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RÉSUMÉ : We consider two variants of knapsack problems with setups arising as subproblems in a Dantzig-
Wolfe decomposition approach to more complex combinatorial optimization problems. In the multiple-class
binary knapsack problem with setups, items are partitioned into classes whose use implies a setup cost and
associated capacity consumption. Item weights are assumed to be a multiple of their class weight. The total
weight of selected items and setups is bounded. The objective is to maximize the difference between the profits
of selected items and the fixed costs incurred for setting-up classes. In the continuous knapsack problems with
setups, each class holds a single item and a fraction of an item can be selected while incurring a full setup.
The paper shows the extent to which classical results for the knapsack problem can be generalized to these
variants. In particular, an extension of the branch-and-bound algorithm of Horowitz and Sahni is developed for
problems with positive setup costs. Our direct approach is compared experimentally with the approach proposed
in the literature consisting in converting the problem into a multiple choice knapsack with pseudo-polynomial size.

MOTS-CLÉS : Knapsack problem, fixed cost, setup, variable upper bound, branch-and-bound.

The Multiple-class Binary Knapsack problem with
Setups (MBKS) is defined as follows. The knapsack
has capacity W . There are n item classes, indexed by
i = 1, . . . , n, with associated setup cost, fi ∈ IR, and
setup capacity consumption, si ∈ IR+. Each class is
made of its own items (i, j) for j = 1, . . . , ni ∈ IN

with associated profit pij ∈ IR. The capacity con-
sumption of item (i, j) is assumed to be a multiple of
a class weight, wi ∈ IR+, i.e. wij = mij wi for some
multiplicity mij ∈ IN (assuming wij ≤ W ). More-
over, there are lower and upper bounds, ai ≤ bi ∈ IN ,
on the total multiplicity of items that can be selected
within each class. The objective is to maximize the
sum of the profits associated with selected items mi-
nus the fixed costs incurred for setting-up classes.

Thus, model MBKS takes the form:

max

n∑

i=1

ni∑

j=1

pi j xi j −
n∑

i=1

fiyi (1)

n∑

i=1

((

ni∑

j=1

mi j wi xi j) + si yi) ≤ W (2)

ai yi ≤
ni∑

j=1

mi j xi j ≤ bi yi ∀i (3)

xi j ≤ yi ∀i, j (4)

xi j ∈ {0, 1} ∀i, j (5)

yi ∈ {0, 1} ∀i, (6)

where xij indicates if item j is chosen within class i

and yi = 1 iff class i is setup.

When each class holds a single item, i.e. ni = 1 ∀i,
and when a fraction of an item can be taken, we
obtain the continuous knapsack problem with setups
(CKS):

max
n∑

i=1

pi xi −
n∑

i=1

fi yi (7)

n∑

i=1

(wi xi + si yi) ≤ W (8)

ai yi ≤ xi ≤ bi yi ∀i (9)

xi ≥ 0 ∀i (10)

yi ∈ {0, 1} ∀i. (11)

Observe that, when ai = fi = wi = 0 and bi = ni =
1 ∀i, all the above models boil down to a standard
binary knapsack problem. Hence, they are at least as
hard as the standard binary knapsack problem.

These problems can get simpler if fixed costs are as-
sumed to be non-negative.

Assumption 1 (restrictive) fi ≥ 0 for all i,
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or if there are no class lower bounds

Assumption 2 (restrictive) ai = 0 for all i.

The Branch-and-Bound developed in the paper are
made under these restrictive assumptions.

Model CKS arises as a sub-problem in capacitated
multi-item lot sizing problem. (Goemans 1989) stud-
ied the structure of the CKS polyhedron, derived
facet defining inequalities and proposed a heuristic
separation procedure.

Model MBKS arises as a sub-problem in a branch-
and-price approach to the cutting stock problem
(Vanderbeck 1999). The special case of model MBKS
with no setups is treated in (Vanderbeck 2002). Un-
der the assumption fi = si = 0 ∀i, it is shown that
the LP-relaxation can be solved by a greedy algo-
rithm in linear time, a result that extends those of
(Dantzig 1957) and (Balas & Zemel 1980) for the
0-1 knapsack problem (this result relies on the as-
sumption that item weights are a multiple of their
class weight); exact algorithms are derived (branch-
and-bound or dynamic programs) by adapting exist-
ing algorithms for the 0-1 knapsack problem. Vari-
ant of model MBKS are considered in the literature
(Chajakis & Guignard 1994, Jans & Degrave 2004).

The present paper proposes an analysis of models
CKS and MBKS. The aim is to show the extent to
which classical approach for the knapsack problem,
such as the depth-first-search branch-and-bound
algorithm of Horowitz and Sahni (see (Martello
& Toth 1990) pages 30-31 or (Nemhauser &
Wolsey 1988) pages 455-456) can be generalized to
variants with setups. In particular, we show that
under assumptions slightly less restrictive than As-
sumptions 1 and 2, the LP solution to these problems
can be obtained in polynomial time by a greedy
procedure. The key to these results are reformulation
as continuous knapsack problems with multiple
choice constraints (Johnson & Padberg 1981) or class
bounds (Vanderbeck 2002). The formulation are
polynomial in size while previously proposed refor-
mulation as that of (Chajakis & Guignard 1994) are
pseudo-polynomial. However, our reformulations are
only valid for the LP-relaxation: their integer coun-
terparts are not equivalent to our models. Therefore,
the greedy LP solver does not immediately give rise
to extension of standard branch-and-bound proce-
dures. The other main contribution of the paper is
a specific enumeration scheme for branch-and-bound
for CKS and MBKS that exploit the property of
optimal solutions and the greedy ordering of the LP
bound. The resulting branch-and-bound algorithms
are tested and compared to existing approaches.

