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Abstract. The Constraint Satisfaction Problem (CSP) framework al-
lows users to define problems in a declarative way, quite independently
from the solving process. However, when the problem is over-constrained,
the answer “no solution” is generally unsatisfactory. A Max-CSP Pm =
〈V,D, C〉 is a triple defining a constraint problem whose solutions max-
imise constraint satisfaction. In this paper, we focus on numerical CSPs,
which are defined on real variables represented as floating point inter-
vals and which constraints are numerical relations defined in extension.
Solving such a problem (i.e., exactly characterizing its solution set) is
generally undecidable and thus consists in providing approximations. We
propose a branch and bound algorithm that computes under and over
approximations of its solution set and determines the maximum number
mP of satisfied constraints. The technique is applied on three numeric
applications and provides promising results.

1 Introduction

CSP provides a powerful and efficient framework for modeling and solving prob-
lems that are well defined. However, in the modeling of real-life applications,
under or over-constrained systems often occur. In embodiment design, for ex-
ample, when searching for different concepts engineers often need to tune both
the constraints and the domains. In such cases, the classical CSP framework is
not well adapted (a no solution answer is certainly not satisfactory) and there
is a need for specific frameworks such as Max-CSP. Yet in a large number of
cases, the nature of the model (over-, well or under-constrained) is a priori not
known and thus the choice of the solving technique is critical. Furthermore, when
tackling over-constrained problems in the Max-CSP framework, most techniques
focus on discrete domains.

In this paper, we propose a branch and bound algorithm that approximate
the solutions of a numerical Max-CSP. The algorithm computes both an under
(often called inner in continuous domains) and an over (often called outer) ap-
proximation of the solution set of a Max-CSP along with the sets of constraints
that maximise constraint satisfaction. These approximations ensure that the
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inner approximation contains only solutions of the Max-CSP while the outer
approximation guarantees that no solution is lost during the solving process.

This paper is organized as follows: Section 2 motivates the research and
presents a numerical Max-CSP application. Section 3 presents the definitions
associated to the Max-CSP framework. A brief introduction to Interval analy-
sis and its related concepts is drawn in section 4, while our branch and bound
algorithm is described in Section 5. Section 6 presents the work related to Max-
CSP in both continuous and discrete domains while Section 7 is dedicated to
experimental results showing the relevance of our approach.

2 A Motivating Example

We motivate the usefulness of the numerical Max-CSP approach on a problem
of virtual camera placement (VCP), which consists in positioning a camera in
a 2D or a 3D environment w.r.t. constraints defined on the objects of a virtual
scene.

Within a classical CSP framework, these cinematographic properties are trans-
formed into numerical constraints in order to find an appropriate camera position
and orientation. One of the counterparts of the expressiveness offered by the con-
straint programming framework lies in the fact that it is easy for the user to specify
an over-constrained problem. In such cases, classical solvers will output a no solu-
tion statement and does not provide any information neither on why the problem
was over-constrained nor on how it could be softened. The Max-CSP framework
will, on the other hand, explore the search space in order to compute the set of
configurations that satisfy as many constraints as possible. This provides a clas-
sification of the solutions according to satisfied constraints and enables the user
to select one, or to remodel the problem.

Fig. 1. Top-view of a 3D scene representing camera’s position search space for a
VCP problem. Orientations of objects are represented by colored areas, shot distances
are represented as circles. Dark areas represent the max-solution regions of the over-
constrained problem.
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For the purpose of illustration, we present a small over-constrained problem.
The scene consists of three characters defined by their positions, and by an
orientation vector (that denotes the front of the character). VCP frameworks
generally provide the angle property that specifies the orientation the character
should have on the screen (i.e., profile, etc.), and the shot property that specifies
the way a character is shot on the screen.

In Figure 1, a sample scene is displayed with three characters, each of which
must be viewed from the front and with a long shot. The regions corresponding
to each property are represented (wedges for the angle property and circles for
the shot distance). No region of the space fully satisfies all the constraints. The
solution of the Max-CSP are represented as dark areas. The solving process
associated to this simple example is provided in section 7.1.

