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Bimaterial Interfacial Crack 
Growth With Strain Gradient 
Theory 
The purpose of this paper is to investigate the ejfect of material heterogeneity on damage 
evolution and subsequent crack propagation in bimaterial systems. Strain gradient theory 
analysis reveals that a higher stress triaxiality always occurs on the .softer material side 
due to the material mismatch in yield capacity and the corresponding strain gradient 
along the interface. High stress triaxiality is a major condition which promotes ductile 
damage and facilitates crack growth. To investigate this link, numerical simulations of 
ductile interface crack growth are performed using a damage based constitutive model. 
Both the numerical and experimental results show that a crack may grow along the 
interface or deviate into the softer material, but never turn into the harder material. The 
theoretical and numerical analysis reveal three factors which strongly affect the direction 
of crack growth and the resistance capacity of the bimaterial system against fracture. 
These are the boundary conditions which determine the global kinematically admissible 
displacement field, the stress/strain gradient near the interface due to the material 
mismatch, and the distance from the crack tip to the interface. 

1 Introduction 
Experimental observations reveal that the fracture behavior of 

an interfacial crack in a bimaterial system differs from that of the 
homogeneous case. Figures 1 and 2, taken from reference by (Hao 
et al., 1996), show two extreme cases where the bonded materials 
differ in yield strength and hardening properties. In Fig. 1, the 
processes of micro-void nucleation, growth and coalescence result 
in crack growth along the interface in a TPB specimen, whereas in 
Fig. 2 the crack in a CCP specimen grows away from the interface 
and into the softer material. Crack growth is determined by mate
rial toughness, crack geometry, and the boundary conditions; and 
it is also directly relevant to the capacity of the structure to resist 
fracture and failure. The fracture toughness of a bimaterial speci
men is usually lower than that of the homogeneous specimen 
subjected to similar boundary conditions. This decrease is strongly 
dependent on the crack growth path. For instance, the fracture 
toughness for crack growth along an interface (Fig. 1) is much 
different than crack growth along a shear band (Fig. 2). 

IVIaterial heterogeneity and material compounds with a mis
match in mechanical properties are frequendy found in many 
applications. The following questions are therefore of vital interest 
to both theoretical analysis and application: 

• What is the effect of the material mismatch on crack growth 
behavior in a bimaterial system? 

• What is the relationship between a growing interface crack 
path and the fracture toughness of the system? 

In the past decade considerable effort has been concentrated on 
the interface crack problem via experimental investigation (I. E. 
Reimanis, 1990; Evans and Dalgleish, 1990; Petrovski and Kocak, 
1993), numerical simulation (Shih and Asaro, 1991; Zywicz and 
Parks, 1992; Xu and Needleman, 1995), and theoretical analysis 
(WiUiams, 1959; Hutchinson et al., 1987; Rice, 1988). From the 
experimental research for homogeneous materials it is well known 
that crack growth, especially in a ductile material, is the accumu
lation of localized large plastic strain and damage in the form of 
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voids, micro-cracks, or other kinds of micro-defects. An increasing 
amount of experimental observation demonstrate that the evolution 
of this damage, e.g., the void nucleation that is debonding the 
interface, starts at a very small length scale (less than 1 jam). 
Under such a small length scale, materials display strong size 
effects when a non-uniform plastic deformation takes place. These 
size effects are especially strong in a bimaterial system since the 
material mismatch usually causes a highly localized strain gradient 
near the interface (Fleck and Hutchinson, 1993). It can be antici
pated that this gradient will be extremely high if a crack tip is 
located close to the interface, as illustrated in Fig. 3. 

