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Abstract

In this paper, we consider a network with both controllable and uncontrollable

flows. Uncontrollable flows are typically generated from applications with stringent

QoS requirements and are given high priority. On the other hand, controllable flows

are typically generated by elastic applications and can adapt to the available link

capacities in the network. We provide a general model of such a system and analyze

its queueing behavior. Specially, we obtain a lower bound and an asymptotic upper

bound for the tail of the workload distribution at each link in the network. These

queueing results provide us with guidelines on how to design a feedback flow control

system. Simulation results show that the lower bound and asymptotic upper bound

are quite accurate and that our feedback control method can effectively control the

queue length in the presence of both controllable and uncontrollable traffic. Finally,

we describe a distributed strategy that uses the notion of Active Queue Management

(AQM) for implementing our flow control solution.
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1 Introduction

In communication networks, we can classify flows as being either controllable or uncon-

trollable. The controllable flows can adjust their data rates in response to the feedback

information received from the network. Typical examples of controllable flows are TCP

flows in the Internet and ABR flows in an ATM network. On the other hand, the data rate

of an uncontrollable flow is determined by the application and cannot usually be adapted

to the network congestion status (this is typical of flows with stringent QoS requirements).

Because of the potential for networks to carry applications with diverse features, we expect

to see both controllable and uncontrollable flows in future networks. Even in a network

with only TCP-flows, some flows are so short-lived that they leave the network before being

able to adequately respond to any feedback. For example, measurements of the Internet

traffic show that a major fraction of TCP flows are short-lived flows (mainly because of

the popularity of http protocol) or mice. Since these flows do not respond well to feedback

information, they can also be viewed as being uncontrollable.

Uncontrollable flows are often generated from applications with QoS requirements, such

as the loss probability, queueing delay, and jitter etc. Hence, when there are only uncon-

trollable flows in the network, analyzing their queueing behaviors is especially important

because these QoS metrics are directly related to the queue length distribution. On the

other hand, when there are only controllable flows in the network, queueing is not such a

critical issue and most research has focused on how to distribute the link capacities (via flow

control) among the different flows such that some fairness criteria are satisfied, or the total

network performance is maximized [1, 2, 3, 4]. All of these works assume that the available

link capacity of each link is fixed (not time-varying). Under this assumption, in these works,

distributed and iterative algorithms are given and it is proven that under suitable conditions,

2



the rate allocation vector (rate of each flow) converges to an optimal point (or an allocation

that satisfies the given fairness criterion). Since the data rate of each flow will eventually

converge, the aggregate input rate to a given link will also converge to a constant. This

constant is either less than the link capacity (non-bottleneck) or equal to the link capacity

(bottleneck). So, the queue length associated with each link is either zero or a finite con-

stant. Hence, queueing is not an important issue in this case. When both types of flows are

present, uncontrollable flows, because of their QoS requirements, are generally given a higher

priority over controllable flows. While this ensures that the QoS of uncontrollable flows is

not affected by controllable flows, it also means that controllable flows can only utilize the

residual link capacity (time-varying). In this case, the objective of flow control is to maintain

high link utilization, low loss probability, and fairness [5, 6, 7, 8, 9, 10]. Most previous works

in this area have focused on a single bottleneck link and it is not easy to extend the single

bottleneck link results to a network with multiple bottleneck links. Further, those works

mainly focus on the flow control algorithm and do not shed much insight on the queueing

behavior of the controlled queue. In this paper, we will first provide a general model of a

feedback flow control system with both types of flows. Under this framework, we show that

the single link results can be easily extended to a network with multiple links. We then

analyze the queueing behavior of such a system. We believe that the queueing analysis of

such a system has significant importance because it can provide appropriate guidelines on

how to design the feedback control system. We then give an example application and discuss

how our scheme could be implemented in a distributed way. Finally, we provide simulation

results to illustrate the efficiency of our techniques.
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Figure 1: Model of a Single Link l

2 Queueing Analysis of Feedback Flow Control Sys-

tems

In this section, we analyze the queueing behavior of a feedback flow control system with

both uncontrollable and controllable flows. We consider a network with L bottleneck links

and S controllable flows. The set of bottleneck links is {1, · · · , L} and the set of controllable

flows is {1, · · · , S}. Any given bottleneck link l in the network has associated with it a

queue denoted by ql (Fig 1). For the purpose of analysis, we consider an infinite buffer

discrete-time fluid queueing model. Let al(n) be the aggregate input rate of the controllable

flows and vl(n) be the aggregate input rate of the uncontrollable flows at time n. Further,

let ql(n) be the workload at time n, Cl be the link capacity, and ρl ≤ 1 be the target link

utilization. We now describe our general flow control model. In Section 4.1, we will see

how this model can be significantly simplified under certain conditions. In our model, we

assume that uncontrollable flows always have priority over controllable flows, but at any

time n, the amount of uncontrollable traffic that leaves the queue ql cannot exceed ρlCl.
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This assumption, while not necessary for the later development of our results, ensures that

at least a minimum amount of capacity is available for the controllable flows. We now define

two queueing system qu
l and qc

l whose workloads qu
l (n) and qc

l (n) correspond to the workload

caused by uncontrollable flows and controllable flows, respectively. The sum of qu
l (n) and

