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Based on the characteristics of the truncated Painlevé expansion method and the Exp-function
method, new generalized solitary wave solutions are constructed for the KdV-Burgers-Kuramoto
equation, which cannot be directly constructed from the Exp-function method. This work
highlights the power of the Exp-function method in providing generalized solitary wave solutions
of different physical structures.

1. Introduction

The investigation of the exact solutions of nonlinear partial differential equations plays an
important role in mathematics, physics, and other applied science areas. In recent years, a
variety of powerful methods has been proposed and analyzed to construct the explicit exact
solutions to nonlinear evolution equations. Among these methods, the Exp-function method
proposed by He and Wu [1] is particularly notable in its power and applicability in solving
nonlinear problems, and it has been successfully applied to many kinds of nonlinear partial
differential equations [2-17]. All of these applications verified that the Exp-function method
is a straightforward, efficient, and versatile technique for finding generalized solitary, pe-
riodic, and rational solutions for nonlinear evolution equations as well as for revealing in-
triguing characteristics of various inner-wave interactions.
The KdV-Burgers-Kuramoto equation [18, 19] is

Up + VUL, + PlUxyx + AUy + YUxxxx = 0, (1.1)
where v, y, a, and y are constants. This equation is an important mathematical model arising

in many different physical contexts to describe many phenomena which are simultaneously
involved in nonlinearity, dissipation, dispersion, and instability, especially at the description
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of turbulence processes. Since the solutions possess their actual physical application [20],
various effective methods have been applied to construct the exact solutions of the KdV-
Burgers-Kuramoto equation. These methods include the tanh function method [21-23], the
homogeneous balance method [24], and the generalized F-expansion method [20]. As a con-
sequence, it is still a significant and interesting task to search for new explicit exact solutions
for nonlinear evolution equations. In the present work we extend the Exp-function method in
combination with the truncated Painlevé expansion method [25, 26] to obtain new nontrivial
exact solitary wave solutions to the KdV-Burgers-Kuramoto equation (1.1). As a result, we
have found some new exact solitary wave solutions to (1.1) in the case where the Exp-func-
tion method provides trivial solutions only, which will be investigated in more detail in the
following section.

2. Solitary Wave Solutions by the Exp-Function Method
Using the transformation u = u(r), 1 = kx + wt, (1.1) becomes the ordinary differential
equation:

wu' + kvu' + KPau” + Kpu” + kK*yu" = 0. (2.1)

According to the Exp-function method [1], we assume that the solution of (2.1) can be
expressed in the form

Sned €™ a_ge™ 4.+ ace!

u(n) = = ,
P -y
g bme™ b_ge M+ + byer

(2.2)

where ¢, d, p, and g are positive integers, a, and b,, are unknown constants, which are to be
determined later.

By balancing the linear term of the highest order in (2.1) with the highest order non-
linear term, we get c+3p = 2(p+c), and, thus, p = c. Similarly, balancing the linear term of the
lowest order in (2.1) with the lowest order nonlinear term yields g = d. Here, the values of ¢
and d can be freely chosen [1]. With the help of Maple, we have obtained only trivial solutions
of (1.1) for the caseswhere (i) p=c=1landd=g=1,(iij)p=c=1andd =g =2, and (iii) p =
¢ =2and d = g = 1, but one new solitary wave solution in the case where p = ¢ = 2 and
d = q =2, which is given by

azez’l + arbre + ayby + arb_1e7"
e + ble’T + bo + b_le‘ﬂ

u(x, t) = , (2.3)

where 17 = kx + wt, k and w are arbitrary constants, and the coefficients ay, b_1, by, b; are free
parameters. We expect that the other cases for the values of ¢ and d will produce nontrivial
solitary wave solutions to (1.1). In the next section we will consider finding new exact solitary
wave solutions to (1.1) in the case where the Exp-function method provides trivial solutions
only, particularly whenp =c=1andg=d =1.
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3. New Solitary Wave Solutions to
the KdV-Burgers-Kuramoto Equation

Let us consider the KdV-Burgers-Kuramoto equation defined by (1.1). The truncated Painlevé
expansion method will be adopted to find a dependent variable transformation for finding
solitary wave solutions to the considered equation. Substituting u(x, t) in the form

1 t) = up(x,t)  u(x,t)

TRt Fx e

+ -+ up(x, t) (3.1)

into (1.1) and finding the order of the pole r = 2 for the solution u(x,t) and the functions
uo(x,t),u1(x,t),...,u,(x,t), we obtain the dependent variable transformation

_60_y631nf+15_a621nf+<240y_15(x2>61nf (32)

ux ) = ox3 v ox? 76v  76vy ) ox '

where yv #0. Throughout the remainder of this paper we assume that y and u satisty the
condition yv #0.