To analyze interface cracking phenomena the strain gradient 
theory has been developed (Fleck and Hutchinson, 1993; Fleck and 
Hutchinson, 1997). Based on a multi-scale framework linking the 
micro-scale notion of statistically stored and geometrically neces
sary dislocations to the mesoscale notion of plastic strain and strain 
gradients, a mechanism-based theory of strain gradients (MSG) 
has been proposed recently (Gao et al, 1998; Huang et al., 1998). 
In the present work, the strain gradient theory is applied to obtain 
a more precise understanding of the stress state and crack growth 
behavior near an interface. The main conclusions and contributions 
of this research are as follows; 

• A perturbation solution of the stress jump over the interface 
in a bimaterial system has been derived based on the mech
anism based strain gradient theory (Gao et al., 1998; Huang 
et al., 1998). The solution indicates that a high stress triaxi
ality takes place on the softer material side whereas on the 
harder material side the strain gradient is higher. The rela
tionships between the length scales, mismatch degree, and 
the stress and strain gradient are given. 

• To investigate the link between the high stress triaxiality and 
the onset of the subsequent ductile crack growth, a ductile 
damage model has been used in numerical analysis. A pro
cedure to simulate interface crack growth and the corre
sponding fracture toughness is introduced and several exam
ples are illustrated. The numerical results are consistent with 
the theoretical results from the perturbation solution. 

• From these investigations, it is our contention that the major 
effect of the material mismatch in yield capacity is to intro
duce a high stress triaxiality in the vicinity of the interface. 
This high stress triaxiality promotes the evolution of damage 
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Fig. 1 Damage evolution and ductile crack growth along the interface 

in the form of void nucleation, growth and coalescence and 
results in crack growth along the interface. 

2 Applying Gradient Plasticity to Interface Mechanics 

2.1 Strain Gradient Plasticity. The strain gradient theory 
as well as MSG have been developed to consider the effects of 
length scale when a non-uniform strain exists. In the present work, 
we employ the notation introduced in (Gao et al, 1998). 

We define the strain e,j and the strain gradient ri,ji as: 

(uij + Uj^i); r]ijk = uu,ij (2.1) 

where the subscript ",," denotes the differential operation with 
respect to the (th coordinate. 

The flow stress cr, after incorporating the strain gradient effect, 
is: 

Fig. 2 Crack grows away from the Interface 

where e, TJ are the effective strain and effective strain gradient, 
respectively: 

6 = [Nye,;;]'"; T) = Hi7«*T?,yt]' 

The characteristic material length / is given by 

/ 

(2.3) 

(2.4) 

where /A, cry, and b denote in turn Young's modulus, yield 
strength, and Burgers' vector; a is a constant calibrated from 
experiments. The constitutive equations established in MSG (Gao 
et al., 1998; Huang et al., 1998) are 

. 26,, 
3e 

' ijk " /: (r,. - n, 
<Tj/(i)/'(i) 

n ijk (2.5) 

where Y and 11 are functions of e,j and -rjiĵ . For details see (Gao 
et al., 1998). Here the deviatoric stress tensor and the deviatoric 
coupling stress tensor, are given by: 

a = <Ty{fXe) + m' (2.2) k ^ijO'kl 'ijk HSlkTjpp + SjtTi ) (2.6) 

Nomenclature 

a = the half length of the 
crack in CCP, or the 
total length in SE and 
SPB 

b = the scale of Burger's 
tensor 

d = diameter of the domain 
for RKPM reproducing 
integration 

/o, fc, fe, Kc = volume fraction of ini
tial voids, at coales
cence and for nucle
ation 

n, = component of the unit 
vector normal to a 
solid surface 

/,, r; = normal stress attraction 
and double stress at
traction on a surface 

CCP, SE, TPB = central cracked panel, 
single edged panel, and 
three point bend speci
men 

