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Abstract

We develop a new modeling and exact solution method for stochastic programming problems that
include a joint probabilistic constraint in which the multirow random technology matrix is discretely
distributed. We binarize the probability distribution of the random variables in such a way that we can
extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint.
We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure of the
tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic
constraint and takes the form of a system of linear constraints. We use the separating structure to
derive three new deterministic formulations equivalent to the studied stochastic problem. We derive
a set of strengthening valid inequalities for the reformulated problems. A crucial feature of the
new integer formulations is that the number of integer variables does not depend on the number of
scenarios used to represent uncertainty. The computational study, based on instances of the stochastic
capital rationing problem, shows that the MIP reformulations are orders of magnitude faster to solve
than the MINLP formulation. The method integrating the derived valid inequalities in a branch-and-
bound algorithm has the best performance.

Keywords: Stochastic Programming, Boolean Function, Joint Probabilistic Constraint, Random
Technology Matrix, Minorant, Threshold Function

1 Introduction

Consider the probabilistically constrained stochastic Problem with Multirow Random Technology Matrix

(PMRTM)

PMRTM : max qTx (1)

subject to Ax ≥ b (2)

P(T x ≤ d) ≥ p (3)

x ∈ R|J|+ (4)

where T is an [r × |J|]-matrix and its rows T T
1 , . . . ,T

T
r are discretely distributed random vectors not

necessarily independent. The notation |J| refers to the cardinality of the set J. Each component ti j of

Ti is given by ti j = si j ξ j, where si j ∈ R
1
+ is a fixed positive number and ξ is a |J|-dimensional random

vector. We denote by x ∈ R|J| the vector of decision variables, by p a prescribed reliability level, by P a

probability measure, and by qTx : R|J| → R the objective function. The system of inequalities (2), with

A ∈ Re×|J| and b ∈ Re, represents the set of deterministic constraints. The constraint (3) is a multirow
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probabilistic constraint with random technology matrix that ensures that the r inequalities T T
i x ≤ di

(i = 1, . . . , r) hold jointly with a probability at least equal to p. Without loss of generality, we assume

that the components of the r-dimensional vector d are constant. If d is random, we can simply introduce

a new variable x|J|+1 set equal to 1 and look at P(T x − d x|J|+1 ≤ 0). For discretely distributed variables,

the feasible set defined by PMRTM is non-convex even when all the decision variables are continuous

[3].

Remark 1 The assumption that each coefficient si j is non-negative is non-restrictive and was made to

ease the notations. Indeed, if one (or more) of the coefficients si j is negative, one can rewrite si j = s+
i j− s−i j

with s+
i j, s

−
i j ≥ 0 (and at least one of them equal to zero), introduce a random vector ξ̃ = −ξ, and then

rewrite the entries ti jx j = s+
i jx jξ j + s−i jx jξ̃ j in T x in (3).

Probabilistically constrained problems with random technology matrix have first been studied by

Kataoka [15] and van de Panne and Popp [38]. In their pioneering work, these authors consider a one-

row probabilistic constraint with random technology matrix

P(ξTx ≤ d) ≥ p , (5)

where ξ has normal distribution with E[ξ] = µ and variance-covariance matrix Σ. They show that (5) is

equivalent to the constraint

µTx + Φ−1(p)
√

xTΣx ≤ d , (6)

where Φ−1(p) is the p-quantile of the standard normal distribution. If p ≥ 0.5, as it is usual in prac-

tice, then Φ−1(p) ≥ 0, and, since
√

xTΣx is a convex function, the feasible set determined by (6) is a

second-order cone constraint defining a convex feasible region. In a more general setting, the probability

distribution of ξTx is often mixed or partially known and the value of the p-quantile of the distribution is

unknown. The value of this latter can be approximated by using the well-known Cantelli, Chebychev [5]

and Camp-Meidell [17] probability inequalities. Henrion [12] showed that the feasible set defined by the

individual (i.e., one row) chance constraint P(ξTh(x) ≤ d) ≥ p is convex if all the components of h(x) are

nonnegative and convex, p ≥ 0.5, ξ has an elliptical symmetric distribution, and the parameters of the

distribution are nonnegative.