1. THE CONTINUOUS KNAPSACK
PROBLEM WITH SETUPS

The formulation of the model CKS is given by (7-11).
Here, bounds ai and bi are not necessarily integer,
i.e. ai, bi ∈ IR+, ∀i. Assumption 2 can be made
without loss of generality (w.l.g.). Indeed, if ai > 0
for some i, one can transform the problem as follows:
x′

i = xi − ai yi and the lower bound is eliminated.
Moreover, we can assume

Assumption 3 (w.l.g.) pi ≥ 0 for all i.

Otherwise, xi = 0 in any optimal solution.

Assumption 4 (w.l.g.) fi ≤ 0 for all i.

Indeed, if fi ≥ pi bi for some i, it is optimal to set
xi = yi = 0 and consider the problem that remains on
the other variables. While, if 0 < fi < pi bi for some
i, then, in any optimal solution, either xi = yi = 0
or xi ≥ fi

pi
. Thus, fi

pi
can be interpreted as a lower

bound ai which can be eliminated as explained above.

Assumption 5 (w.l.g.) wi = 1 for all i.

Otherwise, one can make a change of variables x′
i =

wi xi.

In the rest of this section, we make Assumptions 2
to 4 without loss of generality, but we carry wi in
the notation for the sake of extending the results
to model MBKS where Assumption 5 is not made.
Similarly, when Assumption 1 is made, fi = 0 ∀i

(as implied by Assumption 4) but we keep fi in the
formulation.

1.1. Characterizations of optimal solutions

Some properties of optimal solutions are used to de-
velop bounding procedure. First, note that under As-
sumption 5 if data are integer, i.e., if ai, bi, si ∈ IN ∀i

and W ∈ IN , the continuous variables x take inte-
ger value in any feasible extreme solutions. Then,
the problem can be reformulated as a multiple choice
knapsack problem:

max{
∑

i

bi∑

x=ai

(pi x − fi) λi
x :

∑

i

bi∑

x=ai

(x + si) λi
x ≤ W,

bi∑

x=ai

λi
x ≤ 1 ∀i, λi

x ∈ {0, 1} ∀i, x} , (12)
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where λi
x = 1 iff xi = x. This formulation has pseudo-

polynomial size.

In the rest of this section we do not assume in-
teger data. If one fixes y to ỹ ∈ {0, 1}n, the
problem reduces to a continuous knapsack prob-
lem, called CKP (ỹ), that admits a greedy solution
(Dantzig 1957). Let us explicitly state the character-
ization of extreme solutions to CKS for easy reference.

Observation 1 An optimal solution exists to prob-
lem CKS where, for each i, one of the following case
arises

(i) yi = 1 and xi = bi

(ii) yi = 1 and 0 < xi < bi

(iii) yi = xi = 0
(iv) yi = 1 and xi = 0

Furthermore, case (ii) can only be assumed by one
of the items which is called the critical item. Case
(iv) can only arise if fi < 0. Moreover, the level
of the critical item, c, if any, is set so as to fill the
remaining capacity of the knapsack. It is computed as

xc = (W−W )
wc

where

W =
∑

k∈I

(wk bk + sk) + sc +
∑

k∈J

sk

for some sets I ⊆ {k : pk

wk
≥ pc

wc
} and J ⊆ {k : fk <

0 and pc

wc
≥ pk

wk
}.

The continuous relaxation of model CKS is given by
(7-10) and yi ∈ [0, 1] ∀i. Then, the contribution of
the ith item to the LP solution can be anything in
the convex hull of extreme solutions (i), (iii) and (iv)
of Observation 1 (note that case (ii) is in this convex
hull). For instance, one can generate any profit be-
tween 0 and pi bi − fi by setting yi = xi

bi
and letting

xi vary between 0 and bi. The associated capacity
consumption is (wi + si

bi
) xi. Similarly, if fi < 0, any

pair of (p,w) = (−yi fi, yi si) can be achieved by set-
ting xi = 0 and varying yi ∈ [0, 1]. Therefore, the
continuous relaxation of CKS can be reformulated as
follows:

max

n∑

i=1

(pi bi − fi)z
b
i − fiz

f
i (13)

n∑

i=1

(wi bi + si) zb
i + si z

f
i ≤ W (14)

zb
i + z

f
i ≤ 1 ∀i (15)

zb
i ∈ [0, 1] ∀i (16)

z
f
i ∈ [0, 1] ∀i (17)

When z
f
i = 0, letting zb

i vary from 0 to 1 allows to
achieve any continuous solution in the convex hull

of extreme solutions (i) and (iii) of Observation 1.

Inversely, zb
i = 0, letting z

f
i vary from 0 to 1 allows

to achieve any continuous solution in the convex hull
of extreme solutions (iii) and (iv). While, setting

z
f
i = 1−zb

i , allows to achieve any continuous solutions
of type (ii) in the convex hull of extreme solutions
(i) and (iv). Any other solution for class i is LP
dominated. The mapping from a solution z of (13-
17) to a solution (x, y) for the LP relaxation of CKS
is given by

xi = bi zb
i and yi = zb

i + z
f
i .

Moreover, one can characterized the conditions
under-which continuous solutions with z

f
i > 0 are

dominated:

Observation 2 If pi bi−fi

wi bi+si
≥ −fi

si
, there exists an op-

timal solution to (13-17) where z
f
i = 0.

Note that Assumption 1 implies pi bi−fi

wi bi+si
≥ −fi

si
∀i.

