification for the queue, in the signature

obtained by adding the state operator of [1] to BPA∗
δ . The state operator is

indexed by a finite data type S, and comes with two functions:

– action : A × S → Aδ, giving the action that is executed when an action is
tried in a certain state (the result is δ if the intended action is blocked in
this state)

– effect : A× S → S, giving the resulting state when the action is executed in
a certain state

Then, we have the equations for the state operator given in Table 3.
Now, to define the n-bounded queue, we use as state space the set of sequences

of data elements of length ≤ n. We use actions r(d), s(d) as before and the
extra action out. The action and effect functions are trivial (i.e. action(a, s) =
a, effect(a, s) = s) except in the following cases:



λs(δ) = δ
λs(a) = action(a, s)
λs(a · x) = a(s) · λeffect(a,s)(x)
λs(x + y) = λs(x) + λs(y)

Table 3. Axioms for the State Operator (a ∈ A).

– effect(out, σ�[d]) = σ (for d ∈ D, |σ| < n)
– effect(r(d), σ) = [d]�σ (for d ∈ D, |σ| < n)
– action(out, [ ]) = δ
– action(out, σ�[d]) = s(d) (for d ∈ D, |σ| < n)
– action(r(d), σ) = δ (for d ∈ D, |σ| = n)

Now, the definition of the n-bounded queue is as follows:

Queue(n) = λ[ ]((out +
∑
d∈D

r(d))∗δ)

Then it is not difficult to show that Queue(n) = Qn([ ]) holds for each n, by
showing that Qn(σ) = λσ((out +

∑
d∈D r(d))∗δ), for each sequence σ of length

≤ n.

6 Conclusion

We find a remarkable similarity between the definability issues for bounded and
unbounded bags, stacks and queues, when using iteration in the bounded cases
and recursion in the unbounded cases.
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