3 The Max-CSP Framework

This section is dedicated to the Max-CSP framework and its related concepts.
According to [1,2], a Max-CSP P is a triplet 〈V,D, C〉 where V = {x1, . . . , xn},
D = {D1, . . . , Dn} and C = {c1, . . . , cm} are respectively a set of variables, a set
of domains assigned to each variable and a set of constraints. For clarity sake,
we use vectorial notations where vectors are denoted by boldface characters:
the vector x = (x1, . . . , xn) represents the variables and D is interpreted as the
Cartesian product of the variables domains. To define solutions of a Max-CSP,
a function si is first defined for each constraint ci as follows: ∀x ∈ D, si(x) = 1
if ci(x) is true and si(x) = 0 otherwise. Then, the maximum number of satisfied
constraint is denoted by mP and formally defined as follows:

mP := max
x∈D

∑

i

si(x). (1)

We denote MaxSol(P) the solution set of the numerical Max-CSP. Formally, the
following set of solution vectors:

MaxSol(P) =
{
x ∈ D :

∑

i

si(x) = mP
}
. (2)

4 Interval Analysis for Numerical CSPs

Numerical CSPs present the additional difficulty of dealing with continuous do-
mains, not exactly representable in practice. As a consequence, it is impossible to
enumerate all the values that can take variables in their domains. Interval anal-
ysis (cf. [3,4]) is a key framework in this context: soundness and completeness
properties of real values belonging to some given intervals can be ensured using
correctly rounded computations over floating point numbers. We now present
basic concepts allowing us to ensure that an interval vector contains no solution
(resp. only solutions) of an inequality constraint.
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4.1 Intervals, Interval Vectors and Interval Arithmetic

An interval [x] with representable bounds is called a floating-point interval. It is
of the form: [x] = [x, x] = {x ∈ R : x ≤ x ≤ x} where x, x ∈ F. The set of all
floating-point intervals is denoted by IF. An interval vector (also called a box)
[x] = ([x1], . . . , [xn]) represents the Cartesian product of the n intervals [xi]. The
set of interval vectors with representable bounds is denoted by IF

n.
Operations and functions over reals are also replaced by an interval extension

having the containment property (see [5]).

Definition 1 (Interval extension [3]). Given a real function f : R
n → R, an

interval extension [f ] : IF
n → IF of f is an interval function verifying

[f ]([x]) ⊇ {f(x) : x ∈ [x]}. (3)

The interval extensions of elementary functions can be computed formally thanks
to their simplicity, e.g., for f(x, y) = x + y we have [f ]([x], [y]) = [x + y, x + y].
To obtain an efficient framework, these elementary interval extensions are used
to define an interval arithmetic. For example, the interval extension of f(x, y) =
x+ y is used to define the interval addition: [x]+ [y] = [x+ y, x+ y]. Therefrom,
an arithmetical expression can be evaluated for interval arguments. The funda-
mental theorem of interval analysis [5] states that the interval evaluation of an
expression gives rise to an interval extension of the corresponding real function:
For example

[x] + exp([x] + [y]) ⊇ {x + exp(x + y) : x ∈ [x], y ∈ [y]}. (4)

4.2 Interval Contractors

Discarding all inconsistent values from a box of variables domains is intractable
when the constraints are real ones. There exists many techniques to obtain con-
tractors, like 2B consistency (also called hull consistency) [6,7], box consistency [8]
or interval Newton operator [3]. Those methods rely on outer contracting oper-
ators that discard values according to a given consistency. These methods are
instances of the local consistency framework in artificial intelligence [9].