Thus, we have shown that

Proposition 1 The LP relaxation of CKS is equiv-
alent to the continuous relaxation of binary knapsack
problem with multiple choice constraints or special or-
dered set (SOS) constraints (13-17) .

The latter is known to admit a greedy solution
(Johnson & Padberg 1981). Hence, this result ex-
tends to our model with setups. To be explicit, let us
write the greedy LP solution. We do this under the
assumption of Observation 2. Then, SOS constraints
(15) are redundant and (13-17) reduces to a standard
binary knapsack LP relaxation:

Observation 3 If pi bi−fi

wi bi+si
≥ −fi

si
∀i, an optimal so-

lution to the LP relaxation of problem CKS is given
by indexing the items in order that

(p1 b1 − f1)

(w1 b1 + s1)
≥

(p2 b2 − f2)

(w2 b2 + s2)
≥ . . . ≥

(pn bn − fn)

(wn bn + sn)
.(18)

and setting

xi = bi and yi = 1 for i < c,

xc =
W −

∑
i<c(wi bi + si)

(wc + sc

bc
)

and yc =
xc

bc

,

xi = 0 and yi = 0 for i > c ,

where c is the index in the sorted item order such that
∑

i<c

(wi bi + si) < W but
∑

i≤c

(wi bi + si) ≥ W .
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This observation merely translates the greedy LP so-
lution of (13-17) in the (x, y) variables (when z

f
i =

0 ∀i).

Now consider the integer version of formulation
(13-17) where zb

i , z
f
i ∈ {0, 1} ∀i. It is important

to note that, although model CKS and formulation
(13-17) have the same LP solution, the integer
version of (13-17) is not equivalent to model CKS.
Indeed, a solution where case (ii) of Observation 1 is
optimal for some item i cannot be represented as an
integer solution in the z-formulation.

1.2. Branch-and-Bound

The standard Branch-and-Bound algorithm of
Horowitz and Sahni for the 0-1 knapsack problem
(Nemhauser & Wolsey 1988) is a specialized depth-
first-search branch-and-bound where variables are
fixed in an order that is greedy for both primal and
dual bounding procedure. Hence, the first leaf node
to be explored when plunging depth into the tree
corresponds to a greedy primal solution while back-
tracking leads to exploring progressively more distant
neighbors of this greedy solution. The dual bounds
need not be recomputed after fixing a variable to one:
their value differ from that of the parent node only for
the branch where we part from the greedy ordering,
i.e., when a variable is fixed to zero.

The extension to model CKS is not trivial. In-
deed, the procedure requires that the same greedy
approach solves both LP and IP problem. We have
such greedy approach for the z-formulation but not
for the (x, y)-formulation. As mentioned above, both
formulation are not equivalent in IP term. This diffi-
culty can be overcome by implicitly dealing with both
the z-formulation (for dual decisions) and the (x, y)-
formulation (for primal decisions). To illustrate how,
we explicitly provide a branch-and-bound procedure
under Assumption 1 (which simplifies the problem).

We use the greedy ordering (18) that was defined for
the z variables. But, the fixing of z variables has a
different interpretation for dual and primal bounds.
The primal solution (x, y) associated with a dual solu-
tion z is obtained by rounding-up the fractional setup
included in z (which yields a setup solution ỹ) and by
setting x is the optimal solution of CKP(ỹ). This
ensures that the solution we build obeys the charac-
terization of Observation 1. The so called “forward
moves” are sequences of branches where a z variable
is fixed to 1. Forward moves are interspersed with
“fixing-to-zero” branches. Primal and dual bounds
are evaluated after each “fixing-to-zero” branching.

The branch-and-bound search is organized as follows:
Items are considered in the order (18). For each item

i, three cases are considered: (a) zi = 1, (b) yi = 1,
and x is free, (c) zi = 0. However, Observation 1 tells
us that case (b) needs only be considered if the knap-
sack is filled at full capacity. Hence, we can manage
with a binary tree where only two branches are de-
fined for each item: the first branch to be explored
corresponds to aggregated case (a) or (b), while the
second branch corresponds to case (c). When case
(a) is feasible given the residual capacity, the first
branch is interpreted as case (a) as it dominates case
(b). But when branching on case (a) is infeasible due
to lack of capacity, all the previous left branches are
interpreted as case (b). In the latter situation, we
have reached a leaf node which we call ”A type leaf
node” (the knapsack is filled at full capacity) where
CKP (y) is solved. Another type of leaf node (called
”B type”) arises when there are no more items to con-
sider. In the latter case, as the branch zn = 1 has
been explored, the branch zn = 0 does not need to
be explored as it is dominated. This algorithm is pre-
sented in Algorithm 1 (in a pseudo-language where
we make use of some C++ notations).

Initialization: Sort items according to (18).
Let INC = Z = 0; C = W ; x = y = 0; i = 1.

Compute UB: Let U = Z; K = C; l = i;
while (l ≤ n) and (K ≥ wlbl + sl), do {
U+= (plbl − fl); K−= (wl bl + sl); l = l + 1. }
If (l ≤ n), U+= (plbl − fl)

K
(wl bl+sl)

.

Test Pruning: if (U ≤ INC), goto Backtracking.