Substitution of this transformation into the KdV-Burgers-Kuramoto equation (1.1)
yields a rather complicated system of nonlinear equations in f for which we seek the solution
form of the Exp-function method [1]:

ZZ:—C gngml
Z?n:—p bme™!

f(x,t) = , (3.3)

where 77 = kx + wt.

For the sake of simplicity, we choose p = ¢ = 1 and q = d = 1. Based on the considera-
tion in (3.2) and (3.3), in this paper we assume that (1.1) admits a generalized solitary wave
solution of the form

,t
u(x,t) = gx 3) 3/ (3.4)
76vy(bie +bg + b_1e7 )’ (a1 + ap + a_1e7")
where
g(x,t) = Ase™ + Age* + Az + Are® + Arel + A
(3.5)

+ Ble"l + Bze_z’l + B3€_3rl + B4€_4rl + B5€_57l,
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where

Ay =-15 <—12a2a31b%b0a0 - 6a2a,1bfb,1 aé + 6384y2k2a%béa,1 by - 6a2a,1b1bga%
+14592y?k*ab? a_1by — 684ykaibiab_ja_; + 1824y*k*albob? ag
- 6384y2k2a1b3a31b1 - 684ykay b%aaglbl - ?.oczaﬁlbi< + 6384y2k2a1b31a(2)b1
+ 684yka§b1ab%1a1 + 684ykaéb_1abfa_1 + 456ykagb11xb_1b0
- 1824y2k2a31bfb0a0 - 456yka1b8aa_1 ag + 192‘uya31bfb0ao - 6a2a31bfb_1a1
+12a%aibob? ap + 6a*adbib* a1 — 1824y*k*ajb_1blay + 96puya_1b1bjaj
- 6384y2k2a_1 bfagb_l - 96uya_ béb-l a% -32 yya?bfl - 96‘uya%b1 bfla_l
—192puyaibob®, ap + 96pya®,bib_1a1 + 96puya’,bibja;
+ 1824Y2k2a,1b1b5a% + 32‘uya31b§ - 96‘uya1b1bfla§ - 96ﬂya1b§b,1 aé
+ 96,uya,1b%b,1 aﬁ - 14592y2k2a1b,1 aglb% + ZaZa?bél + 6a2a%b1 b%l a_q
+6zx2a,1b(2)b,1 a% - 6a2a31b1b§a1 + 6a2a3b,1 bém)k,

A =-15 <9a2a_1bob%1a% +9a?alb? boay + 96pya® bibob_1a; + 6a*a_1bib* arag
- 9a2aglb1b(2,a0 + azagblbgl - 6a2a%1b1b0b_1 a; — 9a2a%1b%b_1a0 + azagb_lb(z)
- 5a2a§1b%b0 + 6a2a,1béb,1 a,ag — azaglbgal + Szxzaob%l a% —6a’a_1b1bgb_4 aé
- aza,lbgag + 80yya§1b%bo + 304yka8b1ab31 - 456yka1boaa31b1 b,
- 1824y2k2a1b(2)a,1 agb_1 + 76ayka8b,1b§ + 456yka1b31aa,1b1 ap + 304y2k2a,1b8a§
- 304y’k*adb1 b} + 16pya_ibjal — 16pyaib_b} — 76ayka_1bial
+ 96/4ya_1b1bob_1ag - 16yya8b1bgl - 912yka1b§aa_1b_1 ap — 304y2k2a31b%b0
—14592y?k*a1b_1a® biby + 8208y*k*ab? a_1by + 14592y k*a;b* a_1b1ag
- 96yya_1b1b%1 ajag + 1824y2k2a_1b0a%b1b_1 + 2432y2k2a3b1b%1
+144pya® b2b_1ag + 684yka® biab_ay — 144uya bob? a3 + 144pya® bibay
- SOyya%bﬁlao - 96/1ya_1b§b_1a1a0 + 16yya31b8a1 - 144‘u}fa_1b0bflaf
+ 912yka_1b1aaéb_1b0 + 76yka§1bfabo - 8208y2k2a31b%a0b_1 - E’:Oélykalbgoccﬁ1

