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ROBUST POWER SYSTEM STABILIZER
VIA NETWORKED CONTROL SYSTEM

Vojtech VESELÝ — Thuan Nguyen QUANG
∗

The paper presents a novel power system stabilizer (PSS) design for a multivariable power system. The proposed design
procedure is based on the linear matrix inequalities and stabilization of controlled system with time-varying time delay.

K e y w o r d s: power system stabilizer (PSS), networked control systems (NCSs), time delay, Lyapunov-Krasovskii
functional (LKF)

1 INTRODUCTION

Power system stabilizers are used to enhance damp-
ing of power system oscillations mainly through excita-
tion control [3, 5, 7–10, 13]. Deregulation of the electricity
markets has led to increasing uncertainties concerning the
power flow within the network. PSSs are used to enhance
damping of power oscillation. In the deregulation elec-
tricity market, the phenomenon of poorly damped low
frequency inter-area power systems oscillations play an
important role and it involves several groups of machines
distributed over the different countries. There are sev-
eral different ways how to improve the oscillation damp-
ing in a power system. As shown in references, improve-
ment of inter-area oscillations damping can be advanta-
geously accomplished with PSS. For multivariable power
system obviously a typical PSS of the i-th synchronous
generator (SG) consists of a gain and lead/lag compen-
sation functions with πi synchronous generator output
feedback. Commonly used PSS, single inputs are shaft
speed, terminal frequency, active power (current), termi-
nal voltage and so on. Dual input PSS [9] normally use
combinations of power or speed or frequency of the i -th
SG to derive the stabilizing signal. PSS has decentralized
structure.

In this paper, we introduce a novel approach to design
of PSS using both classical stabilizing signal with decen-
tralized structure and stabilizing signal which can be ob-
tained from outputs of other SGs that is proposed novel
PSS has no decentralized structure. Some idea about such
PSS the reader can consults [12]. The data from other
units of power system can be obtained using communi-
cation data network. Control system over data networks
are commonly referred to as Networked Control Systems
(NCSs). Integration of communication networks into feed-
back control loops inevitably leads to some problems. For
the NCSs, the sampling data and controller signals are
transmitted through a network. As results, it leads to

a network-induced delay in a networked control closed-
loop system. The existence of such a kind of delay in
a network-based control loop can induce instability or
poor performance of control systems [2, 5, 6]. In this pa-
per, we consider that classical- decentralized stabilizing
signal is already defined and problem is to design sta-
bilizing signals obtained from other SGs which guaran-
tee and improve closed-loop system stability, robustness
and performances. In this paper, we do not study the
problem of which kind of stabilizing signal could be used
for complete PSS, but if this stabilizing signal is defined,
we study the problem of stability, robustness and per-
formance. The paper is organised as follows. Section 2
gives the preliminaries, definitions and problem formula-
tion. Section 3 explains main results of the paper. And in
Section 4, a numerical example is presented to show the
design procedure of complete PSS.

Notation: Throughout this paper, for real matrix M ,
the notation M ≥ 0 (respectivelyM > 0) means that
matrix M is symmetric and positive semi-definite (re-
spectively positive definite); “∗” denotes a block that is
readily inferred by symmetry; Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

2 PRELIMINARIES AND
PROBLEM FORMULATION

Consider a set of L transfer function matrices identi-
fied in several different working points of power system.
The working points are determined by steady state of
power system with different power, voltages and so on,
that are working points cover the whole range of system
operation.

Gk(s) = {Gk
ij}m×m , k = 1, 2, . . . , L (1)

where

Gk
ij(s) =

∆Πk
i

∆Uk
j

, i, j = 1, 2, . . . ,m .
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Fig. 1. Structure of complete PSS for the case of m = 2

∆Πk
i is the change of the i -th synchronous generator out-

put for k -th experiment applied to the PSS input, ∆Uk
j

is the change of the demand value of terminal voltage of
j -th SG. We assume that all synchronous generators op-
erate in the closed-loop with terminal voltage controller
and decentralized structure PSS. The structure of SGs
and complete PSS for the case of m = 2 is given in Fig. 1.

For the PSS(s) design procedure, two models are used,
[1] Model M1 :

PSS(s) = Kw
sTw

1 + sTw

1 + sT11

1 + sT21

1 + sT12

1 + sT22
· · · 1 + sT1r

1 + sT2r

(2)
where all time constants Tjk are known. The problem is
to design gain Kw and Tw .
Model M2 :

PSS(s) =
sTw

1 + sTw

[
1 1

1+sT2
. . . 1

1+sTr

] 
Kw1

Kw2

...
Kwr

 . (3)

Assume that all time constants Tj are known. The prob-
lem is to design Kw1,Kw2, . . . ,Kwr and Tw .