Forward Move: While (i ≤ n) and (wibi +si ≤ C),
do { Z+= (pibi − fi); C−= (wi bi + si); xi = bi;
yi = 1; i = i + 1. }

Type A Leaf Node: If (i ≤ n) /* and (wibi + si >

C) */, do {
If (si < C), {
let yi = 1; v = CKP (y); x̃ = argmax{CKP (y)};
if (v > INC), INC = v, record (x̃, y); }
Let xi = yi = 0; i = i + 1; /* Zero Setting */
and go to Compute UB. }

Type B Leaf Node: Else /* (i = n + 1) */, do {
If (Z > INC), {INC = Z; record (x, y);}
Let i = i − 1;
If (yi == 1), { Z−= (pi bi−fi); C+= (wi bi+si);
xi = yi = 0.}}

Backtracking: Do (i = i − 1) while (yi == 0) and
(i ≥ 1).
If (i == 0), STOP.
Z−= (pibi − fi); C+= (wi bi + si); xi = yi = 0;
i = i + 1 /* Zero Setting */.
Go to Compute UB.

Algorithm 1. BaB for CKS under Assumption 1.
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2. THE MULTIPLE-CLASS BINARY
KNAPSACK WITH SETUPS

The formulation of the model MBKS is given by (1-
6). Here, Assumption 2 is restrictive and so is As-
sumption 3: indeed, if ai > 0 there is a knapsack
sub-problem to be solved to decide which items (i, j)
within class i should be selected to satisfy this lower
bound, given that they have profits pij 6= mij pi. An
item (i, j) with negative profit pij < 0 might even be
worth selecting to satisfy the lower bound ai. How-
ever, if ai = 0, one can make non restrictive assump-
tions:

Assumption 6 (w.l.g.) Under Assumption 2,
pij ≥ 0 for all j.

Otherwise, xij = 0 in any optimal solution.

Assumption 7 (w.l.g.) fi < max{
∑

j pij xij :∑
j mij xij ≤ bi, xij ∈ {0, 1} ∀j}.

Otherwise, it is optimal to set xij = 0 ∀j and yi = 0.

2.1. Characterizations of optimal solutions

Integer solutions to model MBKS have some struc-
ture although not as simple as for CKS. In the line of
the work of (Chajakis & Guignard 1994), MBKS can
be decomposed into knapsack subproblem associated
with each class. Since we assumed that all items have
a weight that is a multiple of the class weight, the ca-
pacity consumption of a class i, i.e., wi (

∑
j mij xij),

is the same for all solutions xi. yielding the same total
multiplicity

∑
j mij xij . As a result, the optimization

within each class can be done independently of the
global optimization of the use of the knapsack capac-
ity W .

A combination of the xij variables that yields a dom-
inated pair (Mi =

∑
j mijxij , Pi =

∑
j pij xij) for

class i need not be considered: a pair (Mi, Pi) is dom-
inated if another class i solution achieves a profit at
least as large with a smaller multiplicity or a greater
profit for the same multiplicity. This leads to a refor-
mulation as a multiple choice knapsack:

max {
∑

i

bi∑

M=ai

(Pi(M) − fi)λ
i
M :

∑

i

bi∑

M=ai

(M wi + si) λi
M ≤ W,

bi∑

M=ai

λi
M ≤ 1 ∀i,

λi
M ∈ {0, 1}∀i,M } (19)

where Pi(M) is the best profit that can be achieved
within class i using a multiplicity M :

Pi(M) = max{
∑

j

pij xij :
∑

j

mij xij = M,

xij ∈ {0, 1} ∀j} (20)

Thus, computing Pi(M)’s requires solving a “all-
capacities” knapsack problem over each class i (a dy-
namic program is well suited for this). Moreover, this
reformulation involves a pseudo-polynomial number
of variables.

Note that an optimal solution may have yi = 1 while
the xij ’s are set to the minimum value that allows to
satisfy the class lower bound ai. However, this is not
the case when ai = 0 and fi ≥ 0.

Observation 4 Under Assumptions 1 and 2, there
exists an optimal solution where yi = 0 when∑

j xij = 0.

The LP solution to MBKS can also be characterized
in view of the above decomposition:

Observation 5 Consider solutions to the LP relax-
ation of MBKS. Their projection in the subspace
(xi =

∑
j mij xij , yi) associated with class i are con-

vex combinations of the following extreme points:

(i) xi = 0 (i.e. xij = 0 ∀j) and yi = 0
(ii) xi =

∑
j mij xij = ai and yi = 1

(iii) xi =
∑

j mij xij = bi and yi = 1

If the profit per unit of knapsack capacity of extreme
solution (ii) is less than that of (iii), i.e., if

PLP
i (ai) − fi

wi ai + si

≤
PLP

i (bi) − fi

wi bi + si

where PLP
i (M) is the solution to the LP relaxation of

(20), then one only needs to consider solutions that
are convex combination of cases (i) and (iii). The

reverse case, i.e.
P LP

i (ai)−fi

wi ai+si
>

P LP
i (bi)−fi

wi bi+si
, can only

arise if ai > 0 or fi < 0.

Similarly to what we did for model CKS, we can de-
rive from Observation 5 a z-reformulation of the LP
relaxation of MBKS. In the continuous relaxation of
MBKS, item (i, j) can yield a profit per unit equal to

either
pij

ai

mij
− fi

wi ai + si

or
pij

bi

mij
− fi

wi bi + si

or a convex combination of these two, depending
of whether it is contributing to the class effort of
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targeting extreme solution (ii) or (iii) of Observa-
tion 5 or their combination. Case (ii) can be split
in two sub-cases, either ai > 0 or fi < 0. Let
Ia = {i : ai > 0} and If = {i : ai = 0 and fi < 0}.
Thus, Ia ∩ If = ∅. For i ∈ If , the extreme solu-
tion (ii) takes the form (xi = 0, yi = 1). Hence, we

introduce variable z
f
i ∈ [0, 1] such that z

f
i = 1 repre-

sents solution (xi = 0, yi = 1). Similarly, for i ∈ Ia,
we define a variable za

ij for each item (i, j) of class i,
such as za

ij = 1 if item (i, j) contributes in full to tar-
geting extreme solution (ii). Symmetrically, variables
zb
ij are defined for i ∈ I = {1, . . . , n} and associated

with extreme solutions (iii). With these notations,
the LP relaxation of MBKS can be reformulated as

max
∑

i∈Ia

ni∑

j=1

(pij −
fi

ai

mij) za
i j

+
∑

i∈I

ni∑

j=1

(pij −
fi

bi

mij) zb
i j −

∑

i∈If

fiz
f
i (21)

s.t.