qc
l (n) equals q(n) at all time n. The system qu

l is defined as the queueing system with only

vl(n) as the input and ρlCl as the link capacity. We then have

qu
l (n) = [qu

l (n − 1) + vl(n) − ρlCl]
+,

where [x]+ = x if x ≥ 0 and 0 otherwise. Here, qu
l (n) is the workload caused by the

uncontrollable flows and thus we cannot control it in any way. Let

µl(n) = [ρlCl − vl(n) − qu
l (n − 1)]+ (1)

be the residual link capacity of qu
l . Then, µl(n) + (1 − ρl)Cl is the available link capacity

for controllable flows at time n. Note, however, that the controllable flows will only utilize a

fraction of the available link capacity to ensure that the total link utilization is ρl. Ideally,

we want al(n) = µl(n) for all time n. But this is impossible to achieve in practice because

of network delays, estimation errors, etc. Hence, the best we can do is to control al(n) such

that it can track the changes in µl(n). We define qc
l as the queueing system with al(n) as

input and µl(n) + (1 − ρl)Cl as the link capacity. Then qc
l (n) is the workload caused by

the controllable flows, and is what we will focus on. The total workload ql(n) will then be

ql(n) = qu
l (n) + qc

l (n). The idea behind separating ql(n) into these components is that since

we cannot control qu
l (n), if we minimize qc

l (n), we will also minimize ql(n).

We characterize vl(n), the aggregate input rate of the uncontrollable flows on link l, by a

stationary stochastic process. Then µl(n) is a time-varying (but stationary) process and will

be used to control the data rates of the controllable flows. Let µ(n) = [µ1(n), · · · , µL(n)]T

and a(n) = [a1(n), · · · , aL(n)]T . We assume that the feedback control system is linear (i.e.,
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a(n) is a linear transformation of µ(n)) or can be approximately modeled as a linear system

(an example will be discussed in Section 3). A linear feedback control has been found to

give good results when we have video traffic as uncontrollable traffic [9, 11], and we find that

it gives good results for other types of traffic as well [10]. Note that we only assume that

the feedback control is linear. All queueing systems considered here are still non-linear. Let

µ(z) and a(z) be the Z-transforms of µ(n) and a(n) respectively. We have

a(z) = H(z)µ(z),

where H(z) is an L×L matrix and represents a causal, stable, linear, time-invariant system

[12]. For example, if there is only one controllable flow and one link in the network and the

round trip delay for the flow is 5, we may have a(n) = µ(n − 5) and H(z) = z−5. Next, we

will see how to design H(z) to achieve certain desirable properties for the controlled queueing

system qc
l .

Proposition 1 If H(1) = I and v̄l < ρlCl for all l, then āl + v̄l = ρlCl for all l, where

v̄l = E{vl(n)} and āl = E{al(n)}.

Proof: Let dl(n) be the amount of uncontrollable traffic that leaves qu
l at time n. Then,

from Eq. (1), the definition of µl(n), we have µl(n) + dl(n) = ρlCl for all n.

Because v̄l < ρlCl, q
u
l is a stable system. So, v̄l = d̄l. Now, since H(1) = I, E{µl(n)} = āl.

Hence, we have āl + v̄l = ρC.

Proposition 1 tells us that under the condition H(1) = I, the actual link utilization of

link l is fixed at ρl, our target utilization. We next focus on the behavior of the workload

for a given utilization.

Proposition 2 If H(1) = I, there exists a constant Cq such that qc
l (n) ≤ Cq for all n and

all l.
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Proof: Let Yl(n) =
∑n

j=0(al(j) − µl(j)) and Y (n) = [Y1(n), · · · , YL(n)]T . The Z-

transform of Y (n),

Y(z) =
1

1 − z−1
(a(z) − µ(z)) =

1

1 − z−1
(H(z) − I)µ(z). (2)

Since H(1) = I, z = 1 will be a zero point of H(z) − I. Hence, H(z) − I can be written as

H1(z)(1 − z−1) where H1(z) is still a stable system. Therefore,

Y(z) = H1(z)µ(z).

Note that this is a multiple input, multiple output system. Because each input 0 ≤ µl(n) ≤ Cl

(i.e., µ(n) is bounded) and H1(z) is a stable system, Y (n) will also be bounded. For any l,

n, and n0, there will exist a constant Cq such that

Yl(n) − Yl(n0) ≤ Cq.

Let qc
l be empty at time n = 0, then qc

l (n), the workload caused by controllable traffic at

time n, can be expressed as [13] [14]:

qc
l (n) = sup

0≤n0≤n

{
n∑

j=n0+1

(
al(j) − µl(j) − (1 − ρl)Cl

)}
(3)

From Eq. (3), we know,

qc
l (n) = sup

0≤n0≤n

(Yl(n) − Yl(n0) − (n − n0)(1 − ρl)Cl) ≤ sup
0≤n0≤n

(Yl(n) − Yl(n0)) ≤ Cq.

Proposition 2 tells us that qc
l (n) can be bounded by a constant (independent of n) when

H(z) is appropriately chosen. However this condition may not be sufficient to guarantee

a good flow control mechanism because the value of this constant could be loose. We are

more interested in the details of the distribution of the workload P {qc
l (n) > x}. Since µ(n)
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is stationary and a(n) is a linear transformation of µ(n), a(n) is also stationary. The steady

state workload distribution of qc
l will be given by [13] [14]

P {Qc
l > x} = P

{
sup
n≥0

Xl,n > x

}
, (4)

where Xl,n =
∑0

j=−n+1(al(j)−µl(j)− (1− ρl)Cl) (note that Xl,n is the sum of the aggregate

input rates minus the sum of the available link capacities from time −n + 1 to 0 at link l).