Kc = the accelerate rate of 
voids volume fraction 

J, •/far-field = J-iutcgral and J-integral 
computed from the far 
field 

W = specimen width 
a, (3 = material constants cali

brated from experi
ments 

e,j, Vijk = strain tensor, strain gradi
ent tensor 

€, 17 = effective strain, effective 
strain gradient 

A = flow factor 
fx, V = Young's modulu, Possion 

ratio 
a, <JY = flow stress, yield stress 

a'ij, H = stress tensor, deviatoric 
stress tensor, combined 
hydrostatic stress 

(T,„ = mean stress 
Tijk, T'ijk = coupling stress and devi-

toric coupling stress tensor 
•J) = plastic potential 

414 / Vol. 121, OCTOBER 1999 Transactions of the ASME 

Downloaded From: https://materialstechnology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



applied 

a) Homogeneous case b) Bimaterial system 

Fig. 3 An illustration of the domain where the effect of length scale may 
present 

and If is the mesoscale cell size, defined by 

III 

(Ty 
(2.7) 

where j3 is a constant calibrated from experiments. 
In the case that the length scale parameters / and /, are zero, the 

second relation in Eq. (2.5) vanishes and the first one degenerates 
to the relationship for classical small strain deformation plasticity. 
For a monotonic loading process, it coincides with classical incre
mental plasticity. 

For an incompressible solid, the stress tractions h on the surface 
of a solid body are 

it = W«t + riiia-'it - T'iji,j) + Di,{n,njnpT\jp) - DjiniTy,,) 

+ {"injT'iji, - ntn,njnp7'ijp){D^n^) (2.8a) 

where n, is the unit normal to the surface, H and Dj are the 
combined measure of the hydrostatic stress and the surface-
gradient operator, respectively: 

H — "> (Jtk 2 ijklij> Dj = (Sji, - njHk) 
dxt 

(2.8b) 

The double-stress tractions r,. tangential to the surface are 

n,njTp - nkHirijnpT'ijp (2.9) rt • 

2.2 A Perturbation Solution of the Stress Discontinuity 
Over an Interface. The bimaterial system to be studied is shown 
in Fig. 4. A plane strain condition is assumed. In the following 
analysis the superscript 7 ' and 7 / ' are used to denote the quan
tities in materials / and //, respectively. We assume that both 
materials are incompressible and no strain hardening exists, i.e. the 
perfectly plastic law, therefore for both materials the function/(i) 
Eq. (2.2) becomes: 

/ ( i ) - 1 (2.10) 

However, we allow the other mechanical properties and the length 
scale to differ between the two materials. 

On the interface shown in Fig. 4, ni = 0 and 7x2 = 1; thus the 
tangential stress traction ?i and the normal stress traction Tji 
defined by Eq. (2.1), are 

2 T ; , ^221,2 + ^222,1. 

t2 — H + 0^22 2 T 2 | 2 , 1 '''222,2 

and the double-stress tractions f, are 

(2.11) 

(2.12) 

Fig. 4 Schematic of a bimaterial system 

The continuity conditions between material "/" and "//" re
quire: 

and 

' I ' I > 

t\ 

' 2 ' 2 . 

? (2.13) 

r,;,, = T,i',, (2.14) 

Starting from these conditions, in this section we will establish 
an asymptotic solution of the stress field around the interface 
illustrated in Fig. 4 for the bimaterial system obeying Eqs. (2.2) 
and (2.5). 

From the constitutive relationships of MSG given in the previ
ous section one can find that the smallest material constant in
volved in those equations is "b" the length of Burger's vector. 
Therefore, in the region close to the interface we assume that all 
stress components can be expanded in a perturbation series in 
terms of b, while all strain and strain gradient components are 
treated as unknown variables. Then by applying the continuity 
conditions (Eqs. (2.13) and (2.14)) the coefficients of the pertur
bation series can be determined, so thejump in stress and the strain 
gradient can be established. In the following analysis only the main 
results are given. 

