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The resistance distance ri j between two vertices vi and v j of a (connected, molecular) graph G
is equal to the effective resistance between the respective two points of an electrical network, con-
structed so as to correspond to G, such that the resistance of any edge is unity. We show how ri j can
be computed from the Laplacian matrix L of the graph G: Let L(i) and L(i, j) be obtained from L
by deleting its i-th row and column, and by deleting its i-th and j-th rows and columns, respectively.
Then ri j = detL(i, j)/detL(i).
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1. Introduction

When the structure of a molecule is represented by
a metric topological space [1 – 5], then the distance be-
tween two vertices vi and v j, denoted by di j, is defined
as the length (= number of edges) of a shortest path
that connects vi and v j in the corresponding molecu-
lar graph G. The vertex-distance concept found numer-
ous chemical applications; for details see the recent re-
views [6 – 8] and elsewhere [9 – 11]. In order to exam-
ine other possible metrics in (molecular) graphs, Klein
and Randić [12] conceived the resistance distance be-
tween the vertices of a graph G, denoted by r i j, de-
fined to be equal to the effective electrical resistance
between the nodes i and j of a network N correspond-
ing to G, with unit resistors taken over any edge of N.
For acyclic graphs ri j = di j, and therefore the resis-
tance distances are primarily of interest in the case of
cycle-containing (molecular) graphs.

Resistance-distances and molecular structure-de-
scriptors based on them were much studied in the
chemical literature [12 – 23] and recently attracted the
attention also of mathematicians [24, 25]. In analogy to
the classical Wiener index [7 – 11], one introduced [12]
the sum of resistance distances of all pairs of vertices
of a molecular graph,

K f = ∑
i< j

ri j, (1)
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a structure-descriptor that eventually was named [13]
the “Kirchhoff index”.

Resistance distances are computed by methods of
the theory of resistive electrical networks (based on
Ohm’s and Kirchhoff’s laws); for details see [24]. The
standard method to compute ri j is via the Moore-
Penrose generalized inverse L† of the Laplacian matrix
L of the underlying graph G:

ri j = (L†)ii +(L†) j j − (L†)i j − (L†) ji. (2)

Equation (2) is stated already in [12] and [14], but was,
for sure, known much earlier.

In this work we communicate a novel, remarkably
simple expression for ri j , stated in Theorem 1. In order
to be able to formulate our main result, we first specify
our notation and terminology and remind the readers to
some basic facts from Laplacian graph spectral theory.

2. On Laplacian Spectral Theory

Let G be a graph and let its vertices be labeled by
v1,v2, . . . ,vn. The Laplacian matrix of G, denoted by
L = L(G), is a square matrix of order n whose (i, j)-
entry is defined by

Li j =−1, if i �= j and the vertices vi and v j are adjacent,

Li j = 0, if i �= j and the vertices vi and v j are not
adjacent,

Li j = di, if i = j,
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where di is the degree (= number of first neighbors) of
the vertex vi.

Because
n
∑

i=1
Li j =

n
∑
j=1

Li j = 0 for any graph G,

detL(G) = 0, i. e., L(G) is singular.
The submatrix obtained from the Laplacian matrix L

by deleting its i-th row and the i-th column will be de-
noted by L(i). The submatrix obtained from the Lapla-
cian matrix L by deleting its i-th and j-th rows and the
i-th and j-th columns will be denoted by L(i, j), assum-
ing that i �= j.

According to the famous matrix-tree theorem (see
for instance [26 – 29]) for any graph G and for any i =
1,2, . . . ,n,

detL(i) = t(G), (3)

where t(G) is the number of spanning trees of G.
The eigenvalues of the Laplacian matrix are referred

to as the Laplacian eigenvalues and form the Lapla-
cian spectrum of the respective graph. The Laplacian
spectral theory is a well elaborated part of algebraic
graph theory and its details can be found in numerous
reviews, for instance in [27, 30, 31]. Concerning chem-
ical applications of Laplacian spectra see [32, 33].

We label the Laplacian eigenvalues of the graph G
by µi, i = 1, 2, . . . , n, so that

µ1 ≥ µ2 ≥ ·· · ≥ µn.

Then, µn is always equal to zero, whereas µn−1 differs
from zero if and only if the underlying graph G is con-
nected. (We are interested in molecular graphs, which
necessarily are connected. Therefore in what follows it
will be understood that µn−1 �= 0.)

Of the many known relations between the structure
of a graph and its Laplacian spectrum [26 – 28, 30 – 33]
we mention here only two:

n−1

∏
i=1

µi = nt(G) (4)

and

K f = n
n−1

∑
i=1

1
µi

. (5)

3. A Determinantal Formula for rij

Theorem 1. Let G be a connected graph on n ver-
tices, n ≥ 3, and 1 ≤ i �= j ≤ n. Let L(i) and L(i, j) be

the above defined submatrices of the Laplacian matrix
of the graph G. Then

ri j =
detL(i, j)
detL(i)

. (6)

In view of (3), formula (6) can be written also as

ri j =
detL(i, j)

t(G)
.