The complexity of stochastic problems with random technology matrix is further compounded as

the number r of inequalities that must hold jointly with a large probability level increases. Very few

results are known for constraints with multirow random technology matrix. Prékopa [30], Henrion and

Strugarek [13], and Prékopa et al. [33] have studied the convexity properties of the feasible set G =

{x : P(T x ≤ d) ≥ p} when each row Ti of T follows a continuous distribution. For instance, Prékopa [30]

showed that G is a convex set if all covariance and cross-covariance matrices of the columns and rows

of T are proportional to each other. Even if the rows Ti are independent, the convexity of the feasible set

defined by (3) can only be guaranteed under restrictive assumptions and is due to the fact that the product

of quasi-concave functions is not necessarily quasi-concave [33]. Henrion and Strugarek [13] showed
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that the joint probabilistic constraint P(hi(x) ≥ ζi, i = 1, . . . , r) ≥ p defines a convex feasible area if hi(x)

is (−ei)-concave and ζi, i = 1, . . . , r are independent random variables with (ei + 1)-decreasing densities

for some ei > 0 for large values of p. Considering a Gaussian technology matrix in (3), Van Ackooij

et al. [37] designed an efficient method to compute the gradients and value of the multivariate Gaussian

distribution functions with the code developed by Genz [9]. A possible approach is to approximate a

multirow chance constraint with random technology matrix (3) with individual chance constraints (7).

This can be done by using, for example, Boole’s inequality and requiring that:

P(Tix ≤ di) ≥ pi, i = 1, . . . , r (7)
r∑

i=1
pi − (r − 1) ≥ p (8)

0 ≤ pi ≤ p . (9)

However, this approach provides a very conservative solution.

In this paper, we consider the case in which the elements ti j of T are discretely distributed. Discrete

distributions are employed in multiple applications and are often created through sampling as approxi-

mations of the underlying distribution. Tanner and Ntaimo [36] propose a large-scale mixed integer pro-

gramming reformulation for PMRTM, derive the so-called irreducibly infeasible subsystem optimality

cuts and solve the strengthened problem with a specialized branch-and-cut algorithm. Computational re-

sults are reported for instances of the optimal vaccine allocation problem in which the random technology

matrix has one row. Ruszczyński [34] derives cutting planes based on precedence knapsack constraints

which he uses within a branch-and-cut solution method. Beraldi and Bruni [3] consider the probabilistic

set covering problem, in which random variables are present in the technology matrix and uncertainty is

represented by a finite set of scenarios. The reformulated large-scale integer problem including knapsack

constraints is solved with a specialized branch-and-bound algorithm. Using a Monte Carlo sample of the

distribution of the random variables, sample approximation methods have been shown [23] to find good

solutions for the original problem and provide statistical bounds on the solution quality.

The main objective of this paper is to develop a new modeling and exact solution method for a

class of particularly complex stochastic programming problems. More precisely, we study stochastic

problems that include a joint probabilistic constraint in which the elements of the multirow random

technology matrix are discretely distributed. Our modeling approach involves the binarization of the

probability distribution and is carried out by using a set of threshold values, called cut points. The

binarization process generates binary images for the realizations of the random variables and the set of

recombinations, each of which is a vector defining possibly sufficient conditions for the probabilistic

constraint to hold. The binarization is done in such a way that we can derive a threshold partially defined

Boolean function (pdBf) representing the probabilistic constraint (3). The pdBf is defined with respect to

the binary projections of the recombinations and consistently separates the p-sufficient recombinations

from the p-insufficient ones. A key and novel contribution of this approach is to derive a tight threshold

Boolean minorant for the pdBf representing the probabilistic constraint. Any separating structure of the
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tight threshold Boolean minorant defines sufficient conditions for the probability of T x ≤ d to be at least

equal to p and takes the form of a system of linear constraints.

The separating structure of the tight threshold Boolean minorant is a compact and computationally

effective way to represent the pdBf. We use it to derive three new deterministic formulations equiva-

lent to the probabilistically constrained problem PMRTM. A crucial feature of these three new integer

formulations is that the number of integer variables is equal to the number of cut points used in the bi-

narization process and does not depend on the number of scenarios used to represent uncertainty. We

also derive a set of strengthening valid inequalities for the reformulated problems. The computational

experiments are based on multiple instances of the stochastic capital rationing problem and are used to

analyze the computational efficiency of several algorithmic methods. The tests reveal that our mixed-

integer reformulations make it possible to solve very fast and to optimality instances of the stochastic

capital rationing problem in which the uncertainty is present in the rows of the technology matrix and

is represented by a very large number of scenarios. The introduction of the proposed valid inequalities

further accelerates the solution process.