For both materials, the perturbation expressions of the flow 
stress (T, combined hydrostatic stress H, deviatoric stress (j',j and 
deviatoric coupling stress r'^^ have the following forms (where 
K = I or 11 refers to material / or //, respectively): 

a" = a'yii + ^Ti'̂ o)* /̂.' - H'n''yi<o''yib'y +. 
<T\f = (Tmi + ^'k>^'b' + (T\%,j{K''b'y + 

H' = Hf,, + Hf,,K'b' + HUx'bV+.. 

r^^TUK'^by+TUx'by+... 

where 

K 1-1= 3K'^f 1, 
b" 
U 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

For both materials, i.e., K = I, II, by substituting Eqs. (2.15 to 
2.19) into Eqs. (2.13) and (2.14) one can find that: 
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^^^aW^V+Oiib'^y (2.20) 

ze22 

3i^ 3i* 
+ ^(Tf'r]'^(o'^]b'' 

and 

ff=0((/)' ') ' '), 

+ 0((fe*^)') (2.21) 

0((/ j ' ' )^) (2.22) 

Comparing the first term in Eqs. (2.20) and (2.21) for /sT = / 
with that for K = II, we get the zeroth order continuity condition 
by: 

I _ irll 
2e" 

, 2 2 , (2.23) 

A statically determinant solution that satisfies this condition can be 
written as 

26?, 

eV3 cos ip 
2e^ 

i V 3 
= sin (p''; where K = I, II (2.24) 

This solution describes a slip-line field around the interface which 
can be derived directly from the characteristic field theory in 
classical plasticity (Hill, 1963), since in the zeroth order governing 
equation (2.24) there is no length scale present. The definitions of 
the angle <p' and ip" are illustrated in Fig. 4. 

From Eq. (2.24) one can find when ip' = cp" = -(-jr/2) the 
zeroth order continuity condition (2.23) can be satisfied exactly. 
The corresponding zeroth order hydrostatic stress jump over the 
interface is 

H'a (0) ^ ( 0 ) - V3 (2.25) 

By comparing the first order term forK = I in Eqs. (2.20) and 
(2.21) with that oi K = II, respectively, and omitting some 
intermediate steps, we can express the jump in strain gradient over 
the interface from the first order solution of the continuity condi
tion of ?, direction: 

V" 

(fx'V)^ 
{t,'a"y 

Similarly, from the solution of ?2 

K'H 2{K'H'O- K"H?)-r)"a) "T-l'l\.^'l,J' 

(2.26) 

(2.27) 

the first order solution for the jump of the combined hydrostatic 
stress. 

Leaving out terms higher than 0{b') and assuming K' = K" = 
1 in Eq. (2.19) we determine the jump in hydrostatic stress over the 
interface: 

H'-H" , , / 1 
^ ^ = ( l + 2 V / 0 ( ^ 

o-'j,o-i,'V3 (2.28) 

Assuming that a' = a" and K" = 1, from Eq. (2.26) the 
relationship between the ratio rj'/r}" and ay/a-y, the mismatch 
degree in yield strength, are displayed in Fig. 5 where assuming 
the material / is softer than the material //. From this diagram one 
observes that the strain gradient at the harder material side, i.e., 
r]", is lower than that at the softer material side, especially when 
the ratio IJ."/IJL' is large. However, by increasing the ratio cr'//crj. 
this difference will be reduced. This effect can be explained by 
considering that the higher yield strength material contains the 
deformation caused by the material discontinuity in smaller rela
tively area near the interface as compared to that of the softer 
material. 

Fig. 5 Tlie discontinuity of strain gradient over an interface 

From Eq. (2.28), the discontinuity in the combined hydrostatic 
stress versus the mismatch degree in yield strength are displayed in 
Fig. 6. In contrast to the discontinuity in strain gradient, one finds 
that a higher hydrostatic stress always takes place always on the 
softer material side. 