This remarkably simple expression for the resistance
distance was discovered by one of the present authors
[25]. Here we demonstrate its validity in a manner dif-
ferent from that in [25].

In order to prove Theorem 1 we need some prepara-
tions.

To each vertex vi of the graph G associate a variable
xi and consider the auxiliary function

f (x1,x2, . . . ,xn) = ∑
k,�

(xk − x�)2

with the summation going over all pairs of adjacent
vertices vk, v�. Then for i �= j,

ri j = sup

{
1

f (x1,x2, . . . ,xn)

∣∣∣∣xi = 1,x j = 0, 0 ≤ xk ≤ 1,

k = 1,2, . . . ,n

}
. (7)

Formula (7) is a result known in the theory of elec-
trical networks (cf. Corollary 5 on p. 301 in Chapt. 9
of the book [24]). Its immediate consequences are the
following equations which hold for k �= i, j:

∂ f
∂xk

= 2 ∑
�∈Γ (k)

(xk − x�) = 0, (8)

where Γ (k) denotes the set of first neighbors of the
vertex vk.

Because the vertices of the graph G are labeled in
an arbitrary manner, without loss of generality we may
restrict our considerations to the special case i = n−1
and j = n. Then, however, the mathematical formalism
of our analysis will become significantly simpler.

For the sake of simplicity, denote the submatrix
L(n− 1,n) by Ln−2 and write the Laplacian matrix of
G as

L(G) =
(

Ln−2 B
C D

)
.
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Then (8) can be written as

Ln−2 xt = bt , (9)

where x = (x1,x2, . . . ,xn−2) and b = (b1,b2, . . . ,bn−2).
Because xn−1 = 1 and xn = 0, if the vertices vn−1 and
vk are adjacent then bk = 1, whereas otherwise bk = 0,
k = 1,2, . . . ,n−2.

Let A = ||ai j|| be the adjacency matrix of the graph
G. Then, in view of xn−1 = 1, xn = 0, in addition to (9)
we have

xB(xn−1,xn)t = (xn−1,xn)C xt = −
n−2

∑
i=1

an−1,i xi (10)

and

(xn−1,xn)D(xn−1,xn)t = dn−1. (11)

By combining (9) – (11) we obtain

f (x1,x2, . . . ,xn)

= (x,xn−1,xn)L(G)(x,xn−1,xn)t

= xLn−2 xt +(xn−1,xn)C xt

+ xB(xn−1,xn)t +(xn−1,xn)D(xn−1,xn)t

= xbt −2
n−2

∑
i=1

an−1,i xi + dn−1.

Because

xbt =
n−2

∑
i=1

an−1,i xi = ∑
k∈Γ (n−1)

xk,

we finally arrive at the relation

f (x1,x2, . . . ,xn) = dn−1 − ∑
k∈Γ (n−1)

xk, (12)

which holds under the extreme value condition x n−1
= 1, xn = 0.

The matrix L(G) is positive semidefinite. If the
graph G is connected, then the matrix Ln−2 is pos-
itive definite. Thus its inverse (Ln−2)−1 exists. Let
the (i, j)-entry of (Ln−2)−1 be denoted by ti j. Then,
xt = (Ln−2)−1 bt , implying

xk = ∑
�∈Γ (n−1)

tk�. (13)

Proof of Theorem 1. As already explained, it is suf-
ficient to demonstrate the validity of Theorem 1 for
i = n−1 and j = n.

By (12) and (13) we have under the extreme value
condition

f (x1,x2, . . . ,xn) = dn−1 − ∑
k∈Γ (n−1)

∑
�∈Γ (n−1)

tk�. (14)

Let Ln−2(k, �) be the submatrix obtained by removing
from Ln−1 the k-th row and the �-th column. Then,

tk� = (−1)k+� detLn−2(k, �)
detLn−2

.

Thus by (14)

f (x1,x2, . . . ,xn) (15)

= dn−1 − ∑
k∈Γ (n−1)

∑
�∈Γ (n−1)

(−1)k+� detLn−2(k, �)
detLn−2

.

By expanding detL(n) with respect to its last column
we get

detL(n) = dn−1 detLn−2

− ∑
k∈Γ (n−1)

(−1)k+n−1 detL(n)(k,n−1),

where the submatrix L(n)(k,n− 1) is obtained by re-
moving the k-th row and the (n−1)-th column of L(n).
Further, expanding detL(n)(k,n − 1) with respect its
last row,

detL(n)(k,n−1) = ∑
�∈Γ (n−1)

(−1)�+n−1 detLn−2(k, �).