In Section 2, we describe the binarization process and the derivation of the pdBf representing (3).

The method extends the Boolean framework proposed in [18, 19] to handle probabilistic constraints with

random technology matrix. Section 3 describes the properties of the pdBf and introduces the concepts of

extension and minorant of a Boolean function. It also characterizes the separating structure of the tight

threshold minorant for the pdBf representing the probabilistic constraint (3). In Section 4, we derive three

new reformulations equivalent to the stochastic programming problem PMRTM. Section 5 describes the

computational results, while Section 6 provides concluding remarks.

2 Combinatorial Modeling Framework
In this section, we present the binarization process / Boolean modeling framework used to reformu-

late probabilistic programming problems with multirow and random technology matrix. The modeling

framework involves the following steps: (i) the construction of the set of recombinations, and (ii) the

binarization of the probability distribution. A variant of the proposed binarization process is used in

[18, 19] for joint probabilistic constraints with random right-hand sides and deterministic random tech-

nology matrix. In [18], a p-efficient point [31] is represented as a conjunction of literals, called ep-

pattern, and mathematical programming problems for the generation of such patterns are proposed. In

[19], Lejeune introduces the concept of a p-pattern that defines sufficient conditions for a chance con-

straint with random right-hand side to hold. An MIP reformulation equivalent to the associated stochastic

problem is proposed and several heuristics providing high-quality p-patterns are evaluated.

2.1 Construction of Set of Recombinations

We denote by Ω ∈ R|J|+ the support set of ξ: Ω contains the possible realizations of the |J|-random vector

ξ = [ξi, . . . , ξ|J|] with distribution function F. We refer to ξ j as the jth component of the vector ξ. A
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realization k is represented by the |J|-deterministic numerical vector ωk. We distinguish p-sufficient and

p-insufficient realizations.

Definition 1 [18] A realization k is called p-sufficient if and only if P(ξ ≤ ωk) = F(ωk) ≥ p and is

p-insufficient if F(ωk) < p.

Let diag(ωk) be the [|J|× |J|]-dimensional diagonal matrix whose entries are the |J| elements of the vector

ωk and S ∈ Rr×|J|
+ be the matrix containing the coefficients si j (ti j = si j ξ j) in the random technology

matrix T . As indicated by its name, a p-sufficient realization defines sufficient conditions for the proba-

bilistic constraint (3) to hold. Indeed, if k is p-sufficient, we have F(ωk) = P(T x ≤ S diag(ωk) x) ≥ p,

and, thus,

S diag(ωk) x ≤ d ⇒ P(T x ≤ d) ≥ p . (10)

We obtain a partition of the set Ω of realizations into two disjoint sets of p-sufficient Ω+ =
{
k ∈ Ω : F(ωk) ≥ p

}
and p-insufficient Ω− = Ω \ Ω+ realizations. To obtain the optimal solution for problem PMRTM, we

must not only take into account the realizations k ∈ Ω of the random vector, but we should also consider

all points that can be p-sufficient and that we shall call recombinations. We denote by F j the marginal

probability distribution of ξ j and by F−1
j (p) its p-quantile. The inequalities

ωk
j ≥ F−1

j (p), j = 1, . . . , |J| (11)

are based on the univariate quantile rule and represent necessary, although not necessarily sufficient,

conditions for the probabilistic constraint (3) to hold: P(T x ≤ d) ≥ p ⇒ ωk
j ≥ F−1

j (p), j = 1, . . . , |J| .

