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ABSTRACT
Mobile emotion measurement (MEM) through physiological
signals is a promising tool for both experiments and appli-
cation. We provide 1) an overview of unobtrusive physio-
logical sensors and 2) a review of studies that have tried to
infer emotions from physiological signals. This review shows
that there is a lack of general standards, low accuracy, and a
doubtful validity of the results. To overcome these problems,
we provide three guidelines for future research on MEM:
validation, triangulation, and a physiology-driven approach.
These guidelines enable the embedding of MEM in various
professional and consumer settings, as a key factor in our
every day life.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—
Human factors; J.4 [Social and Behavioral Sciences]:
[Psychology]; J.7 [Computers in Other Systems]: [Con-
sumer products]; I.2.m [Miscellaneous]: []

General Terms
Experimentation, Human Factors, Measurement, Performance,
Reliability, Standardization

Keywords
Emotion, Physiology, Wearable, Affective computing, Phys-
iological computing

1. INTRODUCTION
Would it not be great if a computer could warn us when we
are under too much stress, if a tutoring system could monitor
a student’s attention, or if music could automatically be
selected based on how we feel? These are typical examples
of the next step in machine intelligence, which require an
unobtrusive method for measuring one’s mental state [19].

One of the promising ways of measuring these mental states
is through physiological signals. The physiological counter-
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parts of psychological phenomena have been researched for
over a century. This has resulted in an enormous body of
literature that describes physiological responses to all kinds
of psychological states: mental workload, attention, pain,
emotions, and dreams, to name but a few [4]. However, find-
ings of studies manipulating psychological states and mea-
suring physiological signals are typically inconsistent [10].
Nonetheless, the amount of research employing physiolog-
ical signals with machine learning tools to predict mental
states has exploded in the last decade; see also Table 2.
Together with technological advances in physiological sen-
sors, this leads the way to true mobile emotion measurement
(MEM).

MEM would be of great benefit for mobile HCI. In the first
place, it would enable real-time unobtrusive objective emo-
tion measurements in experimental settings. This has ad-
vantages over subjective methods like questionnaires, which
can only be done post-hoc and are very obtrusive. Addi-
tionally, it is doubtful whether subjective emotion reports
always reflect the actual emotion. In contrast to physiolog-
ical measurements, they are not free from social masking.

Currently, several wearable devices are being developed that
can conduct physiological measurements in a unobtrusive,
real-time fashion. This enables physiology-based MEM, as
opposed to facial affect recognition that cannot be done
through wearable devices. Moreover, they can be used any-
time, where emotional speech processing only works in sit-
uations where one is speaking [19]. Hence, for studies using
a mobile setting, emotions are best captured by physiologi-
cal signals. Furthermore, MEM has not only methodologi-
cal advantages, it also provides numerous opportunities for
mobile applications. Possible applications include an affec-
tive mp3 player, continuous emotion communication, atmo-
sphere creation, or even emotional jewelry. In turn, this
might prove essential in realizing true ambient intelligence
and forms next step in wearable and mobile computing [19].

In this paper, we will first provide an overview of mobile
devices that measure physiology. In addition, we give an
overview of state-of-the-art emotion prediction from physio-
logical signals. We show that this prediction has not reached
a satisfying level for MEM. Furthermore, we identify several
methodological shortcomings of the studies done so far. To
overcome these problems, we provide three guidelines that
will help to further the development of successful MEM.
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Table 1: General concerns with mobile emotion measurement (MEM).

1) Affective signals are typically derived through non-invasive methods to determine changes in physiology and, as such,
are indirect measures. Hence, a delay between the actual change in emotional state and the recorded change in signal
has to be taken into account, especially with mobile measurements.

2) Mobile measurements make physiological sensors sensitive to movement artifacts and differences in bodily position.
3) Most sensors are obtrusive, preventing their integration in real world applications.
4) Affective signals are influenced by (the interaction among) a variety of factors [4]. Some of these sources are located

internally (e.g., a thought) and some are among the broad range of possible external factors (e.g., a signal outside). This
makes affective signals inherently noisy, which is prominent in mobile measurements in real world environments.

5) Physiological changes can evolve in a matter of milliseconds, seconds, minutes or even longer. Some changes hold for
only a brief moment, while others can even be permanent. Although seldom reported, the expected time windows of
change are of interest [19]. In particular since changes can add to each other, even when having a different origin, as is
often the case with mobile measurements.

6) Affective signals have large individual differences. This calls for methods and models tailored to the individual. It has
been shown that personal approaches increase the performance of affect recognition; e.g., [3].