∑

i∈Ia

ni∑

j=1

(wi +
si

ai

) mi j za
i j +

∑

i∈I

ni∑

j=1

(wi +
si

bi

) mi j zb
i j

+
∑

i∈If

si z
f
i ≤ W (22)

ni∑

j=1

[
mi j

ai

za
i j +

mi j

bi

zb
i j ] ≤ 1 ∀i ∈ Ia (23)

ni∑

j=1

mi j

bi

zb
i j + z

f
i ≤ 1 ∀i ∈ If (24)

za
i j + zb

i j ≤ 1 ∀i ∈ Ia, j

za
i j ∈ [0, 1] ∀i ∈ Ia, j

zb
i j ∈ [0, 1] ∀i ∈ I, j

z
f
i ∈ [0, 1] ∀i ∈ If (25)

A solution z translates into a solution for the LP re-
laxation of MBKS as follows:

xij = za
ij+zb

ij and yi =
∑

j

(
mi j

ai

za
i j+

mi j

bi

zb
i j)+z

f
i (26)

Constraints (23-24) are required to enforce yi ∈ [0, 1].
Observe that constraints (3) are built in the definition
of the change of variables. Indeed, if we replace x and
y by their expression in z in (3), in the case ai > 0,
we obtain:

ai

∑

j

(za
ij

mij

ai

+ zb
ij

mij

bi

) ≤
∑

j

mij (za
ij + zb

ij)

∑

j

mij (za
ij + zb

ij) ≤ bi

∑

j

(za
ij

mij

ai

+ zb
ij

mij

bi

)

which is always satisfied because ai

bi
≤ 1 in the left-

hand-side and bi

ai
≥ 1 in the right-hand-side. In the

case ai = 0, (3) is trivially verified. Hence, we have
shown that

Proposition 2 The LP relaxation of MBKS is
equivalent to the continuous relaxation of binary
knapsack problem with class bounds and SOS con-
straints (21-25).

On one hand, it is known that the LP relaxation of
binary knapsack problem with SOS constraints ad-
mits a greedy solution (Johnson & Padberg 1981).
On the other hand, (Vanderbeck 2002) shows that
the LP relaxation of a binary knapsack with class
bounds can also be solved using a greedy procedure.
But, solving problem (21-25) requires dealing with
both SOS constraints and class bounds. We have not
found a greedy procedure to solve this case involving
both complexities. Instead, we develop a greedy LP
solution for the special case where SOS constraints
are redundant, a result that extends that of reference
(Vanderbeck 2002) to the case with setups.

We make the simplifying assumption that all class i

items target a filling up to bi because this corresponds
to a better ratio:

Assumption 8 (restrictive)

pij
ai

mij
− fi

wi ai + si

≤
pij

bi

mij
− fi

wi bi + si

∀(i, j) .

Note that Assumption 1 implies the above since, when
fi ≥ 0, either ai > 0 and (pij−

fi

ai
mij) ≤ (pij−

fi

bi
mij)

while (wi + si

ai
) ≥ (wi + si

bi
), or ai = 0 and pij ≥ 0 as

stated in Assumption 6. Hence, Assumption 8 can be
understood as less restrictive than Assumption 1.

Observation 6 Under Assumption 8, problem (21-

25) admits a solution where all variables za
ij and z

f
i

have value zero.

Indeed, if Assumption 8 holds and za
ij > 0, one can

modify the solution by setting za
ij

′ = 0 and zb
ij

′
=

zb
ij +

(wi+
si
ai

) mij

(wi+
si
bi

) mij
za
ij . This solution modification is

feasible with regard to knapsack constraint (22) by
construction but also with regard to constraint (23)
as it can be easily checked. Moreover, the profit value
of the modified solution is not less than the original.
Similarly, if z

f
i > 0, decreasing its value allows to

increase some zb
ij value of better profit ratio.

Then, we can give a greedy LP solution to MBKS:
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Proposition 3 If Assumption 8 holds, an optimal
solution to the LP relaxation of MBKS is given by
the following procedure. Sort the items (i, j) in non-
increasing order of their ratio:

(pij −
fi

bi
mij)

(wi + si

bi
) mij

(27)

Let m =
∑

i ni and k = 1, . . . ,m be the item indices
in that ordering. Ki is the set of items k that belong
to class i:

Ki = {k : ∃j ∈ {1, . . . , ni} with k = (i, j)} .