Combination of the two models different structures of
PSS can be obtained. Model of power system (1) should
be recalculated to following affine linear time-invariant
continuous time uncertain systems.

ẋ(t) = A(ξ)x(t) +B(ξ)u(t) ,

y(t) = Cs(t)
(4)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the con-

trol input of closed-loop system, y(t) ∈ Rl is the output of
closed-loop system (Fig. 1). The matrices A(ξ), B(ξ) ∈ S
belong to convex hull, and S is a polytop with N vertices
S1, S2, . . . , SN which can formally defined as

S :={
A(ξ) ∈ Rn×n, B(ξ) ∈ Rn×m : A(ξ) =

∑N
i=1 ξiAi ,

B(ξ) =
∑N

i=1 ξiBi ,
∑N

i=1 ξi = 1 , ξi ≥ 0

}
(5)

where Ai, Bi are constant matrices with appropriate di-
mensions and ξi are time-invariant uncertainties. Note S
is a convex and bounded domain.

Consider the single PSS in the following form

PSS(s) =
sTw

1 + sTw
. (6)

The problem in this paper is to design two parameters K
and Tw (structure M1,M2 ) such that for the PSS (7)

ui(s) =
Kijs

1 + sTwij
e−tsyj(s) , i ̸= j ; i, j = 1, 2 (7)

where the network induced delay in NCSs is given by
0 < τ ≤ τM and τ̇ ≤ µ ≤ 1, guarantees the stability,
robustness and performance.

In the time domain, the PSS (7) can be reformulated
as follow

u(t) = CdWfz(t) + CdKCx(t)− CdKC

∫ t

t−τ

ẋ(s)ds (8)

where

ż(t) = −Wfz(t) +KCx(t)−KC

∫ t

t−τ

ẋ(s)ds (9)

Consider X(t) =
[
x⊤(t) z⊤(t)

]⊤
we obtain

u(t) = [CdKC−CdWf ]X(t)+[−CdKC 0]

∫ t

t−τ

Ẋ(s)ds .

(10)
Substituting (10) to (4) will result to the closed-loop
system

Ẋ(t)−AcX(t) +Adc

∫ t

t−τ

Ẋ(s)ds = 0 (11)

where

Ac =

[
A+BCdKC −BCdWf

KC −Wf

]
, Adc =

[
BCdKC 0
KC 0

]
.

Note that other part of PSS transfer function can be
involved to power system transfer function matrix. The
following performance index is associated with closed-
loop system (4) and (7)

J =

∫ ∞

0

J(t)dt , J(t) = X⊤(t)QX(t) + u⊤Ru(t) (12)

where Q = Q⊤ > 0, R = R⊤ > 0 are matrices of
compatible dimensions. Consider

η(t) =
[
Ẋ⊤(t) X⊤(t)

∫ t

t−τ
Ẋ⊤(s)ds

∫ t−τ

t−τM
Ẋ⊤(s)ds

]⊤
and by substituting u(t) from (10) to u⊤(t)Ru(t) we
obtain

u⊤Ru(t) = η⊤(t)K⊤RKη(t)
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where

K = [ 0 K1 K2 0 ] ,

K1 = [CdKC −CdWfd ] , K2 = [−CdKC 0 ]

then J(t) can be rewritten as the following form

J(t) = η⊤(t)MQ(ξ)η(t) (13)

where

MQ(ξ) =


0 0 0 0
∗ K1RK1 +Q K1RK2 0
∗ ∗ K2RK2 0
∗ ∗ ∗ 0

 .

Associated with the cost of closed-loop system, the guar-
anteed cost controller is defined as follows:

Definition 1. Consider the uncertain system (4) . If
there exist a controller of the form (8) and a positive
scalar J0 such that for all uncertainties (5), the closed-
loop system (11) is asymptotically stable and closed-loop
value of the cost function (12) satisfies J ≤ J0 then J0
is said to be a guaranteed cost and the controller (8) is
said to be guaranteed cost controller.

Finally we introduce the well known results from LQ
theory.

Lemma 1. Consider the continuous-time delay system
(4) with control algorithm (8). The control algorithm (8)
is the guaranteed cost control law for the system (4) if and
only if there exists LKF V (ξ, t) such that the following
condition holds

d

dt
V (ξ, t) + J(t) ≤ 0 . (14)

3 THE MAIN RESULTS

The following theorem provides robust stability and
robust performance results for the closed-loop system
(11).