2. THE STATE-OF-THE-ART
A broad range of affective signals are used in affective sci-
ences. Over the last decade, several unobtrusive devices for
the processing of such signals have been developed. For in-
stance, sensors for heart rate measurements have been inte-
grated into a chair [1]. Furthermore, Healey and Picard [6]
integrated heart rate and skin conductance measurements
into a car, Ark et al. [2] have developed skin conductance
sensors in a mouse, and Paulos et al. [13] combined wearable
wireless heart rate sensors in a wrist band.

For a broad range of techniques, applications, and discus-
sions concerning unobtrusive emotion measurement, we also
refer to [20]. This shows the wide variety of possibilities for
integrating physiological sensors in all kinds of everyday ob-
jects in an unobtrusive manner. After the signals have been
captured, they have to be processed in real-time. When pro-
cessing such signals, some general issues have to be taken in
consideration, as are denoted in Table 1.

Typically, studies attempting to predict mental states using
physiological signals conduct an experiment in which partic-
ipants are brought into distinct mental states. A wide range
of physiological signals are monitored from which numerous
features are extracted. After feature extraction, machine
learning techniques are employed to see if correct mental
state predictions can be made based on the extracted fea-
tures. See Table 2 for a concise review of such studies.

As illustrated by Table 2, a variety of physiological sig-
nals and machine learning techniques have been explored.
Nonetheless, both the recognition performance and the num-
ber of emotions that the classifiers were able to discriminate
are disappointing. Moreover, comparing the different studies
is problematic because of the different settings the research
was applied in, ranging from controlled lab studies to real
world testing, the type of emotion triggers used, the num-
ber of target states to be discriminated, and the signals and
features employed. Moreover, the general concerns are often
disregarded, as denoted in Table 1. To conclude, there is a
lack of standards, low prediction accuracy, and inconsistent
results. For MEM to come to fruition, it is eminent to start
dealing with these issues. This illustrates the need for a set
of guidelines for MEM, as is done in the next section.

3. GUIDELINES
We identify three guidelines for MEM: 1) validity, 2) trian-
gulation of measurements, and 3) a physiology-driven ap-
proach.

3.1 Validity
In the pursuit to trigger emotions in a more or less controlled
manner, a range of methods have been applied: actors, im-
ages (IAPS), sounds (e.g., music), (fragments of) movies,
speech, commercials, games, agents / serious gaming / vir-
tual reality, real world experiences, and reliving of emotions.
However, how to know which of these methods actually trig-
gered participants’ true emotions? This is a typical concern
of validity, which is a crucial issue for MEM. Validity can
be best obtained through four approaches: content, criteria-
related, construct, and ecological validation, as we will dis-
cuss in this section.

Content validity refers to a) The agreement of experts on
the domain of interest; e.g., limited to a specific application
or group of patients; b) The degree to which a feature (or its
parameters) of a given signal represents a construct; and c)
The degree to which a set of features (or their parameters)
of a given set of signals adequately represents all facets of
the domain. For instance, employing only skin conductance
level (SCL) will lead to a weak content validity when trying
to measure emotion, as SCL is known to relate to the arousal
component of an emotion, but not to the valence component.
However, when trying to measure only emotional arousal,
measuring only SCL may form strong content validity.

Criteria-related validity handles the quality of the trans-
lation from the preferred measurement to an alternative,
rather than to what extend the measurement represents a
construct. Emotions are preferably measured at the mo-
ment they occur, as is feasible with MEM. However, mea-
surements before (predictive) or after (postdictive) the par-
ticular event are sometimes more feasible; e.g., through sub-
jective questionnaires. The quality of these translations are
referred to as predictive or postdictive validity. With emo-
tion measurement, this is especially relevant for obtaining a
reliable ground truth. The closer the ground truth measure
to the actual emotion, the more reliable it becomes. A third
form of criteria-related validity is concurrent validity: a met-
ric for the reliability of measurements applied in relation to



Table 2: A summary of 11 studies that have tried to infer a mental state from physiological signals. They all
employed a similar approach: first, a certain mental state (e.g., stress, certain emotions, mental workload)
is induced in participants, while a number of physiological signals are measured. Subsequently, a variety of
features is extracted and pattern recognition and machine learning techniques are employed to enable the
automatic classification of the emotional states.

Source Signals Features Selection/Reduction Classifiers Target Result

[14] C,E ,R,M 40 SFS, Fisher LDA 8 emotions 81 %
[12] C,E ,S 3 kNN, LDA 6 emotions 69 %
[16] C,E ,B 18 SVM 6 emotions 42 %
[9] C,E ,S 10 SVM 3 emotions 78 %
[11] C,E ,S 12 kNN, LDA, ANN 6 emotions 84 %
[5] G 3 PCA ANN 4 emotions 90 %
[6] C,G,R,M 22 Fisher LDA 3 stress levels 97 %
[15] C,G,S,M,P 46 kNN, SVM, RT, BN 3 emotions 85 %
[22] C,G,S,P 11 SVM 2 stress levels 90 %
[21] C,E 20 ANOVA SVM, ANN 2 fun levels 70 %
[8] C,E ,M,R 15 SVM, ANFIS 4 affect states 79 %
[18] E ,M 10 ANOVA, PCA kNN, SVM, ANN 4 emotions 61 %