The hydrostatic stress can be interpreted as the stress triaxiality 
at a material point. A qualitative explanation of the elevation of the 
stress triaxiality is illustrated in Fig. 7. Assuming the bimaterial 
panel is under purely homogeneous uniaxial tension, the elonga
tion and, hence, the transverse reduction of area would be higher 
in the softer material since it yields at an earlier stage. However, 
the corresponding velocity field is not admissible. The continuity 
condition of deformation requires additional transverse stress near 
the interface. These transverse stresses are tensile and increase the 
hydrostatic stress in the softer material, while compressive and 
reduce the hydrostatic stress in the high strength material. 

2,3 The Asymptotic Stress-Strain Field at an Interface 
Crack Tip. The analysis in the previous section shows that the 
slip line solution can be used as the zeroth order approximation of 
the solution with strain gradient theory. In this subsection, several 
slip line solutions of an interface crack problem are briefly intro
duced. 

A review of the interface crack tip field analysis has been given 
in the first section. Here the asymptotic solutions for a crack tip at 
the interface between dissimilar perfectly-plastic materials will be 
discussed. The bimaterial system is mismatched in yield strength. 

Fig. 6 Tlie discontinuity of stress triaxiaiity versus mismatcfi degree 
over an interface 
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0 

o;„=(a,'+a,', )/2 

a;;=(c,"+a;')/2 

(Plane Strain) 

Fig. 7 A qualitative explanation of tlie discontinuity of stress triaxiaiity Fig. 9 Stress distributions around tiie Interface cracic tip; slip-line and 
over an interface FE solution 

For a sharp crack tip the slip-line solution has been constructed 
as shown in Fig. 8, where material / is softer than material //, i.e., 
(jy > (J'Y and perfect bonding is assumed. 

At the horizontal line ahead of the crack tip, the conclusion 
drawn from Eq. (2.28) is also available, i.e. in the softer material 
the stress triaxiality is higher than in the harder material. From the 
zeroth order continuity condition over interface (Eq. (2.25)) one 
can conclude that when cr'i,/cr" is less than about 0.7, the harder 
material remains in the elastic regime. Another conclusion from 
the slip-line solution is: in the harder material the maximum hoop 
stress does not occur just ahead the crack tip, but away from the 
interface, as shown in Fig. 9. For comparison, a finite element 
solution is also displayed in this diagram. Both finite element and 
slip-line solution yield the same conclusion. 

The slip-line field in Fig. 8 is derived assuming no blunting at 
the crack tip. Assuming the profile of a blunted crack tip is 
semi-similar during deformation, a slip-line field has been con
structed as shown in Fig. 10. It is contained by the solution in Fig. 
8 where the constant stress regions A and C in the softer material 
side remain, the fan region B focuses intense strain into the region 
"abed" directly ahead of the blunted tip. A kiriematic field has also 
been constructed along the slip lines ac and be. A maximum shear 
strain may take place at the point C. On the other hand, in the 
region "acd" plastic deformations are constrained by the harder 

a. 

1)" 
II 

|i 

> 0 Y 

= 1)' 
I 

= l̂ 

G : elastic wedge / j £ \ ) / 11 . 

Fig. 8 An asymptotic cracl< tip silp-llne field 
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phase below the interface which induces a high stress triaxiality. 
The maximum stresses appear at the point "d." If aJ-Zcr'/ < 0.707 
we obtain the stresses at this point from the slip-line solution: 

0-22 
C ' , 

(2.29) 

2.4 Linliing of the Theoretical Analysis to Ductile Damage 
Induced Crack Growth. Ductile fracture is the accumulation 
process of damage in the form of voids. The nucleation, growth 
and coalescence of micro-voids are mainly governed by the inten
sity of stress triaxiality (Rice and Tracey, 1969). The solutions 
derived in the previous two subsections (Eqs. 2.28 and 2.29) reveal 
that a high stress triaxiaUty exists at the softer phase side. In 
addition, the quantitative relationship between strain gradient, ma
terial mismatch, and the elevation of stress triaxiality is given. 
There is no doubt that this elevated stress triaxiality has strong 
effects on the fracture toughness for a bimaterial system. 