Theorem 1. Consider the uncertain power system (4)
controlled via NCSs with network-induced delay τ satis-
fying 0 < τ ≤ τM , τ̇ ≤ µ ≤ 1 and the cost function (12).
If there exist a controller of form (8), scalar J0 , and ma-
trices Pi > 0 , Gi > 0 , G1i > 0 , G2i > 0 (i = 1, . . . , N) ,
N1 , N2 , N3 and N4 that satisfy the following matrix
inequality

Wi =


w11

i w12
i w13

i w14
i

∗ w22
i w23

i w24
i

∗ ∗ w33
i w34

i

∗ ∗ ∗ w44
i

 ≤ 0 (15)

where

w11
i = N1 +N⊤

1 + τMG1i , w
12
i = −N1Aci +N⊤

2 + Pi ,

w13
i = N1Adci +N⊤

3 , w14
i = N⊤

4 ,

w22
i = −N2Aci −A⊤

ciN
⊤
2 + µGi +K⊤

1 RK1 +Q ,

w23
i = N2Adci −A⊤

ciN
⊤
3 + (1− µ)Gi +G2i +K⊤

1 RK2 ,

w24
i = −A⊤

ci +G2i ,

w33
i = N3Adci −A⊤

dciN
⊤
3 + (1− µ)Gi −

1

τM
G1i

−G2i +K⊤
2 RK2 ,

w34
i = A⊤

dciN
⊤
4 −G2i ,

w44
i = −G2i −

1

τM
G1i

then the uncertain system (4) with controller (8) is
asymptotically stable and the cost function (12) satisfies
the following bound

J ≤ J0 =
√

λ2
MP + λ2

MG + λ2
MG1 + λ2

MG2 ∗ JM (16)

where

λMP = Max
i=1...N

(Max(Eigenvalue(Pi))) ,

λMG = Max
i=1...N

(Max(Eigenvalue(Gi))) ,

λMG1 = Max
i=1...N

(Max(Eigenvalue(G1i))) ,

λMG2 = Max
i=1...N

(Max(Eigenvalue(G2i))) ,

JM =
{
∥x0∥4 +

(∫ 0

−t

∥φ(s)∥2ds
)2
+

(∫ 0

−τ

dθ

∫ 0

θ

∥φ̇(s)∥2ds
)2
+
(∫ −t

−τm

∥φ(s)∥2ds
)2}1/2

where x(t) = φ(t) , t ∈ [−τM , 0] is a continuously differ-
entiable initial function.

P r o o f (S k e t c h) . Take the Lyapunov-Krasovskii
fucntional as follows

V (ξ, t) =

4∑
i=1

Vi(ξ, t) ,

V1(ξ, t) = X⊤(t)P (ξ)X(t) ,

V2(ξ, t) =

∫ t

t−τ

X⊤(s)G(ξ)X(s)ds ,

V3(ξ, t) =

∫ 0

−t

dθ

∫ t

t+θ

Ẋ⊤(s)G1(ξ)Ẋ(s)ds .

V4(ξ, t) =

∫ t

t−τM

X⊤(s)G2(ξ)X(s)ds ,

(17)

Differentiating V (ξ, t) with respect to time and using

Newton-Leibnitz formula x(t − τ) = x(t) −
∫ t

t−τ
ẋ(s)ds ,

we obtain

V̇1(ξ, t) = 2X⊤(t)P (ξ)Ẋ(t) ,
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V̇2(ξ, t) = η⊤1 (t)

[
µG(ξ) (1− µ)G(ξ)

∗ −(1− µ)G(ξ)

]
η1(t) ,

η⊤2 =
[
X⊤ ∫ t

t−τ
Ẋ⊤(s)ds

]
,

V̇3(ξ, t) ≤ τM Ẋ⊤G1(ξ)Ẋ(t)−

1

τM

∫ t

t−τ

Ẋ⊤(s)dsG1(ξ)

∫ t

t−τ

Ẋ(s)ds ,

V̇4(ξ, t) ≤ η⊤2 (t)

 0 G2(ξ) G2(ξ)
∗ −G2(ξ) −G2(ξ)
∗ ∗ −G2(ξ)

 η2(t) ,

η⊤2 (t) =
[
X⊤(t)

∫ t

t−τ
Ẋ⊤(s)ds

∫ t−τ

t−τM
Ẋ⊤(s)ds

]
.

Applying the free-weighting matrices technique, equation
(8) is represented in the following equivalent form

α(t) = 2η⊤(t) [N⊤
1 N⊤

2 N⊤
3 N⊤

4 ]
⊤

× [Md(ξ) −Ac(ξ) Adc(ξ) 0 ] η(t) = 0 .