~76ykaib® aag + 304y°k*aib’ | ag — 684ykaiboab? a_y — 2432y k* a4 bga31>k,

A, =-15 <—12a2aglb1b0b,1ao - 4a2a§1b1bg - 4a2a§1b%b,1 + 12a2a,1b0b31 aiap

- 2a2a31b8a0 + 2a2a3b31b0 + 40(2(1%1731 a_i+ 912ayka§1b1 bob_1ag + 4a2aébfla1
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- 304y%k*a* bya + 304y*k*a’ by b} + 2432y*k*atb® a_y - 76ykadb® aa
+ 76yka§1b1 ab(z) - 3O4yka%b§1aa,1 - 684yka1b5aa%1b,1 + 8208y2k2a,1b1 aébgl
- 32ﬂya(3)bglbo - 304y2k2a1b§1ag + 64yya§1b1bg - 1824y2k2a31b1b0a0b,1
- 76yku31bgaa0 - 912ayka_1b0b%1a1a0 - 64,uya1b§1a3 + 32yya%1b8ao
+304yka’ biab_; + 304y k*ajb? by + 76ykajb? aby + 64puya’ bib_
- 64yya%b§1a_1 - 192‘u}fa_1b0b31a1a0 + 192ptya%1b1bob_1 ag — 2432y2k2a§1b%b_1
+1824y°k%a1b a_1boao + 684yka 1braaZb?, - 8208y2k arb-1a%, b3 )k,

Az =-15 (azagbfl - a2a31b8 - 456yka1bilaaoa_1 + 3a2a%1b0b31 a;
+ 48yya%1b1b31 ap — 96//tya1b§1 apa_1 + 16/,Lya§1bg - 48‘uya,1b0b31 aé
+ 96yya§1b1bob_1 + 6a2a0b31a1 a_q + 1824Y2k2a_1b0a(2)b31
- 1824y2k2a%1b3a0b_1 - 48yya%1bob31a1 - 3a2a31b5b_1a0 - 16yya8b§l
- 684yka;b* aa® by + 684yka* biaagh?®, + 48uya* bib_1a
+6384y°k?a? byagh?, — 6384y2k>a b? a by + 456yka’  biabyb_
+31x2a_1b0b31a% - 61x2a‘°jlb1 bob_1 — 3a2a31b1b31a0> k,

Ay=-15 (—2432y2k2a1b§1aﬁl - 32uyarb’ a’ +2432y°k*a’ b1 b2
+ 32yyailb1b%1 + 304ayka§1b1b%1 - Zazailbéb_l + Zazagbfl a_q
- 304y2k2a§ 1b3b_1 + 76yka§1b3ab_1 + 304y2k2a%bf 14-1— 76yka§b§1aa_1
+2a%a1b% a?| - 32uyadb’ a_y - 2aa’ bib? | + 32uya’ bib
-304ayka; bfl ai) k,

As =-15 <76ayka§1b0b31 - 76ocykaobélag1 + oczaobé1 azl + 16yya§1b0bfl
+304y2k2a31b0b31 - 304y2k2a0bila%1 - 16yya0b§1a31 - azailbobi)k,

By =-15 <—96yya§b1 bob_1a_1 — 16yya§b8a_1 + 304y2k2a8b1b(2) + 9a2a%b1b31 do
- 9a2a,1b%b0a§ + 684yka%bflab1 ap + 6a2a%b1bob,1 aq— 9a2a31b%boa1
- a?aybi b} + 8208y?k*alb? agby — 304y’ k*arb3al — 80uyasbob?,
+ aza%bga_l + azalbgaé + 6a2a1b1b0b_1a3 + 9a2a%b(2)b_1a0 - 6a2a_1b1bga1ao
- 5[1251017:1%[1%1 - a2a8b%b_1 - 6cx2a_1b%b_1 ajag + SaZa%bobgl