This yields

dn−1 detLn−2 − ∑
k∈Γ (n−1)

∑
�∈Γ (n−1)

(−1)k+� detLn−2(k, �)

= detL(n),

which substituted back into (15) becomes

f (x1,x2, . . . ,xn) =
detL(n)
detLn−2

. (16)

Theorem 1 follows when (16) is substituted back into
(7). �
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4. Applications

The most obvious and probably the most useful ap-
plication of formula (6) is in a simple procedure for
computing resistance distances. If µ ′

1,µ ′
2, . . . ,µ ′

n−1 and
µ ′′

1 ,µ ′′
2 , . . . ,µ ′′

n−2 are the eigenvalues of the submatrices
L(i) and L(i, j), respectively, then

detL(i) =
n−1

∏
r=1

µ ′
r, (17)

detL(i, j) =
n−2

∏
r=1

µ ′′
r , (18)

and ri j is readily obtained. As far as algorithm com-
plexity is concerned, the usage of (17) and (18) is not
the most efficient way to compute resistance distances.
However, the method is extremely simple for writing a
computer program (provided, of course, that a software
for matrix diagonalization is available).

Corollary 1.1. For any connected n-vertex graph,
n ≥ 2, the Kirchhoff index (1), is expressed in terms of
Laplacian eigenvalues as (5).

Proof. Suppose that the Laplacian characteristic
polynomial of G, defined as ψ(G,λ ) = det(λ In −
L(G)), where In is the unit matrix of order n, is writ-
ten as

ψ(G,λ ) =
n

∑
k=0

(−1)k ck λ n−k.

Then all the coefficients ck are non-negative integers
and, inparticular [24, 26]

cn = 0,

cn−1 = nt(G), c. f. (4),

cn−2 =

(
n−1

∏
j=1

µ j

)(
n−1

∑
i=1

1
µi

)
= nt(G)

n−1

∑
i=1

1
µi

.

The Kirchhoff index is defined via (1). Then by Theo-
rem 1,

K f = ∑
i< j

ri j = ∑
i< j

detL(i, j)
t(G)

=
cn−2

t(G)
= n

n−1

∑
i=1

1
µi

.�

Formula (5) was reported earlier (for details and fur-
ther references see [7, 33]), but was deduced by a com-
pletely different way of reasoning.

Since ri j is a distance function [25], we obtain by
Theorem 1:

Corollary 1.2. If i, j,k are distinct to each other,
then detL(i,k) ≤ detL(i, j)+ detL( j,k).

If i, j are distinct, then by the well-known Hada-
mard-Fisher inequality

detL(i) ≤ di detL(i, j) .

Thus from Theorem 1 immediately follows

Corollary 1.3.

ri j ≥ max

{
1
di

,
1
d j

}
.

In the below Theorem 2 we deduce a better lower,
and also an upper bound for the resistance distance.

From (9) we get

b(Ln−2)−1 bt = bxt =
n−2

∑
k=1

bk xk = ∑
k∈Γ (n−1)

xk.

Then by (12),

f (x1,x2, . . . ,xn) = dn−1 −b(Ln−2)−1 bt . (19)

Evidently, if the vertices vn and vn−1 are adjacent then
dn−1 = bbt + 1, otherwise dn−1 = bbt .

Let In−2 be the unit matrix of order n− 2. Then by
(19) we obtain

f (x1,x2, . . . ,xn) = b [In−2 − (Ln−2)−1]bt (20)

if the vertices vn and vn−1 are not adjacent. Otherwise

f (x1,x2, . . . ,xn) = b
[

dn−1

dn−1 −1
In−2 − (Ln−2)−1

]
bt .

(21)

As before, the eigenvalues of the matrix L(i, j) are
denoted by

µ ′′
1 ≥ µ ′′

2 ≥ ·· · ≥ µ ′′
n−2 > 0.

Then, of course, 1/µ ′′
i , i = 1,2, . . . ,n − 2, are the

eigenvalues of (Ln−2)−1. Then from (20) and (21) and
by taking into account (7) follows:

Theorem 2. Let i �= j. If the vertices vi and v j are
not adjacent, then

di

(
1− 1

µ ′′
n−2

)
≤ 1

ri j
≤ di

(
1− 1

µ ′′
1

)
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and

µ ′′
1

di (µ ′′
1 −1)

≤ ri j ≤
µ ′′

n−2

di (µ ′′
n−2 −1)

with the upper bound for ri j applicable only if
di (µ ′′

n−2 −1) > 0, i. e., µ ′′
n−2 > 1.

Otherwise

di

(
1− 1

µ ′′
n−2

)
+

1
µ ′′

n−2
≤ 1

ri j
≤ di

(
1− 1

µ ′′
1

)
+

1
µ ′′

1

and

µ ′′
1

di (µ ′′
1 −1)+ 1

≤ ri j ≤
µ ′′

n−2

di (µ ′′
n−2 −1)+ 1

with the upper bound for ri j applicable only if
di (µ ′′

n−2 −1)+ 1 > 0, i. e., µ ′′
n−2 > 1−1/di.
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tum Chem. 71, 217 (1999).

[18] D. J. Klein and O. Ivanciuc, J. Math. Chem. 30, 271
(2001).

[19] J. L. Palacios, Int. J. Quantum Chem. 81, 29 (2001).
[20] D. J. Klein, Croat. Chem. Acta 75, 633 (2002).
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