Definition 2 (Interval contracting operator). Let c be an n-ary constraint,
a contractor for c is a function Contractc : IF

n −→ IF
n which satisfies

x ∈ [x] ∧ c(x) =⇒ x ∈ Contractc([x]). (5)

Experiments of Section 7 are performed with two different contractors dedicated
to inequality constraints f(x) ≤ 0. The first is called the evaluation contractor
and is defined as follows: Given an interval extension [f ] of f

Contractf(x)≤0(x) =
{
∅ if [f ]([x]) > 0
[x] otherwise. (6)
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The second, called the hull contractor, is based on the hull consistency, cf. [6,7]
for details1.

Interval contractors can be used to partition a box into smaller boxes where
the constraint can be decided. To this end, we introduce the inflated set difference
as follows: idiff([x], [y]) is a set of boxes {[d1], . . . , [dk]} included in [x] such that
[di]∩ [y] = ∅ and [d1]∪· · ·∪ [dk]∪ [y]⊕ = [x], where [y]⊕ is the smallest box that
strictly contains [y]. The inflated set difference is illustrated in two dimensions
in Figure 2. In this way, idiff([x], Contractf(x)≤0([x])) constructs a set of boxes
which are all proved to contain no solution. Following [10,11] this technique
can also be used to compute boxes that contain only solutions, applying the
contractor to the negation of the constraint: idiff([x], Contractf(x)>0([x])) is a set
of boxes that contain only solutions. Let us illustrate this process on a simple
example. Consider the CSP 〈x, [−1, 1], x ≤ 0〉. Then Contractx≤0([−1, 1]) =
[−1, 0] and idiff([−1, 1], [−1, 0]) = [0⊕, 1], where 0⊕ is the smallest representable
number bigger than 0. The constraint x ≤ 0 is therefore proved to be false
inside [0⊕, 1]. The domain [−1, 0⊕] remains to be processed, and we look for
solutions therein by computing Contractx>0([−1, 0⊕]) = [0, 0⊕]. We use again
idiff([−1, 0⊕], [0, 0⊕]) = [−1, 0�] (where 0� is the largest representable number
lower than 0) to infer that [−1, 0�] contains only solutions. Finally, the constraint
cannot be decided for the values of the interval [0�, 0⊕].

5 The Algorithm

The main idea of the algorithm is to attach to each box the set of constraints that
were proved to be satisfied for all vectors of this box (S) and the set of constraints
that have not been decided yet (U). Then, using inner or outer contractions
and bisections, we can split the box into smaller boxes where more constraints
are decided. We thus propose the definition of SU-boxes representing a triplet
consisting of a box [x] and the two sets of constraints described above. The
formal definition of a SU-box is given in the first subsection and the usage of
outer and inner contractions is described in the next three subsections. Finally
the branch and bound algorithm for numerical Max-CSP is given in the last
subsection.

5.1 SU-Boxes

The main idea of our algorithm is to associate to a box [x] the sets of constraints
S and U which respectively contain the constraints proved to be satisfied for
all vectors in [x] and the constraints which remain to be treated. Such a box,
altogether with the satisfaction information of each constraints is called a SU-
box 2 and is denoted by 〈[x],S,U〉. The following definition naturally links a
SU-box with a CSP:
1 A contractor based on box consistency could also be used but their optimality be-

tween hull and box consistency is problem dependent.
2 SU-boxes have been introduced in [12] in a slightly but equivalent way.
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Algorithm 1. Branch and Bound Algorithm for MAX-CSP
Input: P = 〈x, C, [x]〉, ε
Output: ([m, m],M,B)
L ← {〈[x], ∅,U〉}; /* SU-boxes to be processed */1