Notes. C: Cardiovascular activity; E : Electrodermal Activity; R: Respiration; M: Electromyogram; B: Electroencephalo-
gram; S: Skin temperature; P: Pupil Diameter; ANN: Artificial Neural Network; RT: Regression Tree; BN: Bayesian
Network; SVM: Support Vector Machine; LDA: Linear Discriminant Analysis; kNN: k Nearest Neighbors; ANFIS: Adap-
tive neuro-fuzzy inference system; PCA: Principal Component Analysis; SFS: Sequential Forward Selection.

the preferred standard. For instance, the more emotions are
discriminated, the higher the concurrent validity.

A construct validation process aims to develop a nomological
network, or possibly an ontology or semantic network, build
around the construct of interest. Such a network requires
theoretically grounded, observable, operational definitions
of all constructs and the relations between them. Such a
network aims to provide a verifiable theoretical framework.
The lack of such a network is one of the most pregnant prob-
lems physiological emotion measurement is coping with. A
frequently occurring mistake is that emotions are denoted,
where moods (i.e., longer object-unrelated affective states
with very different physiology) are meant. This is very rele-
vant, as it is known that moods are accompanied by very dif-
ferent physiological patterns than emotions are. Moreover,
different signals relate to different emotional properties. For
instance, arousal is strongly related to skin conductance and
valence is thought to be reflected by heart rate variability.

Ecological validity refers to the influence of the context on
measurements. As emotions are easily contaminated by con-
textual factors, using a similar context as the intended appli-
cation for initial learning is of vital importance. Hence, emo-
tion measurements done in controlled laboratory settings,
are poorly generalizable to real-world applications. Hence,
the need for MEM to make longitudinal real-world studies
possible is pressing.

3.2 Triangulation
We propose to adopt the principle of triangulation on MEM,
as applied in social sciences and human-computer interac-
tion. This may deal with the noisy physiological signals
inherent to MEM. For example, movement artifacts and cor-
ruption due to other signals can be major problems.

Heath [7] defines triangulation as “the strategy of using mul-

tiple operationalizations of constructs to help separate the
construct under consideration from other irrelevancies in the
operationalization”. Using this strategy provides several ad-
vantages: 1) Distinct signals can be used to validate each
other; 2) Extrapolations can be made based on multiple data
sets, providing more certainty. In turn, corrections can be
made to errors in a result set that clearly defy from other
results; and 3) More solid ground is obtained for the inter-
pretation of signals, as multiple perspectives are used.

Triangulation was, for example, successfully employed by
[3], who showed that combining physiological signals and fa-
cial expressions leads to better predictions than using one
of them. Also, [19] showed that the combination of a physi-
ological parameter (i.e., heart rate variability) and speech
parameters can provide more robust emotion recognition
than either of them separately. Hence, we advise to record
multiple affective signals, as is facilitated through MEM.
Moreover, qualitative and subjective measures should ac-
company the signals; e.g., questionnaires, video recordings,
interviews, and Likert scales. Systematic, well controlled
research exploring the plethora of possible affective signals
should increase the grip on the meaning of these signals.

3.3 A physiology-driven approach
A third guideline stems from the idea that physiological emo-
tion measurement can never be entirely based on psycholog-
ical changes. As discussed, there are many factors outside
one’s affective state that contaminate affective signals. Be-
side validation and triangulation, a physiology-driven per-
spective could be taken to deal with this [17].

Instead of expressing goals of MEM directly in terms of affec-
tive states, they can often be stated in terms of the affective
signals themselves. For instance, instead of inferring an air-
traffic controller’s stress level, thresholding skin conductance
level might be sufficient. Note that there always remains an



interpretation in affective states. Then, the use of syntac-
tic or structural pattern recognition should be explored. Its
hierarchical approach to simplifying complex patterns in af-
fective signals could be valuable for MEM.

4. CONCLUSION
This paper described MEM through physiological signals
and explained the lack of its success. Next, three guidelines
were introduced from which MEM is expected to benefit sig-
nificantly: validation, the principle of triangulation, and a
physiological-driven approach.

With the guidelines provided and the future’s progress ahead,
we envision embedding of MEM in various professional and
consumer settings, as a key factor of our every day life;
cf. [19]. MEM fits the ambient intelligence vision perfectly.
Although combining wearable and intelligent devices into
smart environments is a great challenge, we strongly believe
this holds a great promise for future technology and lifestyle.
Would it not be an appealing idea to live in an empathic sur-
rounding that adapts to your mood and emotions, which can
even calm you or can help you concentrate when required?
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