From Eq. (4), it follows that the stochastic properties of Xl,n will directly affect the

workload distribution. If H(1) = I, E{al(j)} = E{µl(j)}. From the definition of Xl,n, we

know that, EXl,n = −(1 − ρl)Cln = −kln, where kl = (1 − ρl)Cl. In [15], it has been

shown that when kl is fixed, VarXl,n (the variance of Xl,n) plays an important role in the

queue distribution. In general, when n goes to infinity, VarXl,n will also go to infinity.

For example, if the input process to link l is a long range dependent process with Hurst

parameter H ∈ [1/2, 1) and the link capacity is not time-varying, we have VarXl,n ∼ Sn2H ,

when n → ∞, where S is a constant. But in a controlled queueing system, we show that

VarXl,n can be bounded, as is given by the next lemma.

Lemma 1 If H(1) = I and Var{µl(n)} is finite for all l, then for each link l, there exists a

constant Dl such that VarXl,n ≤ Dl for all n.

Proof: Since µ(n) is stationary, we can easily see that VarXl,n = Var{Yl(n − 1)}. From

the proof of Proposition 2, we know that Y(z) = H1(z)µ(z), where H1(z) is a stable system.

Because Var{µl(n)} is finite for all l and H1(z) is stable, Var{Yl(n)} will also be finite and

bounded for all n and l. Hence, there exists a constant Dl such that VarXl,n ≤ Dl for all n.

Note that in practice, since 0 ≤ µl(n) ≤ Cl, Var{µl(n)} will always be finite. But in

Lemma 1, we only require Var{µl(n)} to be finite and do not require µl(n) to be bounded.
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This will be useful when we model µ(n) by a Gaussian process (as described next). We will

also see how the fact that the VarXl,n can be bounded will affect the workload distribution.

For the purpose of analysis, we assume that µ(n) is a joint Gaussian process. A Gaussian

process is a good model for the aggregate traffic in a high-speed network. Although the

traffic from each individual application may not be accurately characterized by a Gaussian

process, the aggregate traffic from many different applications is modeled quite effectively by

a Gaussian process. Note that in Fig. 1, µl(n) is the residual link capacity in qu
l and hence

it is approximately ρlCl − vl(n) (it is exactly ρlCl − vl(n), if vl(n) < ρlCl for all n). Since

vl(n) is the aggregate input rate of uncontrollable flows, it is effectively characterized by a

Gaussian process, and hence µl(n) can also be approximated by a Gaussian process (we will

also justify this approximation numerically in Section 5). Now, if µ(n) is Gaussian, Xl,n will

also be Gaussian. When H(1) = I, we know that EXl,n = −(1− ρl)Cln = −kln and VarXl,n

is bounded. Let Vl,n = VarXl,n. We have,

P {Qc
l > x} = P

{
sup
n≥0

Xl,n > x

}
≥ sup

n≥0
P {Xl,n > x} = sup

n≥0
Ψ

(
x + kln√

Vl,n

)
,

where Ψ(x) is the tail of the standard Gaussian distribution, i.e., Ψ(x) = 1√
2π

∫∞
x

e−
z2

2 dz. It

has been shown [16] that,

1 − z−2

√
2π

z−1e−
z2

2 ≤ Ψ(z) ≤ 1√
2π

z−1e−
z2

2 for z > 0 (5)

Let nl,x = argminn
x+kln√

Vl,n

. Then nl,x is the time at which P {Xl,n > x} attains its maximum

value, i.e., nl,x is the dominant time scale. Further let σ2
l,x =

xVnl,x

(x+klnl,x)2
. It has been shown

in [15] that the tail of the workload distribution is asymptotically of the form e
− x

2σ2
l,x if

Vl,n ∼ Sn2H when n is large, where H ∈ [1/2, 1) and S are constants. In our case, however,

Vl,n is not of this form since it can be bounded as shown by Lemma 1. We next study the

behavior of P {Qc
l > x} when Vl,n is bounded.
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Lemma 2 For any given link l, let Dl = supn≥0 Vl,n be finite, then

lim
x→∞

Vl,nl,x
= Dl,

lim
x→∞

Dl

xσ2
l,x

= 1,

lim
x→∞

nl,x

x
= 0.

Proof: For any ε > 0, because Dl = supn≥0 Vl,n, the set {n|Vl,n ≥ Dl − ε} will not be

empty. Let n0 = min{n|Vl,n ≥ Dl − ε}. Then for any i < n0, we have Vl,i < Vl,n0 . Let

xi = kl

√
Vl,in0−

√
Vl,n0

i√
Vl,n0

−
√

Vl,i

. Then if x > xi, we have,

(x + kln0)
2

Vl,n0

<
(x + kli)

2

Vl,i

.

Let x0 = max{xi|1 ≤ i < n0}. If x > x0,

(x + kln0)
2

Vl,n0

<
(x + kli)

2

Vl,i

,

for all i < n0. So, we have nl,x ≥ n0. From

(x + klnl,x)
2

Vl,nl,x

≤ (x + kln0)
2

Vl,n0

,

it is easy to show that

Vl,nl,x

Vl,n0

≥ (x + klnl,x)
2

(x + kln0)2
≥ 1.