E ← {}; /* Epsilon SU-boxes */2

D ← {}; /* SU-boxes where every constraint is decided */3

m ← MultiStartLocalSearch(P , [x])3; /* Lower bound on max */4

while ( ¬empty(L) ) do5

〈[x],S,U〉 ← extract(L)4;6

if ( wid ([x]) < ε ) then7

E ← E ∪ {〈[x],S,U〉};8

else9

T ← {〈[x],S,U〉};10

foreach ( c ∈ U ) do11

[y]← Contractc([x]);12

T ← InferLSUouter(T , [y], c);13

T ← {〈[x],S,U〉 ∈ T : (#S) + (#U) ≥ m};14

[y]← Contract¬c([x]);15

T ← InferLSUinner(T , [y], c);16

end17

foreach ( 〈[x′],S′,U ′〉 ∈ T ) do18

if ( (#S′) > m ) then m← (#S′);19

if ( (#U ′) = 0 ) then20

D ← D ∪ {〈[x]′,S′, ∅〉};21

else22

{[x1], [x2]} ← Bisect([x′])5;23

L ← L ∪ {〈[x1],S′,U ′〉, 〈[x2],S′,U ′〉};24

end25

end26

end27

end28

m← max{(#S) + (#U) : 〈[x],S,U〉 ∈ D ∪ E};29

if ( m = m ) then30

M← {〈[x],S,U〉 ∈ D : (#S) ≥ m};31

B ← {〈[x],S,U〉 ∈ E : (#S) + (#U) ≥ m};32

else33

M← ∅;34

B ← {〈[x],S,U〉 ∈ D ∪ E : (#S) + (#U) ≥ m};35

return ([m, m],M,B);36

6 Constraints satisfaction is considered on uniformly distributed random points in [x],
the lower bound m being updated accordingly.

7 SU-boxes are stored in L according to (#S) + (#U), most interesting (i.e., highest
(#S) + (#U)) being extracted first.

8 Bisect splits the box [x′] into two equally sized smaller boxes [x1] and [x2].
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Fig. 2. Diagrams (a) and (b) show the constraint c (satisfied in dark gray regions
and unsatisfied in light gray regions), the initial SU-box 〈[x],S ,U〉 and the contracted
box [y] for two different situations: (a) outer contraction and (b) inner contraction for
constraint c. Diagram (c): Five new SU-boxes inferred from the contraction of [x] to [y].
The contraction does not provide any information on the SU-box ⊕ = 〈[x]∩ [y],S ,U〉,
hence its sets of constraints remain unchanged. The SU-boxes ⊗ = 〈[x′],S ′,U ′〉 are
proved to contain no solution of c (if outer pruning was applied) or only solutions (if
inner pruning was applied), their sets of constraint can thus be updated: U ′ = U\{c},
and, S ′ = S for outer pruning, while S ′ = S ∪ {c} and U ′ = U for inner pruning.

Definition 3. Let P be a CSP whose set of constraints is C. Then, a SU-box
〈[x],S,U〉 is consistent with P if and only if the three following conditions hold:

1. (S ∪ U) ⊆ C and (S ∩ U) = ∅
2. ∀x ∈ [x] , ∀c ∈ S , c(x) (the constraints of S are true everywhere in [x])
3. ∀x ∈ [x] , ∀c ∈ (C\(S ∪ U)) , ¬ c(x) (the constraints of C which are neither

in S nor in U are false everywhere in [x]).

A SU-box 〈[x],S,U〉 will be denoted by 〈x〉, without any explicit definition
when there is no confusion. Given a SU-box 〈x〉 := 〈[x],S,U〉, [x] is denoted
by box(〈x〉) and called the domain of the SU-box.

5.2 The Function InferSUouter

Let us consider a SU-box 〈[x],S,U〉, a box [y] ⊆ [x] and a constraint c, where
the box [y] is obtained computing [y] = Contractc([x]). Therefore, every box of
idiff([x], [y]) does not contain any solution of c. This is illustrated by Figure 2.
The SU-boxes formed using these boxes can thus be improved discarding c from
their set of constraint U . This is formalized by the following definition:

Definition 4. The function InferSUouter(〈[x],S,U〉, [y], c) returns the following
set of SU-boxes:

{〈[x′],S,U ′〉 : [x′] ∈ idiff([x], [y])} ∪ {〈[y]⊕ ∩ [x],S,U〉}, (7)

where U ′ = U\{c}.