- 912yka1b%aa_1b1ao + 144‘uyaglbfboa1 + 304yka8b_1ab% - 144/4ya%b1b31a0
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- 76aykaibyal — 16pyarbyal + 16pyagbi by + 2432y°k*a2bia_y + 76aykajbibg
- 304y2k2a31bfa0 +96uya_q b%b_l arag — 96pyaibibob_q a% + 80‘uya31b‘;’ao
+144pya_1biboal + 912ykarb_jaadbi by — 76yka?,baag + 456ykab_aagbia_y
+ 1824y2k2a1b(2)a,1 agby — 1824y2k2a1 boaéblb,l + 76ykai’boab%1 - 304yka%b8aa,1
- 456yka%boab1 b_ia_1- 684yka1b0aa31b% + 14592Y2k2a%b0b,1 a_1by
- 14592y*k*a1b_1a_1biay — 144pyaibib_1ag + 96puya_1bibjaiag + 16pyazbib_
~2432y° k2 a3bib s + 30472k albob?, - 8208y°k%arboa® b} )k,

B, =-15 <—4zx2a(2)b‘fa_1 - Zazagb%bo - 4cx2aglbfa1 + 4a2a?b1b31 + 4a2a§bgb_1
+ 1824y2k2a%b0b_1a0b1 + 64luya_1bfa% - 8208Y2k2a1b_1a3b% + 12a2a%b1bob_1a0
+ Zaza%bgao - 12cx2a_1b%boa1 ag — 912ayka_1b%boa1a0 - 304y2k2a%b§b_1
- 76ykagb?aa_1 - 1824Y2k2a1b0a_1b‘;'a0 + 304Y2k2a%b8a0 + 8208y2k2a%b§a_1b1
+ 304Y2k2a_1b§’a(2) + 304yka?b§1ab1 + 76yka?b(2)ab_1 - 192yya§b1bob_1 aop
+ 912ayka%b1b0b_1ao - 76yka%b8aa0 + 192,uya_1bfb0a1ao - 304yka31bfzxa1
+64dpya* biar - 2uyacbay — 64uyasbyb_y — 64puyaibib*, — 304y k*asbiby
+76ykagbiaby — 2432y°k*a* bja) + 684ykaib_jaajb; + 2432y°k*a;b? by
—684ykatbiabia_q + 32yyagb%bo> k,

B3 =-15 <a2a?b(3) —a*ayb; +3a’aibibjag — 3o’ ajbiboar + 3a*aibib_1ay — 48puyaibibyag
+ 96yya_1bfa1a0 - 16yyai’bg - 48/4ya%b%b_1a0 - 3a2a%b%b0a_1 + 6a2a?b1b0b_1
- 96/4ya?b1bob_1 - 6384y2k2a%b_1 aob% - 456yka_1bfaa0a1 - 6a2a0b%a1 a_q
- 1824y* ka1 badb? + 456yka’boabib_y + 1824y k?atbjaob, — 684ykaiboaa b3
+684yka’b_jaaob? + 48uya’b’boa_; + 6384y*k*a’boa_1b? + 48uya b?bya;
+16,uya(3)bf> k,

By =-15 <—304ayka_1bfa% +304ayka’bib_y — 32uyabib_y + 32uyaibla;
- 304y%k?aibla; + 2432y*k*a_1bja? — 2432y°k*a’bib_y — 32uyalbib}
+32uya_ibiaj + 76ykaibjab, — 76ykaibiaa; — 2a’ajbla; - 2a’a_1b3a;

+304y°k2aibib + 2a%aibib y + 202 a3bib} )k,



Abstract and Applied Analysis 7
Bs =-15 <—16yya?b%bo - 304y2k2a:15b%b0 + 3O4y2k2a0b§a% - azaob%a% + 76ayka?b%b0
~76aykaobial + a’a;biby + 16‘uya0b?a%>k.

(3.6)

Substituting (3.4) into (1.1) and equating the coefficients of all powers of e’ to zero
yields a system of algebraic equations for aj, ag, a_1, b1, by, b_1, k and w. Solving the system
with the help of Maple, we obtain the following cases.