After manipulation with the above equation, we obtain

α(t) = η⊤(t)Mα(ξ)η(t) = 0 (18)

where

Mα(ξ) =


N1 +N⊤

1 −N1Ac(ξ) +N⊤
2

∗ −N2Ac(ξ)−A⊤
c (ξ)N

⊤
2

∗ ∗
∗ ∗

N1Adc(ξ) +N⊤
3 N⊤

4

N2Adc(ξ)−A⊤
c (ξ)N

⊤
3 −A⊤

c (ξ)N
⊤
4

N3Adc(ξ) +A⊤
dc(ξ)N

⊤
3 A⊤

dc(ξ)N
⊤
4

∗ 0


Because of α(t) = 0, thus

V̇ (ξ, t) =
5∑

i=1

V̇i(ξ, t) + α(t) ≤ η⊤(t)[Mα(ξ) +MV (ξ)]η(t)

(19)
where

MV (ξ) =


τMG1(ξ) P (ξ) 0

∗ µG(ξ) (1− µ)G(ξ) +G2(ξ)
∗ ∗ −(1− µ)G(ξ)−G2(ξ)
∗ ∗ ∗

0
G2(ξ)
−G2(ξ)

−G2(ξ)− 1
τM

G1(ξ)

 .

Due to Lemma 1, the closed-loop system (6) is robustly
asymptotically stable and gives an upper bound (a guar-
anteed cost) for the cost function (7) if

V̇ (ξ, t) + J(t) ≤ η⊤(t)W (ξ)η(t) ≤ 0 ⇐⇒ W (ξ) ≤ 0 .
(20)

W (ξ) =

N∑
i=1

= ξiWi = Mα(ξ) +MV (ξ) +MQ(ξ) =
w11(ξ) w12(ξ) w13(ξ) w14(ξ)

∗ w22(ξ) w23(ξ) w24(ξ)

∗ ∗ w33(ξ) w34(ξ)

∗ ∗ ∗ w44(ξ)

 ,

w11(ξ) =

N∑
i=1

ξiwi11 = N1 +N⊤
1 + τMG1(ξ) ,

w12(ξ) =
N∑
i=1

ξiwi12 = −N1Ac(ξ) +N⊤
2 + P (ξ) ,

w13(ξ) =
N∑
i=1

ξiwi13 = N1Adc(ξ) +N⊤
3 ,

w14(ξ) =
N∑
i=1

ξiwi14 = N⊤
4 ,

w22(ξ) =
N∑
i=1

ξiwi22 = −N2Ac(ξ)−A⊤
c (ξ)N

⊤
2

+ µG(ξ) +K⊤
1 RK1 +Q ,

w23(ξ) =
N∑
i=1

ξiwi23N2Adc(ξ)−A⊤
c (ξ)N

⊤
3

+ (1− µ)G(ξ) +G2(ξ) +K⊤
1 RK2 ,

w24(ξ) =

N∑
i=1

ξiwi24 = −A⊤
c (ξ)N

⊤
4 +G2(ξ) ,

w33(ξ) =
N∑
i=1

ξiwi33 = N3Adc(ξ) +A⊤
dc(ξ)N

⊤
3

− (1− µ)G(ξ)− 1

τM
G1(ξ)−G2(ξ) +K⊤

2 RK2 ,

w34(ξ) =
N∑
i=1

ξiwi34 = A⊤
dc(ξ)N

⊤
4 −G2(ξ) ,

w44(ξ) =

N∑
i=1

ξiwi44 = −G2(ξ)−
1

τM
G1(ξ) .

For each Wi ≤ 0, i = 1, . . . , N , then

W (ξ) =
∑N

i=1 ξiWi ≤ 0,
∑N

i=1 ξi = 1, ξi ≥ 0. Therefore,

V̇ (ξ, t) ≤ −J(t) ≤ 0 (J(t) ≥ 0), respectively J(t) ≤
−V̇ (ξ, t). By integrating J(t) ≤ −V̇ (ξ, t) we obtain

J ≤ −
∫ ∞

o

V̇ (ξ, t)dt = V0 = X⊤
0 P (ξ)X0

+

∫ 0

−τ

X⊤(s)G(ξ)X(s)ds

+

∫ 0

−τ

dθ

∫ 0

θ

Ẋ⊤(s)G1(ξ)Ċ(s)ds

+

∫ 0

−τM

X⊤(s)G2(ξ)X(s)ds .
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Fig. 2. Regulation of active powers by active power PSS output
feedback
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Fig. 3. Regulation of active powers by current PSS output feedback

Because of X(t) = [φ⊤(t) 0 ] , ∀ t ∈ [τM , 0] then

V0 ≤ λMP ∥x0∥2 + λMG

∫ 0

−τ

∥φ(s)∥2ds

+ λMG1

∫ 0

−τ

dθ

∫ 0

θ

∥φ̇(s)∥2ds+ λMG2

∫ 0

−τM

∥φ(s)∥2ds .