For i ∈ {1, . . . , n}, let the critical item for class i be
ci ∈ Ki, be such that

∑

k∈Ki, k<ci

mk ≤ bi but
∑

k∈Ki, k≤ci

mk > bi . (28)

Let Ki(l) = {k ∈ Ki : k < ci and k < l }, Ib(l) =
{i : ci < l }, and

W (l) =
∑

i,k∈Ki(l)

(wi+
si

bi

)mk+
∑

i∈Ib(l)

(wi+
si

bi

)(bi−
∑

k∈Ki(l)

mk) .(29)

Then, let the global critical item, c ∈ {1, . . . ,m}, be
the highest index item such that

W (c) ≤ W but W (c) + (wic
+

sic

bic

) mc > W (30)

where ic refers to the class containing the global crit-
ical item (i.e. c ∈ Kic) and set

xk = 1 for k ∈ Ki(c) and i = 1, . . . , n (31)

xci
=

1

mci

(bi −
∑

k∈Ki(c)

mk) for i ∈ Ib(c) (32)

xc =
1

(wic
+

sic

bic
) mc

(W − W (c)) if c ∈ Kic (33)

xk = 0 otherwise (34)

yi = 1 for i ∈ Ib(c) (35)

yic
=

∑
k∈Kic (c) mk + mc xc

bic

for i : c ∈ Ki(36)

yi = 0 otherwise. (37)

Proof: Observation 6 implies that in the LP for-
mulation (21-25) we only keep the zb

ij variables.
The simplified formulation is that of a continuous
multiple class knapsack problem that admits a greedy
solution as proved in (Vanderbeck 2002). Converting
the greedy solution z into the original variables x

and y provides the desired result.

2.2. Branch-and-Bound

The greedy procedure that allows to solve (21-25) un-
der Assumption 8 can be the basis for a specialized
branch-and-bound algorithm for MBKS that general-
izes the depth-first-search algorithm of Horowitz and
Sahni. However, we are confronted with the same
difficulty as for model CKS: the greedy procedure is
defined for the z-formulation whose IP counterpart
is not equivalent to model MBKS. To overcome it,
we branch on z variables but make corrections to the
primal solutions to make them feasible for MBKS.

To simplify the presentation, we make Assumptions
1 and 2 that imply Assumption 8. Then, the integer
version of the z-formulation takes the form

max

n∑

i=1

ni∑

j=1

(pij −
fi

bi

mij) zi j (38)

s.t.
n∑

i=1

ni∑

j=1

(wi +
si

bi

) mi j zi j ≤ W (39)

∑

j

mi j zi j ≤ bi ∀i (40)

zi j ∈ {0, 1} ∀i, j .(41)

Problem MBKS and problem (38-41) admit the same
LP solution but not the same integer solution. The
Branch-and-Bound strategy is to apply the Horowitz
and Sahni scheme to the above z-formulation, to
translate z solution into a feasible solution for MBKS,
by applying the mapping (26) and rounding-up the y

variables, and to adapt the residual problem dynam-
ically at each branch-and-bound node.

Fixing zi j to 1, translate into fixing xi j = 1 and also
yi = 1 (if the class set-up was not already set to 1).
Hence, for the residual problem, the attractivity of
the items (i, j) from class i with yi = 1 is proportional
to their ratio

pij

wimij

. (42)

Thus, at a given branch-and-bound node, the z-
formulation of the residual problem takes the form

max
∑

i∈I0

∑

j∈Ji

(pij −
fi

bi

mij) zi j +
∑

i∈I1

∑

j∈Ji

pij zi j (43)

s.t.∑

i∈I0,j

(wi +
si

bi

)mi jzi j +
∑

i∈I1,j

wimi jzi j ≤ C (44)

∑

j∈Ji

mi j zi j ≤ Ci ∀i (45)

zi j ∈ {0, 1} ∀i, j.(46)
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where I0 (resp. I1) is the set of classes for which yi is
still at value zero (resp. is already set to 1), Ji denotes
the set of class i items that have not yet been fixed
to 0 or 1, C denotes the remaining knapsack capac-
ity, and Ci the residual upper bound on class i items.
By extension of the above arguments, one can eas-
ily be convinced that, at a given branch-and-bound
node, problem (43-46) and the residual MBKS prob-
lem in its (x, y)-formulation have the same LP value
and therefore computing the LP-solution of (43-46)
provides a valid dual bound for that node. Finally,
observe that a preprocessing can be applied to (43-
46). Any item (i, j) with i ∈ I0 that is such that
(wi mi j + si) > C cannot be in the solution of the
(x, y)-formulation of the residual problem. Therefore,
it can be removed from the z-formulation (43-46) be-
fore computing its LP value.

The LP-relaxation of (43-46) admits a greedy solu-
tion. Items whose class is in I0 are sorted by decreas-
ing ratio (27), while those whose class is in I1 are
sorted by decreasing ratio (42) and the two sorted lists
are merged to define the greedy ordering. Then, items
are considered in that order and taken into the LP
solution while there remains some knapsack capacity
and some class multiplicity. Thus, the“Compute UB”
step of our branch-and-bound is implemented so as to
compute the upper bound of Proposition 3 adapted
to the residual problem: for items whose class is in I1

we use ratio (42) instead of (27), capacity consump-
tion wi mi j and profit pi j . This upper bound will
have to be recomputed after each fixing to zero as in
the Horowitz and Sahni algorithm, but also after each
fixing to 1 of a y variable, as it modifies the partition
I0, I1, and hence the partition of the items.

Our branch-and-bound algorithm is presented below
in Algorithm 2. Items k denotes the next item in
the greedy ordering for the current residual problem
(43-46). It is obtained dynamically from two static
lists that are sorted a priori. Each item (i, j) is repre-
sented twice, once in list L0 as an item whose class is
not setup and once in list L1 as an item whose class
is setup (defining specific pk, wk, and mk value as
described in Algorithm 2). Each list is appropriately
sorted by decreasing ratio pk

wk
. One moves forward

in list LO (resp. L1) ignoring items whose class is
setup (resp. not setup) and a function named next

compares the next candidate from the two lists and
returns that with the largest ratio pk

wk
. However the

cursor in each list must be reset after each modifica-
tion of a class setup. The order in which items have
been considered is memorized in a data structure to
enable backtracking through a call to function prev.