Considering an elastic-plastic material element without damage, 
it enters a state of yield when 

Cr — CTy = 0 (2.30) 

If ductile damage exists at scales coarser than that of the strain 
gradient theory concerned, the yield condition for the material 
element can be written generally in the form as follows (Hao et al., 
1999): 

, . - • ' • • c 

H 

Fig. 10 An asymptotic slip-line field around a blunted Interface crack tip 
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fT n 

Fig. 11 An illustration of the two possible cracic growth paths, where y 
ranges from mM to IT/2 

,0-y dy ' 

1 -I \fm^ exp -— 
mao/ ^\ 2(Ty 

1 = 0 (2.31) 

where we use a,„ to represent the stress triaxiality. From this 
relation one observes that if the volume fraction of voids; / , is 
nonzero, the material element yields by increasing either the equiv
alent stress a or the stress triaxiality. The yield surface is deter
mined by the combination of the material yield stress ay and the 
damage/. When/reaches its critical value, the yield shrink to the 
original point, i.e., a — 0, cr,„ = 0. It refers to the fully collapsed 
state and a damage induced cracking takes place at this material 
element. 

Thus, a damage induced crack occurs easily along an interface 
in the softer material, since the previous analysis indicates an 
elevated stress triaxiality exists on that side. This explains the 
experimental result presented in Fig. 1. However, Eq. (2.31) hints 
that yielding depends also upon CT which is directly related to the 
shear stress and strain. The slip-line field solution in Fig. 10 
predicts a kinematic displacement field which can be activated 
along shear bands when the global boundary conditions do not 
provide enough constraint. Under this situation, the crack will 
grow following the localized large strain along the shear band, and 
subsequently away from the interface, as illustrated in Fig. 11. This 
conclusion coincides with the observation shown in Fig. 2 of 
which tearing dominates and crack grows along the shear band. 

3 Numerical Procedures and Crack Growth Simula
tion 

In this section numerical simulations are performed to demon
strate the effects of crack growth path on fracture toughness 
quantitatively and to verify the conclusions obtained in the previ
ous section. 

3.1 Numerical Procedures. To simulate ductile crack 
growth, the plastic potential from Eq. (2.31) and the damage 
evolution law introduced in (Chu and Needleman, 1980; Needle-
man and Tvergaard, 1987) have been applied to establish the 
constitutive relationship. 

The finite element method and meshless method (Belytschko et 
al., 1994; Liu et al, 1996; Liu et al, 1995; Liu et al., 1995; Liu and 
Chen, 1995; Liu et al., 1998; Liu et al., 1996) are employed in the 
numerical simulations. In the finite element simulation, to avoid 
the volumetric locking due to the additional constraint caused by 
material mismatching, the multiple quadrature under-integrated 
element (W. K. Liu, 1985; Liu et al., 1994; Liu et al, 1997), an 
element free from shear and volume locking and with hourglass 
control, has been used in the finite element analysis. The imple
mentation of the constitutive law with damage into finite element 
and RKPM (Reproducing Kernel Particle Method) is introduced in 
(Hao et al., 1999). For a discussion of meshless methods, readers 
are urged to consult (Belytschko et al., 1994; Jun et al., 1998; Liu 

2W 

2L 

w 

a 

• 2L 

C C P a:W;L=l:4:f SE a:W:L=l:2:4 

o 
w ^^^H 

a I^^^B o 
L 

r ^_/ 

Three Points Bending B a r a:W:r:L=l:2:4.2:8 

Fig. 12 The two types of specimens analyzed 

and Jun, 1998; Liu et al, 1997; Chen et al., 
cited therein. 