Case 1. Consider

a_q bl

{al = 0,(1() = b—o,a_l = a_l,bl = bl,bo = bo,b_l =0,k = k,w =w}. (37)

Case 2. Consider

b
{a1 = M,Llo =ag,a-1=0,b1 =0,by = by,

b
(3.8)
b b k. (50 = T6aky = 76yK? ~316y)
-1=0-1, ’ 76y .
Case 3. Consider
{01 = ‘Zo_bofao =ao,a-1=0,b1 =0,by = by,
-1
(3.9)
= 240py + 76a/~fy — 150
b,lzb,l,k=im,w=#( py + 76a/=pry — 15a°) '
Y 76y2
Case 4. Consider
a = L;;O_lzorao =ag,a-1=0,b; =0,bg = by,
1 ~19ay &1 /437a2y2 - 1216y
bfl = b*l/k == ’
1 2
38y (3.10)

_ 20848ua’y + 399362y + 707a*
N 184832y3

1168yapu~\/194/23a% — 64uy — 41a°+/194/23a2 — 64uy
- 184832)°
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Substituting these cases into (3.4) we obtain the following new solitary wave solutions to
(1.1):

15k c3e + c2e™ + cre*l + cpe® + c_1e¥! + c_ye + c_3

u(x,t) =
bt 76yv (bo + bren)®

7

3= (az - 16‘uy> be, o= (6(12 - 96‘uy> biby, c1 = (150c2 - 240/4y> biby,
co = (2002 - 320py ) 363, 1 = (15a® - 240py ) b3b,

c = (60(2 - 96‘uy> byb, c3 = <a2 - 16‘uy) bs,
(3.11)

where 7 = kx + wt, k and w are determined in Case 1, by and b; are arbitrary constants.
Consider

15k c3e + c2e + cre* + cpe + c_1e® + c_yel + c_3

u(x,t) =—
(x:) 76yv (boe +b_1)°

4

cs=(a®-16py)bf,  co= (60 96uy)bib, 1 = (15a% - 240uy )b b,

co = (2002 - 320py ) B3b%,, 1 = (1507 — 240py )b, b,

0= <6a2 _ 96/1Y>b0b51r c3 = (az - 16yy>bfl,
(3.12)

where 1 = kx + wt, k and w are determined in Case 2, by and b_; are arbitrary constants.
Consider

15k c3€ + ¢ + cre* + cpel + c_1e¥! + c_yel + c_3
76yv (boe +b_1)°

u(x,t) =

4

c3= <a2 - 16ypt> bs, co= <6zx2 - 96}//4) byb-1, cq = (15a2 - 240/4)/) beb?,,

co = (200® =320y )B3b%,,  c1 = (1502 - 240py )b, bR,

= <6a2 - 96yy)b§1bo, c3 = (az - 16Y#)bfy
(3.13)
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where 1 = kx + wt, k and w are determined in Case 3, by and b_; are arbitrary constants.
Consider

15k ¢z + cpe™ + cre* + cped + c_1e* + c_pel + c_3
2888y (boe' +b_1)°

u(x,t) =

7

3= <a2 - 16/4y> bs, o= <6zx2 - 96yy> byb-1, cq = (150(2 - 240/4y> bgb?,,

co = (200® = 320uy )B3b%,,  c1 = (1502 - 2404y ) b3b%,,
= <61x2 - 96/4y> bgbfl, 3 = <a2 - 16yy> bfl,
(3.14)

where 11 = kx + wt, k and w are determined in Case 4, by and b_; are arbitrary constants.

The correctness of solutions (3.11)—(3.14) is ensured by testing them on computer with
the aid of symbolic computation software Maple. It should be noted that these solutions
have not been found in the literature. We also applied the Exp-function method to the KdV-
Burgers-Kuramoto equation (1.1) to obtain its solitary wave solutions. As a result, we found
only trivial solutions for thecases (i) p=c=g=d =1, (1) p=c=2,9g=d=1, (i) p=c =1,
q = d = 2, and one nontrivial solution for the case p = ¢ = 2, 4 = d = 2, and we expect
that more nontrivial solutions will be found for other cases. This indicates that the solutions
obtained in this work cannot be directly constructed by the Exp-function method particularly
in the case wherep=c=gq=d=1.

4, Conclusion

In this paper, we have successfully implemented the Exp-function method based on the trun-
cated Painlevé expansion method and obtained new generalized solitary wave solutions of
the KdV-Burgers-Kuramoto equation. Our approach yields new travelling wave solutions
with some free parameters. The approach considered in this paper and the Exp-function
method complement each other in that our approach may provide nontrivial solutions in the
cases that the Exp-function method may provide only trivial solutions. The result reveals that
the Exp-function method is a promising tool because it can provide a variety of new soliton
solutions with distinct physical structures.
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