The sets C j are given by

C j =
{
ωk

j : F j(ωk
j) ≥ p, k ∈ Ω

}
, j ∈ J (12)

and their direct product [18, 32]

Ω̄ = C1 × . . . ×C j × . . . ×C|J| , (13)

provides the set Ω̄ of recombinations that provides the exhaustive list of the points that can possibly be p-

sufficient. Each k ∈ Ω̄ is called a recombination and is represented by a numerical vectorωk satisfying the

|J| conditions defined by (11). A recombination k ∈ Ω̄ = Ω̄+ ⋃
Ω̄− can be p-sufficient or p-insufficient,

and the disjoint sets Ω̄+ = {k ∈ Ω̄+ : F(ωk) ≥ p} and Ω̄− = {k ∈ Ω̄− : F(ωk) < p} are respectively

called sets of p-sufficient and p-insufficient recombinations. A recombination can be a realization of the

random vector, but it is not necessarily the case. All p-sufficient realizations are included in the set of

p-sufficient recombinations: Ω+ ⊆ Ω̄+.

2.2 Binarization Process

Using cut points [6], we shall now proceed to the binarization of the probability distribution and the set

Ω̄. We denote by n =
∑
j∈J

n j the sum of the number n j of cut points for each component ξ j. The notation

{0, 1}n refers to the n-dimensional binary vectors.
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Definition 2 [18] The binarization process is the mapping R|J| → {0, 1}n of a numerical vector ωk into a

binary one βk =

[
βk

11, . . . , β
k
1n1
, . . . , βk

jl, . . . , β
k
jn j
, . . .

]
, such that the value of each Boolean component βk

jl

is defined with respect to a cut point c jl as follows:

βk
jl =

{
1 if ωk

j ≥ c jl

0 otherwise
, (14)

where c jl denotes the lth cut point associated with component ξ j,

l′ < l ⇒ c jl′ < c jl , j ∈ J, l = 1, . . . , n j . (15)

Definition 3 A Boolean vector is called relevant if it is the binary mapping of a recombination.

The binarization of Ω̄ provides the set Ω̄B ⊆ {0, 1}n called set of relevant Boolean vectors. Note that the

binarization process arranges the cut points in ascending order (15).

Definition 4 A set of Boolean vectors is called regularized with respect to a group (i.e., ordered subset)

G j =
(
β j1, . . . , β jn j

)
of Boolean variables if every vector βk satisfies the following conditions:

βk
jl = 1 ⇒ βk

jl′ = 1 , l′ < l (16)

βk
jl = 0 ⇒ βk

jl′ = 0 , l′ > l . (17)

Lemma 5 is a direct consequence of Definitions 2 and 4.

Lemma 5 The binarization process described in Definition 2 generates a regularized set of Boolean

vectors, i.e., for every component ξ j, j ∈ J, if c jl′ < c jl, then

βk
jl ≤ β

k
jl′ , j ∈ J , k ∈ Ω . (18)

Definition 6 Any vector βk ∈ {0, 1}n such that

βk
jl > β

k
jl′ for any l > l′, j ∈ J

does not correspond to any realization in the original numerical space and is called not possible.

We shall define a set of cut points, such that the binarization process (15) preserves the disjointedness

between the binary projections Ω̄+
B and Ω̄−B of Ω̄+ and Ω̄− (Ω̄B = Ω̄+

B
⋃

Ω̄−B). We shall accomplish this by

using the sufficient-equivalent [18] consistent set of cut points Ce.

Definition 7 The sufficient-equivalent consistent set of cut points is given by:

Ce =

|J|⋃
j=1

C j , (19)

where the sets C j are defined by (12).
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This ensures that no pair of p-sufficient and p-insufficient recombinations can have the same binary

image. The set of relevant Boolean vectors is partitioned into the disjoint sets of p-sufficient Ω̄+
B and p-

insufficient Ω̄−B relevant Boolean vectors. Note that there is a one-to-one mapping between the numerical

ωk ∈ Ω̄ and the binary βk vectors associated with a recombination k if the binarization process is carried

out with the sufficient-equivalent set of cut points (19).

Definition 8 [8] A Boolean function f of n variables is a mapping f : {0, 1}n → {0, 1}. A point

X = (x1, x2, . . . , xn) ∈ {0, 1}n is a true point (resp., false point) of f if f (X) = 1 (resp., f (X) = 0). We

denote by T ( f ) and F ( f ) the disjoint sets of respectively true and false points of f .

Definition 9 A partially defined Boolean function g defined by the pair of disjoint sets (T ,F ) ⊆

{0, 1}n is a mapping g : (T
⋃
F )→ {0, 1} such that g(X) = 1 (resp., g(X) = 0) if X ∈ T (resp., F ).