Initialization: Let N =
∑

i ni. Each item (i, j) is
duplicated. The first copy is defined by mk =

mij , wk = (wi + si

bi
) mij , and pk = pij −

fi

bi
mij ,

k = 1, . . . , N ; and L0 is the list of the first copies
sorted in decreasing order of their ratio (27). The
second copies are defined by mk = mij , wk =
wi mij , and pk = pij , ∀k; and L1 is the list of the
second copies sorted in decreasing order of their
ratio (42). Let wmin = mink{wik

mk}; C = W ;
Ci = bi, ∀i; Z = 0; x = y = 0; INC = 0; k is
the first item of L0. Let next(k) be a subroutine
that returns the best item next to k in greedy
order for the current residual problem (43-46)
by proper extraction from either L0 or L1, reset

reactualizes it after each class setup modification,
and prev returns the item fixed at the previous
BaB node.

Compute UB: Let U = Z; K = C; Ki = Ci, ∀i;
and let l = k.

Step A: While (l ≤ N) and (wl ≤ K) and
(ml ≤ Kil

) {
If (wil

mil,jl
+ sil

(1 − yil
) > C), {

l = next(l), goto Step A. }
U+= pl; K−= wl; Kil

−= ml; l = next(l).}

Step B: If (l > N), goto Test Pruning.

Step C: If ((ml > Kil
) and (wl

Kil

ml
≤ K)), {

U+= pl
Kil

ml
; K−= wl

Kil

ml
; Kil

= 0;

l = next(l); go to Step A }.

Step D: /*(wl > K) or even (wl
Kil

ml
> K)*/

U+= pl
K
wl

.

Test Pruning: If (U ≤ INC), goto Backtracking.

Forward Move: While (k ≤ N) and (wik
mk +

sik
(1 − yik

) ≤ C) and (mk ≤ Cik
), do {

x(ik,jk) = 1; C−= wk; Cik
−= mk; Z+= pk;

if (yik
== 1), then k = next(k);

else {yik
= 1; C−= sik

; Z−= fik
; reset; goto

Compute UB; } }
If (k > N) or (C < wmin), /* leaf node */ goto
Record Incumb.

Set item to 0: /* ((wik
mk + si (1 − yik

) > C) or
(mk > Cik

) */
k = next(k). If (k > N), goto Record Incumb.
Else, goto Compute UB.

Record Incumb: If (Z > INC), then INC = Z

and record (x, y).

Pre-backtrack: If (k > N), {k = prev; if (x(ik,jk) =
= 1), WithdrawItem(k); }

Backtracking: Do {k = prev;} while ((x(ik,jk) ==
0) and (k ≥ 1)).
If (k == 0), STOP.
/*(x(ik,jk) == 1) */ WithdrawItem(k);
k = next(k). Go to Compute UB.
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Algorithm 2. BaB for MBKS when fi ≥ 0 and ai = 0 ∀i.

In Algorithm 2, ik denotes the class index of item k,
jk its index within the class, and Z denotes the cur-
rent profit. In “Forward Moves”, we set zk’s to one in
formulation (43-46), which amount to fixing x(ik,jk)

to 1 in MBKS. If ik ∈ I0, we set yik
= 1 and we

update C, Z, and the resulting residual problem for-
mulation (placing ik ∈ I1), and we reset the greedy
ordering of the remaining items. Then, we return to
the “Compute UB” step. Otherwise, we continue our
sequence of fixing zk’s to one. This is repeated while
there remains some class capacity and some knapsack
capacity to insert further items, i.e., while C ≥ wmin,
where wmin is the smallest item weight. Otherwise,
the next item is set to zero and the dual bound must
be computed. A leaf node is reached when the knap-
sack is filled or there are no more items to consider.
In the latter case, as the branch zn = 1 has been
explored, the branch zn = 0 does not need to be ex-
plored as it is dominated. “Backtracking”must insure
that the class setup is set to zero when the last posi-
tive item of that class is set to zero. This is done in the
WithdrawItem(k) subroutine of Algorithm 3. Within
this branch-and-bound procedure lies a primal greedy
heuristic that could be used independently. Note that
alternative primal heuristics can be developed that
make use of decomposition of the problem into knap-
sack subproblems for each class.

Let x(ik,jk) = 0; C+= wk; Cik
+= mk; Z−= pk.

If (Cik
== bi), do {

yik
= 0; C+= sik

; Z+= fik
; reset; }.

Algorithm 3. WithdrawItem(k) of the BaB for MBKS.

3. NUMERICAL TESTS

Our purpose in this paper was not to develop the most
effective algorithm for the knapsack problem with se-
tups, but instead, to show that the properties on
which the knapsack algorithms rely can be extended
to the case with setups. Thus, the focus of our numer-
ical section is on testing our extensions of Horowitz
and Sahni branch-and-bound algorithm. We compare
our branch-and-bound algorithms to a standard MIP
solver (Xpress-MP in our tests) and to the best ap-
proach of the previous literature for knapsack prob-
lems with setups, namely the conversion into a multi-
ple choice knapsack with pseudo-polynomial size fol-
lowed by the application of a specialized algorithm for
the multiple choice knapsack. We must insist on the
fact that the algorithms of this paper have not been
developed so as to incorporate the latest techniques
for improved efficiency outlined in the introduction
(Pisinger & Toth 1998). This makes comparison to
specialized solver for multiple choice knapsack some-
what bias.