So, for any ε > 0, there exists x0, when x > x0, Vl,nl,x
≥ Vl,n0 ≥ Dl − ε, i.e., limx→∞ Vl,nl,x

=

Dl.

Next, we will prove that limx→∞
Dl

xσ2
l,x

= 1. For any ε > 0, because Dl = supn≥0 Vl,n, there

must exist a n0 such that Vl,n0 > Dl

1+ε
. So,

Dl

xσ2
l,x

=
Dl(x + klnl,x)

2

x2Vl,nl,x

≤ Dl(x + kln0)
2

x2Vl,n0

.
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Since limx→∞
Dl(x+kln0)2

x2Vl,n0
= Dl

Vl,n0
< 1 + ε, there must exist x0, when x > x0,

Dl(x + kln0)
2

x2Vl,n0

< 1 + ε.

This also means,

1 ≤ Dl(x + klnl,x)
2

x2Vl,nl,x

< 1 + ε.

So, limx→∞
Dl

xσ2
l,x

= 1.

From limx→∞
Dl

xσ2
l,x

= limx→∞
Dl(x+klnl,x)2

x2Vl,nl,x

= 1 and limx→∞ Vl,nl,x
= Dl, it is easy to see

that

lim
x→∞

nl,x

x
= 0.

Now, we are ready to prove our main result.

Theorem 1 If Dl = supn≥0 Vl,n is finite for link l, then,

−1 ≤ lim inf
x→∞

1

log x

(
log P {Qc

l > x} +
x

2σ2
l,x

)

≤ lim sup
x→∞

1

log x

(
log P {Qc

l > x} +
x

2σ2
l,x

)
≤ 0

Proof: We first have,

P {Qc
l > x} = P

{
sup
n≥0

Xl,n > x

}
≥ P

{
Xl,nl,x

> x
}

= Ψ(
√

x/σ2
l,x) ≥

1 − σ2
l,x/x√

2πx/σ2
l,x

e
− x

2σ2
l,x . (6)

From Lemma 2, we have limx→∞
Dl

xσ2
l,x

= 1. Hence, it is easy to get,

lim inf
x→∞

1

log x

(
log P {Qc

l > x} +
x

2σ2
l,x

)
≥ −1.
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Now, for the lim sup part. Let ñx = (
√

Dl

Vl,nl,x

− 1) x
kl

+
√

Dl

Vl,nl,x

nl,x. Then,

x

σ2
l,x

=
(x + klnl,x)

2

Vl,nl,x

=
(x + klñx)

2

Dl

P {Qc
l > x} = P

{
sup
n≥0

Xl,n > x

}

≤
∑

n≥0

P {Xl,n > x} =
∑

n≥0

Ψ

(
x + kln√

Vl,n

)

≤
∑

n≥0

1√
2π

√
Vl,n

x + kln
e
− (x+kln)2

2Vl,n

≤
∑

n≥0

√
Dl√
2πx

e
− (x+kln)2

2Vl,n

=

√
Dl√
2πx

e
− x

2σ2
l,x

∑

n≥0

e
− 1

2

[
(x+kln)2

Vl,n
− x

σ2
l,x

]

≤
√

Dl√
2πx

e
− x

2σ2
l,x


ñx +

∑

n≥ñx

e
− 1

2

[
(x+kln)2

Vl,n
− (x+klñx)2

Dl

]


≤
√

Dl√
2πx

e
− x

2σ2
l,x


ñx +

∑

n≥ñx

e
− (2x+kln+klñx)(kln−klñx)

2Dl




≤
√

Dl√
2πx

e
− x

2σ2
l,x

(
ñx +

∑

n≥0

e
− (kln)2

2Dl

)

≤
√

Dl√
2πx

(ñx + A)e
− x

2σ2
l,x ,

where A is a constant. Since limx→∞
√

Dl√
2πx

(ñx + A) = 0, when x is large enough, we have

P {Qc
l > x} ≤ e

− x

2σ2
l,x .

Hence,

lim sup
x→∞

1

log x

(
log P {Qc

l > x} +
x

2σ2
l,x

)
≤ 0.
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Corollary 1 If Dl = supn≥0 Vl,n is finite for link l, then when x is large,

P {Qc
l > x} ≤ e

− x2

2Dl .

Proof: From the proof of Theorem 1, we know that when x is large enough, we have

P {Qc
l > x} ≤ e

− x

2σ2
l,x .

From Lemma 2, we also have,

lim
x→∞

Dl

xσ2
l,x

= 1.

So, it is easy to show that when x is large enough,

P {Qc
l > x} ≤ e

− x2

2Dl .

Theorem 1 tell us that when Vl,n is bounded, e
− x

2σ2
l,x is a good approximation to the

tail probability P{Qc
l > x} (note that although the theorem requires x to be large, our

simulations show that the bounds on P {Qc
l > x} are accurate even when x is small). From

Corollary 1, we know that when x is large, the tail probability of qc
l will decrease on the

order of e
− x2

2Dl . Note that this is quite different from the uncontrolled case in [15] where

Vl,n ∼ Sn2H for H ∈ [1/2, 1) and when x is large, the tail probability will decrease only

on the order of e−bx2−2H

, where b is a constant. This tell us that when VarXl,n is bounded,

the tail probability of qc
l will asymptotically decrease much faster than when VarXl,n is

not bounded. Hence, it is important to choose the design parameters correctly (e.g., set

H(1) = I). From the theorem, it also follows that an effective way to control the workload

is to bound VarXl,n and minimize the upper bound Dl.
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3 AQM Implementation Strategy

3.1 An Example of a Linearized Feedback Flow Control System

An example of a linearized feedback flow control system is studied in [17]. In [17], the actual

feedback control system is non-linear (mainly because of the non-linearity of the utility

functions). In addition, there are no uncontrollable flows and the available link capacity

for controllable flows is fixed. The feedback flow control algorithm used in [17] is called

the “optimization flow control algorithm” [2]. It has been shown in [2] that, under the

condition that the available link capacity of each link is fixed, the data rate allocation vector

will eventually converge to an optimal point or an allocation that satisfies the given fairness

criterion. A linear model is used in [17] to study the stability at the optimal equilibrium point.