Note that a Boolean function is a special case of a partially defined Boolean function (pdBf): any pdBf

g (T ,F ) such that F
⋃
T = {0, 1}n is a Boolean function. The binarization permits the derivation of a

partially defined Boolean functionrepresenting the combination of the binary images βk of the recombi-

nations k with the prescribed probability level p.

Definition 10 Given two disjoint subsets Ω̄+
B, Ω̄

−
B: Ω̄+

B
⋃

Ω̄−B = Ω̄B ⊆ {0, 1}n, g
(
Ω̄+

B, Ω̄
−
B

)
is a partially

defined Boolean function (pdBf) with the sets of true points Ω̄+
B and false points Ω̄−B.

In this pdBf, the set of p-sufficient recombinations is the set of true points and the set of p-insufficient

recombinations is the set of false points. Observe that the binarization process (Definition 2) and the

intra-group regularity of the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
(Definition 4) imply that some vectors of the n-dimensional

cube {0, 1}n do not correspond to any point in the original numerical space and are not possible (see

Definition 6). For example, the binary vector (β11, β12, β21, β22) = (0, 1, 1, 0) is not possible, as (14)-(15)

does not allow for β11 to be strictly smaller than β12.

Theorem 11 Consider the binarization process obtained with Ce. The set Ω̄B of relevant Boolean vec-

tors is the binary projection of Ω̄ and is given by

Ω̄B =
{
k : βk ∈ {0, 1}n, βk

j1 = 1 , βk
jl ≤ β

k
jl−1, j ∈ J, l = 2, . . . , n j

}
. (20)

Proof. Consider an arbitrary point k and the associated numerical ωk and binary βk vectors. It follows

from the univariate quantile rule (11) that k is a recombination if and only if:

ωk
j ≥ min {ωk

j : k ∈ Ω+} = min {ωk
j : ωk

j ∈ C j} = c j1 for any j ∈ J ⇔ βk
j1 = 1 for any j ∈ J . (21)

The first equality follows from (19). The equivalence relationship is a consequence of the binarization

process (14). The constraints βk
jl ≤ β

k
jl−1 in (20) follow from the regularization property (18). �
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We shall use the stochastic programming problem (22) with multirow random technology matrix to

illustrate our method:

max 3x1 + x2 + x3

subject to P
{

2ξ1x1 + 3ξ2x2 − 25 ≤ 0
3ξ1x1 + 6ξ3x3 − 32 ≤ 0

}
≥ 0.7 ,

x1, x2, x3 ≥ 0

(22)

where s11 = 2, s12 = s21 = 3, s13 = s22 = 0, s23 = 6, the random vectors are T1 = [2ξ1, 3ξ2, 0] and T2 =

[3ξ1, 0, 6ξ3]. The cumulative probability distribution F of the random variable ξ = [ξ1, ξ2, ξ3] and the

marginal cumulative distributions F j, j = 1, 2, 3 are given in Table 1. The realizations ωk = [ωk
1, ω

k
2, ω

k
3]

of ξ are equally likely.

Table 1: Probability Distribution
k 1 2 3 4 5 6 7 8 9 10
ωk

1 7 1 1 3 2 3 7 7 7 7
F1(ωk

1) 1 0.2 0.2 0.5 0.3 0.5 1 1 1 1
ωk

2 10 2 3 5 4 5 6 2 6 5
F2(ωk

2) 1 0.2 0.3 0.7 0.4 0.7 0.9 0.2 0.9 0.7
ωk

3 2 1 3 2 1 1 1 4 3 5
F3(ωk

3) 0.6 0.4 0.8 0.6 0.4 0.4 0.4 0.9 0.8 1
F(ωk) 0.6 0.1 0.2 0.4 0.2 0.3 0.4 0.2 0.7 0.7

The sufficient-equivalent set of cut points is:

Ce = {c11 = 7; c21 = 5; c22 = 6; c23 = 10; c31 = 3; c32 = 4; c33 = 5} .