Here, the box [x] is partitioned to idiff([x], [y]) and [y]⊕ ∩ [x]. Each of these
boxes is used to form new SU-boxes, with a reduced set of constraints U ′ for the
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SU-boxes coming from idiff([x], [y]). This is formalized by the following proposi-
tion, which obviously holds:

Proposition 1. Let 〈x〉 := 〈[x],S,U〉 be a SU-box consistent with a CSP P, c ∈
U and [y] satisfying x ∈ ([x]\[y])⇒ ¬ c(x). Define T := InferSUouter(〈x〉, [y], c).
Then the SU-boxes of T are all consistent with P. Furthermore, ∪{box(〈x′〉) :
〈x′〉 ∈ T } is equal to [x].

5.3 The Function InferSUinner

This function is the same as InferSUouter, but dealing with inner contraction. As a
consequence, the only difference is that, instead of just discarding the constraint
c from U for the SU-boxes outside [y], this constraint is stored in S. Figure 2 also
illustrates these computations. The following definition and proposition mirror
Definition 4 and Proposition 1.

Definition 5. The function InferSUinner(〈[x],S,U〉, [y], c) returns the following
set of SU-boxes:

{〈[x′],S′,U ′〉 : [x′] ∈ idiff([x], [y])} ∪ {〈[y]⊕ ∩ [x],S,U〉}, (8)

where S′ = S ∪ {c} and U ′ = U\{c}.

Proposition 2. Let 〈x〉 := 〈[x],S,U〉 be a SU-box consistent with a CSP P, c ∈
U and [y] satisfying x ∈ ([x]\[y]) ⇒ c(x). Define T := InferSUinner(〈x〉, [y], c).
Then the SU-boxes of T are all consistent with P. Furthermore, ∪{box(〈x′〉) :
〈x′〉 ∈ T } is equal to [x].

5.4 The Function InferLSUtype

Finally, the functions InferSUouter and InferSUinner are naturally applied to a
set of SU-boxes T in the following way:

InferLSUtype(T , [y], c) :=
⋃

〈x〉∈T
InferSUtype(〈x〉, [y], c), (9)

where type is either outer or inner. This process is illustrated by Figure 3. As a
direct consequence of propositions 1 and 2, the following proposition holds:

Proposition 3. Let T be a set of SU-boxes, each of them being consistent
with a CSP P, and [y] satisfying x ∈ ([x]\[y]) ⇒ ¬ c(x) (respectively x ∈
([x]\[y]) ⇒ c(x)). Define T ′ := InferLSUouter(〈x〉, [y], c) (respectively T ′ :=
InferLSUinner(〈x〉, [y], c)). Then the SU-boxes of T ′ are all consistent with P.
Furthermore,

∪{box(〈x′〉) : 〈x′〉 ∈ T ′} = ∪{box(〈x′〉) : 〈x′〉 ∈ T }. (10)
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Fig. 3. Left hand side: Boxes obtained from Figure 2. The box [y] represents the
contraction (inner or outer) of a box. Right hand side: The process illustrated by
Figure 2 is repeated for each box [xk], leading to twelve new SU-boxes, among which
⊗k have their sets of constraints updated.

5.5 The Branch and Bound Algorithm

Algorithm 1 uses three sets of SU-boxes L (SU-boxes to be proceeded), D (SU-
boxes where all constraints are decided, i.e., where (#U) = 0) and E (SU-
boxes that will not be processed anymore because considered as too small). The
mainline of the while-loop is to maintain the following property:

MaxSol(P) ⊆
⋃{

box(〈x〉) : 〈x〉 ∈ L ∪ D ∪ E
}
, (11)

while using inner and outer contractions and the function InferLSUtype to decide
more and more constraints (cf. lines 11–17), and hence moving SU-boxes from
L to D (cf. Line 21). Note that a lower bound m for mP is updated (cf. Line
19) and used to drop SU-boxes that are proved to satisfy less constraints than
m (cf. Line 14). When L is finally empty, (11) still holds and hence:

MaxSol(P) ⊆ ∪{box(〈x〉) : 〈x〉 ∈ D ∪ E}. (12)