1996) and references 

3.2 The Specimen Analyzed. The Central Cracked Panel 
(CCP) and the Singer Edge panel (SE) under tension and the 
notched three point bending specimen have been analyzed, see Fig. 
12. The stress-strain curve of a uniaxial tension specimen made of 
20MoMnNiB mild steel has been used in the computation. The 
mechanical properties are listed in Table 1, where n denotes the 
strain hardening exponent. Several mismatch specimens with vary
ing yield strength in the harder phase have been computed. The 
values of the ratio My( = o-Vo''/) are given in the examples dem
onstrated following. 

The yield condition from Eq. (2.31) has been used in the 
numerical simulation. The damage parameters calibrated in (Hao 
et al., 1999) have been used, see Table 2. 

3.3 Numerical Simulation and Discussion. In this section 
results from performed simulations under various conditions are 
discussed. 

Figure 13 shows the simulated fracture toughness (J-R curve) 
for the bimaterial CCP specimens in which a crack is located in the 
softer material and parallel to the interface. The J-integral is 
computed from the global energy release rate of the specimen. A 
distance between the crack tip and the interface may exist which is 
denoted by "^." Comparing the computed J-R curve for the case 

IJL (MPa) 

21000 

/o 

0.0001 

Table 1 Mechanical properties 

V a, (MPa) 

0.3 490 

Table 2 Damage parameters 

/ K, 

0.03 3 

n 

=0.21 

/» 

0.004 
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Fig. 13 Simulated J-R curves for varying values of ( 

0.0 0.25 0.50 0.75 1.0 1.25 1.5 1.75 2.0 

1\ a (mm) 

Fig. 15 Simulated J-R curves for varying amounts of transverse 
constraint 

when a crack is just on the interface (^ = 0), a significant increase 
of the fracture toughness can be seen when a crack is a small 
distance away from the interface. Obviously, the high strain gra
dient and the stress triaxiality due to material heterogeneity are 
only localized in the immediate vicinity of the interface. When a 
crack tip 

Assuming that a crack is located just at the interface of the 
subject CCP specimen and then by varying the mismatch degree 
[My = (a'y/a'y)], thc resulting simulated J-R curves are shown in 
Fig. 14. A strong reduction in the crack growth resistance can be 
seen when the mismatch degree in yield strength increases (My 
decreases). But this tendency of the toughness reduction does not 
hold after My is less than 0.64. This result coincides with the 
prediction obtained from the slip-line solution in Fig. 8 which 
claims that when the ratio (a-'y/a") < 0.707 the zeroth solution of 
the stress distribution in material / becomes independent to My. 
Meanwhile material / / remains in an elastic state. However, it can 
be expected that the fracture toughness may change significantly 
when a very ductile material is bonded to another material with a 
high degree of mismatch, since under this situation the effect of the 
strain gradient becomes stronger. 

Figure 16 shows a simulation of the SE specimen with the 
contours of equivalent plastic strain, equivalent stress, and damage 
which represents the induced crack. The crack grows away from 
the interface as the geometry and load conditions of the SE 
specimen provide less global constraint than in the CCP. In this 
case the global kinematically admissible displacement field is 
activated. Thus, the plastic strain along the shear band dominates 
the crack tip field and the crack grows via ductile tearing. If one 
applies a tiny transverse tension (about JQ of the vertical tension) to 
the specimen, while keeping all other parameters unchanged, the 
crack grows straight along the interface, as shown in Fig. 17. 
Adding a transverse tension is identical to increasing the global 
constraint which will block shear deformation and raise the level 
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Fig. 14 Simulated J-R curves for varying values of My 
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of stress triaxiality around the crack tip. This elevated stress 
triaxiality promotes the evolution of damage in the form of micro-
voids and ductile crack growth along the interface. The corre
sponding J-R curves are displayed in Fig. 15. From this diagram 
one finds that both cases have a similar initial J-integral value, but 
after some crack growth an obvious increase in the resistance 
capacity against fracture can be seen for the crack which grows 
away from the interface and propagates into the softer material. 
From both Figs. 14 and 15, a significant change of the resistance 
curve of bimaterial specimens is observed compared to the homo
geneous case (My = 1). 