For the tests on model CKS, we generate 10 ran-
dom instances with n ∈ {1000, 5000, 10000} and W =
100 ∗ n. We want approximately 20% of the items
in the solution, hence on average (si + biwi) = W

0.2n
.

Thus for each i, si+wi are generated from an uniform
distribution in interval [0.35W

0.2n
, 0.65W

0.2n
], hence si + wi

is on average equal to 0.5W
0.2n

and bi must be approx-

imately equal to
W

0.2n
−si

wi
. We set si = α wi, where

α is a parameter in [0, 4] and draw bi uniformly in

[1, ⌊
1.5W
0.2n

−si

wi
⌋]. The profit pi is uniformly distrib-

uted in [(1 − β)wi, (1 + β)wi] where β is a parame-
ter in [0, 1] measuring the correlation between item
weight and profit, and fi is uniformly distributed in
[(1 − β)si, (1 + β)si].

The results are presented in the Table 1. The first
column indicates the chosen parameters. The follow-
ing columns give the average computation time ob-
tained using the specialized multiple-choice knapsack
dynamic program solver of (Pisinger 1995) (“MCKP”)
after application of transformation (12) and the aver-
age time of our Branch-and-Bound algorithm (“BB”).
The average computation time for the standard MIP
solver (XPress-MP 2001) is 6 times greater than the
average time “MCKP”. Note that if one uses a basic
dynamic program (which would be more in line with
our basic Branch-and-Bound solver), the computa-
tion time for n1000−α2− β0.5 is 11m35s16t and for
n5000 − α2 − β0.5 is 3h40m26s49t.

param MCKP BB
n1000 − α2 − β0.5 2s17t 5t
n5000 − α2 − β0.5 48s77t 55t
n5000 − α2 − β0.2 50s68t 1s1t
n5000 − α2 − β0.8 47s70t 38t
n5000 − α4 − β0.5 36s63t 44t
n10000 − α2 − β0.5 3m12s85t 1s28t

Table 1. Computation time for CKS

For the tests on model MBKS, we generate 10 ran-
dom instances with a number of item classes n ∈
{10, 50, 100}, W = 1000 ∗ n and we impose that 50%
of classes have a positive setup (fi > 0, si > 0). For
each class i, si+wi are generated from an uniform dis-
tribution in interval [ W

20n
, W

2n
] (so si + wi ∈ [50, 500]),

with si = α wi where α is a parameter in [0, 4] (α is
set to 0 if the class has no positive setup); ai = 0,
bi is uniformly distributed in [⌊W−si

2wi
⌋, ⌊W−si

wi
⌋], ni is

uniformly distributed in [bi, 5bi] (which can result in
large values of ni ∈ [200, 15800]), fi is uniformly dis-
tributed in [(1−β)si, (1+β)si] where β is a parameter
in [0, 1] measuring the correlation between weight and
profit. For each item j in class i, mij is generated in
interval [1, bi

2 ] and wij = mijwi. We try to have ratios
rij =

pij

mijwi
that take different values in [1− β, 1 + β]

for items of the same class and also between items of
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different classes (we generate gij in [0,M ] where M

is a big parameter and set rij = 1− β + β ∗ gij ∗
2
M

).
Then, we compute pij = ⌊mijwirij⌋.

The results for MBKS are presented in the Table
2. The last two columns give the average time to
apply transformation (19) and then the specialized
multiple-choice knapsack dynamic program solver of
(Pisinger 1995) (“MCKP”) and the average time
taken by our Branch-and-Bound algorithm (“BB”).
For (XPress-MP 2001), the gap after 3h was 0.05%
for n = 50. This approach was not applied on in-
stances with n = 100.

In average BB is faster than MCKP, but we observe
that for 10% of instances, MCKP is faster. For the
correlated problem instances (with β = 0.2), BB
computing times exhibits large variation around the
average value (BB takes more than 5h for one in-
stance and less than 20s for two others). While, the
computation time for MCKP is similar for every in-
stance in a group. In the MCKP approach, the bot-
tleneck is the time spent at transforming the prob-
lem into a multiple choice knapsack (taking more
than 95% of the computing time). One has to solve
a “all-capacities” knapsack problem for each class,
computing the best profit (20) for each multiplicity
M = 0, · · · , bi. (The “all-capacities” knapsack prob-
lem is to the knapsack problem what the “all-pairs”
shortest path problem is to the shortest path prob-
lem, see (Kellerer et al. 2004), section 1.3). To do
this, there is no much better algorithm than a a basic
dynamic program (which is what we use).

parameters MCKP BB
n10 − α2 − β0.5 3s34t 14t
n50 − α2 − β0.5 6m35s64t 2m35s48t
n100 − α2 − β0.5 1h10m1s33t 20m4s17t
n100 − α2 − β0.2 1h8m40s22 1h6m52s15t
n100 − α2 − β0.8 1h9m23s15t 22m18s6t
n100 − α4 − β0.5 3h6m1s46t 1h29m47s78t

Table 2. Computation time for MBKS

4. CONCLUSION

The paper discusses various reformulations of knap-
sack problems with setups and presents specialized
branch-and-bound procedures extending the stan-
dard algorithm for the knapsack problem. Numerical
experimentation shows that the latter are competitive
approaches to knapsack problems with setups. The
analysis of model CKS and MBKS can be extended
to their integer counterpart. The greedy enumeration
scheme and greedy dual bounds of our branch-and-
bound procedures could be exploited to developed
hybrid dynamic programming approaches in future

work in the line of the best performing approaches
for the standard knapsack problem.
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