Eventually, the sets of SU-boxes D and E are used to obtain new sets of SU-
boxes M and B, which describe the max-solution set (i.e., both the inner and
outer approximation of the solution set of the NCSP), and an interval [m, m] for
mP . We already have a lower bound m on mP . Now, as (11) holds, an upper
bound can be computed in the following way:

m = max{(#S) + (#U) : 〈[x],S,U〉 ∈ D ∪ E}. (13)

Two cases can then happen, which are handled at lines 29–36:

1. If m = m then the algorithm has succeeded in computing mP , which is
equal to m = m. In this case the domains of the SU-box of D are proved to
contain only max-solutions of P :

∀〈x〉 ∈ D , box(〈x〉) ⊆ MaxSol(P). (14)

Furthermore, the max-solutions which are not in D obviously have to be in the
SU-box of:

B = {〈[x],S,U〉 ∈ E : (#S) + (#U) ≥ m}. (15)

As a consequence, the algorithm outputs both an inner and an outer approxi-
mation of MaxSol(P).
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2. If m < m, mP is still proved to belong to the interval [m, m]. However, the
algorithm has not been able to compute any solution of the Max-CSP P , hence
M = ∅. In this case, all the max-solutions are obviously in the domains of the
SU-boxes of:

B = {〈[x],S,U〉 ∈ D ∪ E : (#S) + (#U) ≥ m}. (16)

As a consequence of Proposition 3, constraints are correctly removed U and
possibly added to S while no solution is lost. This ensures the correctness of the
algorithm (a formal proof is not presented here due to lack of space).

Remark 1. The worth case complexity of the foreach-loop at lines 11–17 is ex-
ponential with respect to the number of constraints in U . Indeed, the worth case
complexity of the loop running through lines 11–17, is (2n)q, where n is the
dimension and q is the number of constraints. This upper bound is is very pes-
simistic, and not met in any typical situation. Nonetheless, we expect a possibly
high number of boxes generated during the inflated set difference process when
the number of constraints is important. In order to bypass this complexity issue,
that could lead the algorithm to generate too many boxes within the outer and
inner contractions steps, we have chosen to switch between different contracting
operators. As soon as the number of constraints becomes greater than a thresh-
old (tc), contractions are performed with the evaluation contractor instead of
the hull contractor. This will reduce creation of boxes within the inner and outer
contracting steps, thus preventing the algorithm from falling into a complexity
pit. Experiments on relatively high number of constraints (cf. Section 7.2) have
shown that tc should be set between 5 and 10 in order to speed up the solving
process.

6 Related Work

A large literature is related to Max-CSP frameworks and solving techniques.
Most formulate the problem as a combinatorial optimisation one by minimiz-
ing the number of violated constraints. Approaches are then shared between
complete and incomplete techniques depending on the optimality criterion and
the size of the problem. For large problems, heuristic-based techniques such as
Min-conflict [13] and Random-walk [14] have proved to be efficient as well as
meta-heuristic approaches (Tabu, GRASP, ACO). However all are restricted to
the study of binary or discrete domains, and their extension to continuous values
requires to redefine the primitive operations (e.g., move, evaluate, compare, etc.).
Though some contributions have explored such extensions for local optimisation
problems (cf. e.g., Continuous-GRASP[15]), these are not dedicated to manage
numerical Max-CSPs. More general techniques built upon classical optimization
schemes such as Genetic Algorithms, Simulated Annealing or Generalized Gra-
dient can be employed to express and solve Max-CSPs, but do not guarantee
the optimality of the solution, nor compute a paving of the search space.

Regardless the fact that applications of CSP techniques in continuous domains
are less numerous than in discrete domains, both present the same need for
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Max-CSP models. Interestingly very few contributions have explored this class
of problems when optimality is required. Here, we report the contribution of
Jaulin et al. [16] that looks at a problem of parameter estimation with bounded
error measurements. The paper considers the number of error measurements
as known (i.e., mP is given beforehand) and the technique computes a Max-
CSP approximation over a continuous search space by following an incremental
process that runs the solving for each possible value of mP and decides which is
the correct one. At each step the technique relies on an evaluation-bisection.