Similarly, in our system with both type of flows, if the available link capacity for controllable

flows does not change significantly, the linear model should be a good approximation to

the actual system (we will verify this via simulations). Note that in [17], only bottleneck

links are considered and all data rates and link capacities are the actual value minus the

equilibrium value. For example, al(n) in the linear model is in fact the al(n) − āl in the

actual system, where āl is the equilibrium value of the aggregate input rate of controllable

flows to link l. We will use the same notation here. But in our system, since the available

link capacity for controllable flows is time-varying, the data rate allocation vector may never

converge and there may be no equilibrium value. Hence, we will use the mean value instead

of the equilibrium value. For example, āl will now be the mean value of al(n). Remember

that when we return back to the actual system, we need to add the mean value to get

the actual value. One exception is the variance (e.g., VarXl,n) because the variance of a

random variable dose not change with the addition of a constant. It is also straightforward

to check that our main result, Theorem 1, still holds after adding the mean value because
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the workload distribution is determined by VarXl,n for a given utilization.

Our linear model of the optimization flow control system [2] is given as follows. At each

link l, feedback information or price pl(n) is calculated.

pl(n) = pl(n − 1) + ml(al(n) − µl(n)), (7)

where ml > 0 is a parameter (step size) used in the link algorithm at link l. Note that in

[2, 17], since there are no uncontrollable flows in their system, the available link capacity Cl

is fixed. But in our system, it is time-varying. Hence, we replace Cl by µl(n) in Eq. (7). Let

p(n) = [p1(n), · · · , pL(n)]T and p(z) be its Z-transform. We have

p(z) =
M

1 − z−1
(a(z) − µ(z)), (8)

where M is an L × L diagonal matrix, M = diag(ml). The price information is fed back to

the sources of the controllable flows . Let rs(n) be the aggregate price of all links used by

flow s, r(n) = [r1(n), · · · , rS(n)]T , and r(z) be the Z-transform of r(n). Then,

r(z) = RT

b
(z)p(z), (9)

where Rb is the delayed backward routing matrix. If flow s uses link l, [Rb(z)]l,s = z−nb
s,l

(nb
s,l is the delay from link l to the source of flow s) and 0 otherwise. At each source s, the

price rs(n) is used to calculate the data rate xs(n) = −ksrs(n), where ks > 0 is a constant

that depends on the utility function of source s. The minus before ks means that when the

price increases, the data rate will be decreased and vice versa. Let x(n) = [x1(n), · · · , xS(n)]T

and x(z) be its Z-transform. We have,

x(z) = −Kr(z), (10)

where K is a S × S diagonal matrix, K = diag(ks). Finally, the aggregate input rate a(z)

will be

a(z) = Rf (z)x(z), (11)

15



where Rf is the delayed forward matrix, [Rf (z)]l,s = z−n
f
s,l if flow s uses link l (nf

s,l is the

delay from source s to link l) and 0 otherwise.

From Eqs. (8)-(11), it is easy to get,

a(z) = − 1

1 − z−1
Rf (z)KRT

b
(z)M(a(z) − µ(z)).

Let

G(z) = Rf (z)KRT

b
(z)M, (12)

we then have

a(z) = [(1 − z−1)I + G(z)]−1G(z)µ(z). (13)

So, in this example, we have H(z) = [(1 − z−1)I + G(z)]−1G(z). Note that for the system

to be stable [17], [(1− z−1)I +G(z)]−1 should exist and be stable. It is also easy to see that

when z = 1, H(1) = I. Next, we will use this example to show how we can apply our result

to effectively control the workload caused by controllable flows.

3.2 Application

The main application of our result is to effectively control the workload caused by controllable

flows when there are both controllable and uncontrollable flows. Here, we still consider the

linearized feedback flow control system. H(z) is the feedback control system that we need

to design. Of course, H(z) cannot take an arbitrary form (because of delays, etc). Our goal

is to design a feasible H(z) that satisfies H(1) = I and also ensure that the resultant queue

length is small. Note that the algorithm used to choose H(z) (or choose the parameters of

H(z)) is not the flow control algorithm. The time-scale that it runs over is much larger than

the time-scale of the flow control algorithm. There are two approaches to choose H(z). The

first one is to minimize Dl, the upper bound of VarXn,l. The second one is to minimize the

tail probability P{Ql > bl}, which can be viewed as an approximation of the loss probability
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PL{bl}, where bl is the buffer size of link l. Under the Gaussian assumption, we already

have a good upper bound of P{Ql > bl} from Theorem 1. Let Pu{bl} be the upper bound of

P{Ql > bl}, then we could minimize Pu{bl}. Note that the first approach is more general (see

Section 4.2), while the second approach may have better performance when the Gaussian

assumption holds. When there is only one bottleneck link in the network, examples using the

first approach are shown in [10, 18]. In a network with multiple bottleneck links, the problem

is more complicated. Each bottleneck link l may have different Dl or different Pu{bl}. In

most cases, we cannot minimize all the Dl’s or all the Pu{bl}’s at the same time. Hence,

we have to set an objective, for example, min max Dl, or min
∑

l Dl, or min maxl Pu{bl}, or

min
∑

l Pu{bl}. In the rest of this paper, we will use min
∑

l Pu{bl} as the objective when

there are multiple bottleneck links. Next, we will use the example that is discussed in

Section 3.1 to show how to design H(z) in a multiple bottleneck link network.