To illustrate how the above cut points are selected, consider the second component ξ2 of the random

vector ξ: ξ2 can take values 2, 3, 4, 5, 6, and 10 and the marginal cumulative probabilities F2(2), F2(3),

F2(4), F2(5), F2(6), and F2(10) are respectively equal to 0.2, 0.3, 0.4, 0.7, 0.9, and 1. The points included

in the sufficient-equivalent set Ce are 5, 6, and 10 that are the only points with a cumulative marginal

probability at least equal to the prescribed threshold p=0.7.

Table 2 displays the recombinations and their binary images (i.e., relevant Boolean vectors) obtained

with Ce. We use the recombination k=11 to illustrate how the values reported in Table 2 are obtained.

Since ω11
1 = 7 is equal to c11 = 7, then the binarization process (14) implies that β11

11 = 1. As ω11
2 =

5 = c21, ω11
2 < c22 = 6, and ω11

2 < c23 = 10, it follows that β11
21 = 1 and β11

22 = β11
23 = 0. Similarly, as

ω11
3 = 3 = c31, ω11

3 < c32 = 4, and ω11
3 < c33 = 5, it follows that β11

31 = 1 and β11
32 = β11

33 = 0. Since β11

is larger than or equal to the binary images β2, β3, β4, β5, and β6 of the realizations k = 2, 3, 4, 5, 6, and

β11 � βk, k = 1, 7, 8, 9, 10, the cumulative probability of k = 11 is equal to 0.5 < 0.7, which implies that

k = 11 ∈ Ω̄−B.
It is easy to see that the numerical representation Ω+ and Ω− of the sets of sufficient and insufficient

numerical realizations are not linearly separable. Indeed, consider the two numerical insufficient realiza-

tions ω1, ω8 ∈ Ω−. The convex combination 0.5ω1 + 0.5ω8 is ω9 ∈ Ω+, which shows that the convex

hulls of Ω+ and Ω− are not disjoint and indicates the non-convexity of problem (22).
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Table 2: Reformulations and Relevant Boolean Vectors

Numerical Vectors Boolean Vectors Relevant Boolean Sets
k ωk

1 ωk
2 ωk

3 βk
11 βk

21 βk
22 βk

23 βk
31 βk

32 βk
33

11 7 5 3 1 1 0 0 1 0 0
Ω̄−B12 7 5 4 1 1 0 0 1 1 0

9 7 6 3 1 1 1 0 1 0 0

Ω̄+
B

10 7 5 5 1 1 0 0 1 1 1
13 7 6 4 1 1 1 0 1 1 0
14 7 6 5 1 1 1 0 1 1 1
15 7 10 3 1 1 1 1 1 0 0
16 7 10 4 1 1 1 1 1 1 0
17 7 10 5 1 1 1 1 1 1 1

Cut Points
7 5 6 10 3 4 5

3 Extension and Minorant of pdBf: Functional Forms and Properties

We shall now investigate how the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
representing (F, p) can be conveniently and efficiently

used to solve problem PMRTM. With that objective in mind, we introduce the concepts of an exten-

sion and minorant of a pdBf and we continue with the characterization of the Boolean functional form

under which g
(
Ω̄+

B, Ω̄
−
B

)
can be represented. This is instrumental for the derivation of a deterministic

reformulation of problem PMRTM.

3.1 Boolean Functional Form and Extension

Definition 12 A Boolean function f is called an extension of a pdBf g
(
Ω̄+

B, Ω̄
−
B

)
if Ω̄+

B ⊆ T ( f ) and

Ω̄−B ⊆ F ( f ).

We shall now consider several Boolean functional forms that extensions of pdBf can take.

Definition 13 [8] A Boolean function f is positive (resp., negative) monotone in the binary variable

xl, l ∈ {1, . . . , n} if f|xl=0 ≤ f|xl=1 (resp., f|xl=1 ≤ f|xl=0) regardless of the values taken by the (n − 1)

other xl′ ∈ {0, 1}, l′ ∈ {1, . . . , n} \ {l}. A Boolean function f is positive monotone (also called, increasing

monotone or isotone) if it is positive in each of its variables.

The following result was derived in [18]:

Theorem 14 Any consistent pdBf representing (F, p) can be extended as an isotone Boolean function.