7 Experiments

7.1 Camera Control Problem

This subsection is dedicated to the virtual camera placement example presented
in section 2. Let us recall briefly that this motivating example involves 2 variables
and 6 constraints expressed as dot products and Euclidian distances in 2D. The
corresponding paving is shown in Figure 4 while results are presented in Table 1
within the search space {[−30; 30], [1; 30]} with ε = 0.01.

Although Christie et al. [18] do not compute an outer and and inner approxi-
mation of the solution set of the Max-CSP (they only aim at computing an inner
approximation), their approach is similar enough to compare timings obtained
on the VCP example.

An advantage of our algorithm is that each SU-box contains the set of con-
straints that are fulfilled within this box. We are thus able to give the user

Fig. 4. Pavings generated by our algorithm on the VCP problem. Red boxes repre-
sent the max solution set (cf. Figure 1), while green boxes illustrate boundary boxes
encompassing the solution set.

Table 1. Approximated timings thanks to [17] for the VCP example between our
approach (PentiumM750 laptop, 1Go RAM) and Christie et al. [18](Pentium T7600
2.33Ghz 2Go RAM)

Method ε Toriginal (seconds) Tapprox (seconds)

Max-NCSP 0.01 3.2 3.2

Christie et al. 0.01 4.8 ≈ 15



216 J.-M. Normand et al.

information on which constraint is fulfilled in each part of the search space,
allowing him to choose between the different solutions of the over-constrained
problem. Indeed Figure 4 shows that the search space is divided into three con-
nected components each encompassing a different set of equivalent solutions.
An automatic connected component identification algorithm (cf. [19]) could be
processed after solving a problem with our algorithm in order to present the
user the sets of equivalent SU-boxes, allowing him to choose which constraint he
wants to be relaxed into the original problem.

7.2 The Facility Location Problem

This example is based on a well-known problem in Operational Research: the
facility location problem [20]. The problem is defined by a number of customer
locations that must be delivered by some facilities. We consider that a customer
c can be served by a facility f if the distance between f and c is smaller than
a delivery distance d. The problem consists in finding the smallest number of
facilities such that each customer can be served by at least one facility.

Although the facility location problem is not strictly speaking a Max-CSP,
we can use the Max-CSP framework to build a greedy algorithm to find an
estimation of the number of facilities. The idea consists in computing the Max-
CSP areas of the problem which corresponds to the areas of the search space that
maximises customers delivery. Instead of computing the whole MaxSol paving,
we stop the algorithm as soon as we have found a MaxSol SU-box 〈[xm],Sm,Um〉.
We then remove from the original problem all the constraints of Sm and re-
run the algorithm again. We stop when the problem is empty, i.e., when all
the constraints have been solved. The numbers of runs of the algorithm then
correspond to a number of facilities that solves the problem.

In order to test our greedy algorithm, we have implemented a basic OR tech-
nique to solve the same problem (i.e., discretisation of the search space and
resolution of a linear integer programming problem) in Wolfram Mathematica6.

In 3D this problem boils down to modeling each customer by a random 3D
position in the search space {[−5; 5], [−5; 5], [−5; 5]} and trying to position some
facilities such that the distance between the facility and the customer is inferior
to d = 2. Results are shown in Table 2. The solution found by our algorithm
involves 3× 39 variables (3 coordinates per computed facility). Each iteration of
our algorithm removes on average 13 constraints (ranging from 33 to 1 constraint
removed at each iteration) of the 500 original ones.

Although, this basic OR technique seems less efficient than our greedy algo-
rithm, this is at least encouraging and thorough experiments need to be carried
out to compare our greedy approach with more specific OR techniques.