From Section 3.1, we know that H(z) = [(1 − z−1)I + G(z)]−1G(z), where G(z) =

Rf (z)KRT

b
(z)M . It is easy to show that H(1) = I. Hence, the first condition is satisfied.

We also see that Rf (z) and Rb(z) are determined by routes and delays and hence cannot

be changed. K is dependent on the utility functions which are chosen by the end users and

cannot be changed either. So, the only parameters that can be tuned are the elements of

matrix M . Remember that M is an L × L diagonal matrix whose components are given by

the step-size parameters ml in Eq. (7). In [17], ml corresponds to important AQM (Active

Queue Management) parameters. If M is not correctly chosen, the feedback control system

may not be stable. Some guidelines are given in [17] on how to choose M to make the system

stable. However when there are uncontrollable flows, even if the system is stable, a poor

choice of M may result in a large workload. Hence, M needs to be carefully chosen such that

not only is the system stable, but also the workload is effectively controlled. We now briefly

describe how to choose M if we knew the global information such as Rf (z), Rb(z), K, and
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the stochastic properties of µ(n) = [µ1(n), · · · , µL(n)]T . In Section 3.3, we will discuss how

to choose M in a distributed way. For any given M , since we know Rf (z), Rb(z), and K, we

can easily get G(z) and hence H(z). From a(z) = H(z)µ(z) and the stochastic properties

of µ(n), we can calculate the stochastic properties of a(n). Since VarXl,n only depends on

the stochastic properties of a(n) and µ(n), we can calculate VarXl,n for any l, n, and hence

Pu{bl} for any l and
∑

l Pu{bl}. Next, we can change the value of the matrix M and do the

same thing. We can calculate
∑

l Pu{bl} for all the different M ’s that we are interested in

and choose the M that minimizes
∑

l Pu{bl}. Remember that M is an L×L matrix. When

the number of links is large, this method requires not only global information but also a lot

of computation time. Hence, even though the algorithm runs over a much larger time-scale

than that of flow control, it may still be not practically viable.

3.3 Distributed Algorithm

From Section 3.2, we know that the feedback flow control parameters (e.g., M) need to be

carefully chosen according to the stochastic properties of the uncontrollable flows. The main

difficulty is how to choose a good set of parameters in a simple and distributed way. Since

different flow control algorithms use different set of parameters, there is no general distributed

method to choose parameters. In this section, we will still use the example discussed in

Section 3.1 and 3.2. In addition, we assume that µl1(n) and µl2(n) are independent if

l1 6= l2. This assumption is reasonable if most flows that use l1 are different from flows that

use l2 (if this is not true, i.e., most flows that use l1 are the same flows that uses l2, typically,

only one of the links, l1 or l2 will be a bottleneck link and we can ignore the non-bottleneck

link). We also assume that ml � 1 for all l. Let Gij(z) be the element at row i and column

j of matrix G(z) = Rf (z)KRT

b
(z)M . Since ml � 1 for all l, we will ignore all terms with

order of m2
l or with higher order. Remember that VarXl,n = VarYl(n− 1) and from Eq. (2),

18



we have,

Y(z) =
1

1 − z−1
(H(z) − I)µ(z) = −[(1 − z−1)I + G(z)]−1

µ(z).

Now, if we ignore all terms with order m2
l or higher, we have

Yl(z) = − µl(z)

1 − z−1 + Gll(z)
, (14)

where Yl(z) and µl(z) are the lth item of Y(z) and µ(z) respectively. Since VarXl,n =

VarYl(n−1) and VarXl,n is the one that determines the workload distribution, from Eq. (14),

we know that the queue buildup at link l is caused mainly by the change in the available link

capacity at link l itself. Although the available link capacity change at other links also causes

queue buildup at link l, it can be ignored compared to the queue buildup caused by link l

itself. From Eq. (14), we can also see that now Pu{bl} will only depend on Gll(z) and the

stochastic properties of µl(n). Hence, each link can consider itself to be the only bottleneck

link in the network and choose ml locally to minimize Pu{bl}. In return,
∑

l Pu{bl} will also

be minimized automatically. Of course, to make the algorithm distributed, we still need to

find Gll(z) and the stochastic properties of µl(n) locally. The stochastic properties of µl(n)

(mean, covariance) can be measured locally. The difficulty now is how to obtain Gll(z).