Definition 15 [8] A function f : {0, 1}n → {0, 1} is a threshold Boolean function if, for all (a1, . . . , an) ∈

{0, 1}n, there exists a vector of weights λ ∈ Rn and a threshold θ ∈ R, such that

f (a1, . . . , an) = 1 if and only if
n∑

l=1

λlal ≥ θ . (23)
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The hyperplane
{

t ∈ {0, 1}n :
n∑

l=1
λltl = θ

}
is a separator for f and the (n+1)-tuple (λ, θ) is the separating

structure for the threshold Boolean function f .

The problem of proving that a Boolean function is a threshold one is known as the threshold recogni-

tion or synthesis problem [26]. The threshold nature of a Boolean function can be identified numerically,

in polynomial time, by solving a linear programming problem [8].

Theorem 16 The pdBf g
(
Ω̄+

B, Ω̄
−
B

)
admits a threshold Boolean extension if and only if the system of

inequalities

∑
j∈J

n j∑
l=1

λ jlβ
k
jl ≥ θ, k ∈ Ω̄+

B (24)

∑
j∈J

n j∑
l=1

λ jlβ
k
jl ≤ θ − 1, k ∈ Ω̄−B (25)

is feasible. If this is the case, the solution (λ11, . . . , λ|J|n|J| , θ) defines the separating structure of g.

Proof. The if part directly follows from Definition 15 since the threshold Boolean function defined

by the inequality in (24) is obviously an extension of the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
. To prove the only if part,

let us assume that the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
has a threshold extension defined by the separating structure

(λ11, . . . , λ|J|n|J| , θ). Then it follows from Definition 15 that all constraints (24) are satisfied. It also

follows that all the following inequalities are satisfied:

∑
j∈J

n j∑
l=1

λ jlβ
k
jl < θ, k ∈ Ω̄−B. (26)

Let us denote by θ∗ = max{
∑
j∈J

n j∑
l=1
λ jlβ

k
jl | k ∈ Ω̄−B}. Obviously, θ∗ < θ. Let us define θ′ = θ/(θ − θ∗),

and λ′jl = λ jl/(θ − θ∗), j ∈ J, l = {1, . . . , n}. Then the so defined θ′ and λ′ provide a feasible solution to

the system of constraints (24) and (25). �

Theorem 16 illustrates the simplicity and convenience of the representation of a threshold function

which is fully characterized by the (n + 1)-tuple (λ, θ) defining its separating structure. This means that

each p-sufficient (resp., p-insufficient) realization is also labeled as p-sufficient (resp., p-insufficient) by

the linear rule defined by the separating structure (λ, θ). Sufficient conditions for satisfying the constraint

(3) can thus be derived from the knowledge of the separating structure.

Consider problem (22) and the set Ω̄B of relevant Boolean vectors displayed in Table 2. Note that,

using (21), we dropped each realization k with Boolean vector βk such that βk
j1 = 0 for at least one j,

since (21) implies such a realization k cannot be p-sufficient. Minimizing the value of the threshold θ,

10



the threshold recognition problem for our example reads:

min
λ,θ

θ

subject to λ11 + λ21 + λ22 + λ31 ≥ θ (k = 9)

λ11 + λ21 + λ31 + λ32 + λ33 ≥ θ (k = 10)

λ11 + λ21 + λ22 + λ31 + λ32 ≥ θ (k = 13)

λ11 + λ21 + λ22 + λ31 + λ32 + λ33 ≥ θ (k = 14)

λ11 + λ21 + λ22 + λ23 + λ31 ≥ θ (k = 15)

λ11 + λ21 + λ22 + λ23 + λ31 + λ32 ≥ θ (k = 16)

λ11 + λ21 + λ22 + λ23 + λ31 + λ32 + λ33 ≥ θ (k = 17)

λ11 + λ21 + λ31 ≤ θ − 1 (k = 11)

λ11 + λ21 + λ31 + λ32 ≤ θ − 1 (k = 12)

The optimal solution is (λ∗, θ∗) = (0, 0, 1, 0, 0, 0, 1, 1). Note that βk
j1 = 1, k ∈ Ω̄B. Hence, the Boolean

variables β j1, j = 1, 2, 3 do not play any role in the derivation of the separating structure and we do not

need to associate a weight to them. Observe that the system of linear inequalities (24)-(25) is not always

feasible.