7.3 Parameter Estimation with Bounded Error Measurements

This experiment is based on a parameter estimation problem presented in [16].
The problem consists in determining unknown parameters p = (p1,p2) ∈
6 The corresponding Mathematica notebook is available for download at
http://www.goldztejn.com/src/FacilityLocation3D.nb.

http://www.goldztejn.com/src/FacilityLocation3D.nb
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Fig. 5. Paving generated for 3 possible outliers. Red boxes represent inner approxi-
mation (i.e., satisfying at least 7 of the 10 constraints) while green boxes illustrate
boundary boxes encompassing the solution set.

Table 2. Timings for the facility location problem for 500 customers randomly gener-
ated in {[−5; 5], [−5; 5], [−5; 5]} on a PentiumM750 laptop, 1Go RAM

Method Time (seconds) Number of facilities

Greedy Num. Max-CSP 69.25 39

Basic OR technique ≈ 140 45

Table 3. Original and approximate timings obtained from a Pentium M750 laptop
processor (Max-NCSP) and from a 486 DX4-100 processor (Jaulin et al.) thanks to [17]

Method ε bisection Toriginal (seconds) Tapprox (seconds)

Max-NCSP 0.005 0.46 0.46

Jaulin et al. 0.005 ≈ 180 ≈ 1.9

([−0.1,1.5], [−0.1,1.5]) of a physical model thanks to a set of experimental
data obtained from a system.

Here the model used is a two-parameter estimation problem taken from Jaulin
and Walter [21] which is a 2D extension of a problem presented by Milanese
and Vicino [22]. In fact, the solution set of the Max-CSP does not contain the
true parameters values. Indeed, the maximum number of satisfied constraints is
9, while there are 2 outliers. This means that an outlier is compatible with the
other error measurements. Hence, the Max-CSP cannot directly help solving this
problem. From an application point of view, it is possible to provide an upper
bound on the number of outliers (this assumption is realistic since manufacturers
are able to ensure a percentage of maximum failures of their probes). Algorithm 1
is easily modified to output the set of vectors which satisfy at least a fixed number
of constraints instead of the solution set of the Max-CSP.

In order to compare our approach with [16], we set a maximum of 3 outliers,
Figure 5 shows the corresponding paving. Although Jaulin et al. do not compute
an inner and outer approximation of the solution set, Table 3 compares our re-
sults. Approximate timings have been computed using [17] in order to compare
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the results that were obtained on totally different computers. Time comparisons
are presented to give an idea of the gain offered by our algorithm, which is ap-
proximately 4 times more efficient (although no exact comparison of the pavings
computed by the two algorithms is possible, the pavings presented in [16] are
clearly less accurate than the pavings computed by our approach). Moreover, we
want to emphasize on the fact that our algorithm is much more scalable since
Jaulin et al. have to re-run their algorithm for each possible number of outliers
whereas we only need one run to compute the solution set of the Max-CSP.
Moreover our approach fully characterize this solution set w.r.t. the satisfied
constraints of the algorithm.

8 Conclusion

In this paper we have presented a branch and bound algorithm for numerical
Max-CSP that computes both an inner and an outer approximation of the so-
lution set of a numerical Max-CSP. The algorithm is based on the notion of
SU-box that stores the sets of constraints Satisfied or Unknown for each box of
the search space. Our method can address any kind of CSP: well-constrained,
under-constrained and over-constrained. The algorithm outputs a set of boxes
that encompass the inner and outer approximation of the solution set of a nu-
merical Max-CSP. For each box, it computes the sets of constraints that are
satisfied, thus giving the user additional information on the classes of solutions
of the problem. An algorithm of connected component identification could then
be applied on the solution SU-boxes in order to create regions of the search space
that share similar characteristics (i.e., that satisfies the same constraints). Users
could thus benefit from this feature when modeling conceptual design problems
for example.

Our algorithm could be extended to manage hierarchical constraints in a
predicate locally-better way [23]. Hierarchical constraints could be modeled as
different “layers” of numerical Max-CSP problems that could be solved in se-
quence, starting from the top-priority constraints down to the lowest ones and
maximizing constraints satisfaction of each “layer” of hierarchical constraints.
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