As we know that, for two arbitrary vectors X ,Y , the
following inequality is always held

∥V ecX⊤Y | ≤ ∥X∥∥Y∥ . (21)

Consider

X =
[
λ⊤
MP λ⊤

MG λ⊤
MG1 λ⊤

MG2

]⊤
Y =

[
∥x0∥2

∫ 0

−τ
∥φ(s)∥2

∫ 0

−τ
dθ

∫ 0

θ
∥φ̇(s)∥2∫ 0

−τM
∥φ(s)∥2ds

]⊤
.

And applying the inequality (16), the upper bound cost
function (7) J0 is obtained as (11). Theorem 1. is proved.

4 EXAMPLE

Power system stabilizers (PSS) are used to enhance
power system damping. The linearized mathematical
model of the MIMO power system (1) has been obtained
from experiments on the model of the Slovak Power Sys-
tem in the form given by Fig. 1. Experiment has been
made for two SG’s: EMO11 and EBO31 in one working
point, that is N = 1. For above two SG’s obtained trans-
fer function matrix when ∆Πi = ∆Pi , i = 1, 2 — active
power of i -th SG, has been recalculated to the form of
(4), where

A =


A11 0 0 0
0 A12 0 0
0 0 A21 0
0 0 0 A22

 , B⊤ =


B11 0
0 B12

B21 0
0 B22

 ,

C⊤ =


C11 0
C12 0
0 C21

0 C22

 , D = 0 ,

A11 =

 0 0 −1.2905
1 0 −68.2416
0 1 −1.9819

 , B11 =

 25.1311
−6.6692
0.8847

 ,

A12 =

 0 0 −106.1244
1 0 −74.3852
0 1 −6.2322

 , B12 =

 −83.08
100.7547
34.5436

 ,

A21 =

 0 0 −35.2905
1 0 −48.187
0 1 −4.6111

 , B21 =

−150.3434
127.6829
4.8710

 ,

A22 =

 0 0 −1.2863
1 0 −68.2668
0 1 −2.4658

 , B22 =

 10.0213
−3.1781
0.3861

 ,

C11 = C12 = C21 = C22 = [ 0 0 1 ] .

Assume that the simple PSS’s are used with input active
power variable, see Fig. 1. For the following three cases
the gains and time constants are calculated:
R = rI , Q = qI , P < pmaxI ,

a) r = 1, q = 0.01, τM = 0.001 s, µ = 0.1,

K =

[
0.0168 0

0 0.021

]
, Tw =

[
336.189 0

0 454.268

]
,

b) r = 1, q = 0.1, τM = 0.001 s, µ = 0.1,

K =

[
0.0089 0

0 0.0174

]
, Tw =

[
399.20 0

0 899.194

]
,

c) r = 1, q = 0.1, τM = 0.01 s, µ = 0.9,

K =

[
0.0076 0

0 0.0172

]
, Tw =

[
601.85 0

0 594.841

]
,

Dynamic behaviour of the active powers for three
phase short circuits and T = 0.4 s, case a) on line V425
are given in Fig. 2. Figure 2 implies that non decentralized
structure part of PSS practically does not increase the
damper of closed-loop power system dynamic behaviour.
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For the case when ΛΠi = IGENi , i = 1, 2 and PSS with
transfer function

PSSi =
ki0.1s

1 + 0.1s

1 + 0.105s

1 + 1.96s

i = 1, 2, k1 = 1.76, k2 = 1.172 .

The dynamic behaviours of active powers for three
phase short circuits and T = 0.4 s on line V425 are
given in Fig. 3. Figure 3 shows that there exist such SG
variables which can be used for complete PSS and such
way increases the damper of power system. Conditions of
choice such variables are under research.

5 CONCLUSION

In this paper, a new approach to the complete robust
PSS design has been proposed in time domain. We as-
sume that stabilizing PSS variables are obtained through
network communication system. Integration of commu-
nication networks into feedback control loops, inevitably
leads to some problems.

As results, it leads to a network-induced delay in a
networked control closed-loop system. The existence of
such a kind of delay in a network-based control loop can
induce instability or poor performance of control systems.
In this paper sufficient robust stability conditions with
guaranteed cost for such system are given. Theoretical
results are supported with results obtained by solving
robust PSS for two real power units working in Slovak
Power System EMO11 and EBO31.
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