From Eq. (12), the definition of G(z), we can see that Gll(z) should have the following form,

Gll(z) =

(
N∑

i=1

fliz
−i

)
ml,

where N is the maximum delay. Now, our task is to obtain fli for 1 ≤ i ≤ N . From Eqs. (8),

(12), and (13), making the same approximation as before, we get

al(z) = −Gll(z)

ml

pl(z) + Ol(z) = −
(

N∑

i=1

fliz
−i

)
pl(z) + Ol(z), (15)

where pl is the price and Ol is a linear combination of µl1(n) for l1 6= l. Writing Eq. (15) in

the time domain, we have,

al(n) = −
N∑

i=1

flipl(n − i) + Ol(n). (16)
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Now, we multiply µl(n− 1) to both sides of Eq. (16) and take expectations. Since µl(n) and

µl1(n) are independent if l1 6= l and Ol(n) is a linear combination of µl1(n) for l1 6= l, we

have

Coval,µl
(1) = −

N∑

i=1

fliCovpl,µl
(1 − i).

Repeating the procedure for µl(n− 2), · · · , µl(n−N), we will have N equations and now we

can calculate fli, 1 ≤ i ≤ N . Note that al(n), µl(n), and pl(n) are all parameters that can

be locally obtained at link l. Hence, we can estimate fli locally at link l.

The following summarizes our distributed algorithm for finding a good set of values of

matrix M . We initially set M to be a value such that the feedback control system is stable

(e.g., we can follow the guidelines of [17] to find such a M). The initial set of M may not be

good in terms of performance (i.e., effectively controlling workload). We then run the flow

control algorithm (e.g., optimization flow control algorithm [2] with µl(n) in place of Cl).

Each link l can then measure the stochastic properties of µl(n), al(n), and pl(n) and estimate

fli, 1 ≤ i ≤ N (or Gll(z)). Once Gll(z) and the stochastic properties of µl(n) are known,

from Eq. (14) and Theorem 1, we can calculate Pu{bl} for any given ml. We can then find

the value of ml that minimizes Pu{bl} and set that value to ml. Note that our distributed

algorithm is not the flow control algorithm (in our example, the flow control algorithm is the

optimization flow control algorithm [2]). It is the algorithm to find a good set of parameters

for the flow control algorithm. Once the network configuration (K, Rf (z), Rb(z), and the

stochastic properties of µl(n) here) do not change significantly, the set of parameters that

are chosen by our algorithm will keep working well. Hence, this algorithm does not need to

run on the time-scale of the flow control algorithm. It only needs to run on the time-scale

of changes in the network configuration.
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4 Discussion

4.1 Simplified Flow Control Model

The flow control model (Fig. 1) that we have described in Section 2 can be significantly

simplified if vl(n) ≤ ρlCl for all n. Under this condition, qu
l will always be empty and

µl(n) = ρlCl − vl(n). The available link capacity for controllable flows will be Cl − vl(n).

This simplified model has been widely used [6, 7, 9]. However we should keep in mind

the requirement vl(n) ≤ ρlCl for all n, otherwise, the available link capacity calculated by

Cl − vl(n) may be negative. An interesting property of this simplified model is that the

workload ql(n) will be the same regardless of whether the uncontrollable flows are given a

higher priority than controllable flows or not. If the uncontrollable flows are given a higher

priority, qu
l will always be empty and ql(n) = qc

l (n). Since the input rate to qc
l is al(n) and

the available link capacity is Cl − vl(n), we will have

ql(n) = [ql(n − 1) + al(n) + vl(n) − Cl]
+. (17)

If the uncontrollable flows are not given high priority, the input rate to ql will be al(n)+vl(n)

and the link capacity will be Cl. The workload ql(n) will take the exact same form as in

Eq. (17). So, the workload will be the same in either case. This property makes the simplified

model suitable for a TCP network where the only uncontrollable flows are short-lived TCP

flows. Internet traffic measurement shows that although a major fraction of TCP flows are

short-lived, the total bandwidth utilized by those short-lived TCP flows is in fact quite small

compared to the total link capacity. Hence, it is reasonable to assume that vl(n) < ρlCl and

to use the simplified model. In a real TCP network, short-lived TCP flows will have the

same priority as other TCP flows. But our analytical results will still hold because, as we

have shown, the workload is not affected by whether the short-lived TCP flows are given

21



high priority or not. Although our analysis does not require this simplification, this model

appears reasonable and useful in the context of TCP traffic control. In our simulation of

TCP networks, we use this simplified model.

4.2 Non-Gaussian Process

Theorem 1 is based on a Gaussian assumption on the available capacity. However, our first

approach to control the workload (i.e., bound VarXl,n and minimize the upper bound Dl) is

general and we expect it to perform well even when µ(n) is not Gaussian. The not-so-rigorous

explanation is as follows. From Eq. (4), we know that

P {Qc
l > x} = P

{
sup
n≥0

Xl,n > x

}
.

Let nl,x be the time at which P{Xl,n > x} attain its maximum value. Then it is well

known that a good lower bound approximation to P{Qc
l > x} is P{Xl,nl,x

> x} [14]. Since

EXl,nl,x
= −klnl,x where kl is fixed once the link utilization is fixed, we expect that if we

can make the variance of Xl,nl,x
smaller, P{Xl,nl,x

> x} and hence P{Qc
l > x} will also be

smaller. Since we know that VarXl,n can be bounded, if we can minimize the upper bound

Dl, we should be able to effectively control the workload.