To investigate the effect of "nonlocal theory" on the numerical 
simulation, the notched bimaterial three point bending bar has been 
analyzed using RKPM. The bimaterial system is mismatched in 
Young's modulus. The crack is located in the harder phase with a 
specified distance away from the interface. The simulation results 
are displayed in Fig. 18 with the contours of damage representing 
the damage induced crack, where d denotes the diameter of the 
interpolating domain used in the meshless method (Liu et al, 
1996; Belytschko et al., 1994). In the case with a smaller d the 
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Fig. 16 Computed Interface crack growth without transverse constraint 
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Model Analyzed Experimental Observation 

interaction between the two materials and the effect of interface 
may be included in these nodes, the crack path deviates toward the 
interface then grows along it. 

From the theoretical analysis and numerical simulations we can 
conclude that an interface crack always tends to grow into the 
softer phase if no debonding takes place. It may grow along a shear 
band and deviate into the softer phase; or go straight along the 
interface. In the latter case a significant decrease in fracture tough
ness can occur compared to the homogeneous case. 

Void volume fraction / 

A a = O . ln in i 

s t ress fr22 

Void volume fraction / Stress 0-32 S t ra in e^, 

Aa = 1.4mm 

Fig. 17 Computed interface crack growth with transverse constraint 

crack keeps growing in the harder material since the imposed 
boundary conditions induce a mixed mode load on the crack tip 
which drives the crack growth away from the interface in the 
harder phase. However, when d is large enough that the domain 
influence ft for the nodes near the crack tip may cover some 

H 
Material 11 

u 

d = 0.05ram, crack keeps growing in material II. 

d=0.12mm, crack growth approaches to softer material (material I) 

Fig. 18 Effect of the nonlocal smoothing domain size on simulated 
cracl< growth 

4 Summary 
In this paper the interface crack growth problem has been 

investigated based on the mechanism-based strain gradient plas
ticity (MSG) and ductile damage theory. A perturbation solution of 
the stress and strain gradient discontinuities that occur at the 
interface have been derived. From the solution it is found that for 
a bimaterial system mismatched in yield capacity an elevated 
stress triaxiality takes place on the softer material side whereas a 
raised strain gradient occurs in the harder material. The value of 
this elevation is determined by the length scale and the degree of 
mismatch in yield strength. Numerical simulation of damage in
duced interfacial crack growth has been performed using both 
finite element and RKPM. The numerical simulation verifies the 
predictions of the theoretical analysis and matches the experimen
tal observation. The conclusions and results of this study are 
summarized in the following: 

• Two kinds of failure mechanisms exist in ductile crack 
growth. They are damage induced cracking which is mainly 
controlled by the stress triaxiality and pure ductile tearing 
dominated crack growth which is mainly controlled by the 
shear stress and strain. In a ductile fracture process both 
mechanisms may exist simultaneously. 

• The theoretical analysis indicates: the major effects of ma
terial mismatch in yield strength at an interface are to raise 
the stress triaxiality in the softer phase whereas a higher 
strain gradient exists in the harder side. This stress triaxiality 
is proportional to the degree of material mismatch in yield 
capacity and the product of strain gradient and the length 
scale. 

• Since damage in the form of void nucleation, growth and 
coalescence are mainly controlled by the level of stress 
triaxiality, this kind of damage induced crack growth will 
easily take place along an interface. In this case the bimate
rial system has a lower toughness against fracture. 

• The slip-line solution predicts a kinematically admissable 
displacement field around a blunted interface crack tip. If the 
global constraint in a specimen, provided by the specimen 
geometry and boundary conditions, is not too high, this kind 
of displacement field will be activated and the specimen will 
fully yield. Under this situation ductile tearing dominated 
crack growth may occur along the predicted slip-line, pro
vided the stress triaxiality is too high or the material is not 
sensitive to damage. 
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