5 Numerical Results

From Theorem 1, we can see that when x is large, we have Ψ(
√

x/σ2
l,x) ≤ P{Qc

l > x} ≤

e
− x

2σ2
l,x . Hence, Ψ(

√
x/σ2

l,x) is a lower bound of P{Qc
l > x} and e

− x

2σ2
l,x is an asymptotic

upper bound which we will call the MVA bound following the terminology in [15]. The

next two simulations illustrate the accuracy of these bounds. In both simulations, there is

only one link and one controllable flow. The linear feedback control system is H(z) = z−5,
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Figure 2: Tail probability at a link with Gaussian process as uncontrollable traffic

where 5 is the round trip time for the controllable flow (the time unit is 1msec). In the first

simulation, the link capacity is 200Mbps and the target link utilization is set to 98%. The

aggregate input of uncontrollable flows to the link is a Gaussian process with mean 100Mbps.

In the second simulation, the link capacity is 400Mbps and the utilization is 99.8%. The

uncontrollable flows are 3000 voice flows and the mean rate of aggregate uncontrollable flows

is 341Mbps. The results are shown in Figs. 2 and 3. We can see that in both simulations, the

MVA bound is in fact a good upper bound even when x is small. In Fig. 3, we can also see

that although each voice flow traffic is not Gaussian, the aggregate traffic can be modeled

quite accurately by a Gaussian process.

In the next set of simulations, we consider a network with multiple links. The network

has three links (as shown in Fig. 4). The link capacities of link 0, 1, 2 are 500Mbps, 200Mbps,

and 400Mbps, respectively. The propagation delay of the three links are 1msec, 2msec, and

3msec, respectively. There is no uncontrollable traffic on link 0. The aggregate input of
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Figure 3: Tail probability at a link with voice as uncontrollable traffic
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Figure 4: Multi Link Network
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Figure 5: Tail probability at link 1

uncontrollable flows to link 1 is modeled by a Gaussian process with mean 100Mbps. The

uncontrollable flows to link 2 are 3000 voice flows and the mean rate of aggregate traffic is

341Mbps. There are three controllable flows. Flow 0 uses all links. Flow 1 uses only link

1. Flow 2 uses only link 2. It is easy to see that link 0 is not a bottleneck link. For the

two bottleneck links, link 1 and link 2, the target utilizations are set to 99.5% and 98%

respectively. We use the modified version of the optimization flow control algorithm [2]

described in Section 3 to control the controllable flows. The utility functions used are the

same as the one suggested in [17].

We first set the AQM parameters m1 = m2 = 0.048. Our simulation results are shown

in Figs. 5 and 6. We can see that the lower bound and MVA upper bound accurately

characterize the tail probability for both bottleneck links. Next, we will show how the AQM

parameters (m1 and m2 here) can affect the performance of the feedback flow control, and

how to choose these AQM parameters. We compare three sets of AQM parameters. In the
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Figure 6: Tail probability at link 2

first set, we follow the guidelines in [17] and set m1 = m2 = 0.005. In the second set, we

assume that we have global information. With the method discussed in Section 3.2, we get

m1 = 0.055 and m2 = 0.05. In the third set, each link only has local information. We use

the distributed method discussed in Section 3.3 and obtain m1 = 0.04 and m2 = 0.05. Our

simulation results are shown in Figs. 7 and 8.

With all three sets of parameters, the measured bottleneck link utilization is the same as

the target link utilization (99.5% and 98% for link 1 and 2 respectively). From Figs. 7 and

8, we can see that choosing M correctly is important to the performance of the feedback

flow control. When the elements of M are properly chosen, the workload can be significantly

reduced. We also see that when the parameter M is designed with only local information,

the system performance is close to the case when the parameter is designed using global

information.

In the next simulation, we use the ns simulator. We simulate one bottleneck link in
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Figure 7: Tail probability at link 1
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Figure 8: Tail probability at link 2
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Figure 10: NS simulation: VarXn
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the network. The link capacity of the bottleneck link is 200Mbps. The mean rate of the

aggregate uncontrollable flows is 100Mbps. The uncontrollable traffic is generated by a

Gaussian process and is carried by UDP packets. There are 100 TCP flows (controllable

flows). The round trip time of each TCP flow is 10msec. The router uses a modified REM

algorithm in which the price is calculated by p(n+1) = [p(n)+m(a(n)+ v(n)− ρC)]+. The

target link utilization is ρ = 96% and the buffer size is 1200 packets. Our simulation results

are shown in Figs. 9 and 10. From Fig. 9, we can see that with different REM parameters, the

queue distribution can be quite different. Because TCP uses AIMD type window-based flow

control, the MVA bound (derived from the fluid model) does not capture the tail probability

as well any more. However VarXn is still important to the queue distribution. In Fig. 10,

we show the corresponding VarXn. We can see that the smaller the VarXn (in the case

m = 0.007), the smaller the queue length. Hence, in a TCP network, our first approach

described in Section 3.2 (minimizing VarXn) is still an effective way to control the loss rate.

6 Conclusion

In this paper, we consider feedback flow control systems with both uncontrollable and con-

trollable flows. We give uncontrollable flows high priority and focus on the workload that is

caused by the controllable flows. We assume that the feedback control system is linear and

find that, under certain conditions, the variance of the net input over a given time period

can be bounded by a constant (not dependent on the length of the time period). We then

analyze the queueing properties under a Gaussian assumption and derive a lower bound and

an asymptotic upper bound for the tail probability of the workload. Our simulations show

that these bounds are quite accurate when the aggregate traffic can be approximated by

a Gaussian process. We also discuss how to apply our result to a network with multiple
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bottleneck links and how to find appropriate flow control parameters in a distributed way

to effectively control the workload.
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