We note that the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
may not be extendable as a threshold Boolean function. Let ξ be a

four-dimensional vector with two cut points associated with each component. Consider

1. the sufficient Boolean vectors β1 = (1, 1, 1, 1, 1, 0, 1, 0) and β2 = (1, 0, 1, 0, 1, 1, 1, 1), k = 1, 2 ∈ Ω+, and

2. the insufficient Boolean vectors β3 = (1, 1, 1, 0, 1, 0, 1, 1) and β4 = (1, 0, 1, 1, 1, 1, 1, 0), k = 3, 4 ∈ Ω−.

Observe that the above set of Boolean vectors is valid for the problem at hand, since βk
j1 = 1, j = 1, . . . , 4

and that there is no k ∈ Ω− such that βk ≥ βk′ for any k′ ∈ Ω+.

Assume that g
(
Ω̄+

B, Ω̄
−
B

)
can be extended as a threshold Boolean function. In that case, there exists a

tuple (λ, θ) satisfying the system of linear inequalities:

λ11 + λ12 + λ21 + λ22 + λ31 + λ41 ≥ θ (k = 1)

λ11 + λ21 + λ31 + λ32 + λ41 + λ42 ≥ θ (k = 2)

λ11 + λ12 + λ21 + λ31 + λ41 + λ42 ≤ θ − 1 (k = 3)

λ11 + λ21 + λ22 + λ31 + λ32 + λ41 ≤ θ − 1 (k = 4)

The feasibility of the above system requires that the system 2λ11 + λ12 + 2λ21 + λ22 + 2λ31 + +λ31 + 2λ41 + λ42 ≥ 2θ (k = 1) + (k = 2)

2λ11 + λ12 + 2λ21 + λ22 + 2λ31 + +λ32 + 2λ41 + λ42 ≤ 2θ − 2 (k = 3) + (k = 4)

obtained by summing up the first two inequalities and the last two be feasible. This obviously leads

to a contradiction and shows that the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
is not always extendable as a threshold Boolean

function.

11



However, we do not need to derive an extension of g(Ω̄+
B, Ω̄

−
B). The knowledge of an extension

f for g(Ω̄+
B, Ω̄

−
B) permits the derivation of linear inequalities representing sufficient conditions for the

probabilistic constraint (3) to hold. To qualify as an extension for g(Ω̄+
B, Ω̄

−
B), it can be seen from the

aforementioned example that f must meet strict conditions. An extension f could very likely be such

that we might not be able to extract the minimal conditions that must be met for (3) to be satisfied, thus

impeding us in the to derivation of a deterministic formulation equivalent to PMRTM. Thus, in order

to identify tighter, possibly minimal conditions for constraint (3) to hold, we shall enlarge the class of

Boolean functions we consider beyond that of extensions and characterize several forms of minorant for

Boolean functions.

3.2 Concept of Minorant

We shall now introduce the concepts of minorant and tight minorant of a Boolean function.

Definition 17 [8] A Boolean function f is a minorant of a pdBf g
(
Ω̄+

B, Ω̄
−
B

)
if Ω̄−B ⊆ F ( f ).

A minorant is a very broad concept, as many functions whose structure is loosely tied to the pdBf

g
(
Ω̄+

B, Ω̄
−
B

)
could be a minorant of g

(
Ω̄+

B, Ω̄
−
B

)
. For example, the constant 0 is a minorant for any pdBf.

We shall now introduce the concept of tight minorant.

Definition 18 A Boolean function f is a tight minorant of a pdBf g
(
Ω̄+

B, Ω̄
−
B

)
if

1. f is a minorant of g
(
Ω̄+

B, Ω̄
−
B

)
, and

2. T ( f )
⋂

Ω̄+
B , ∅.

Since a threshold Boolean function is characterized by a separating structure, Definition 18 leads to

Lemma 19.

Lemma 19 A threshold Boolean function f defined by the separating structure (λ, θ) is a tight minorant

of a pdBf g(Ω̄+
B, Ω̄

−
B) if the system of inequalities

∑
j∈J

n j∑
l=1

λ jl β
k
jl ≥ θ, for at least one k ∈ Ω̄+

B (27)

∑
j∈J

n j∑
l=1

λ jl β
k
jl ≤ θ − 1, k ∈ Ω̄−B (28)

has a feasible solution.

Observe that (27) is a disjunctive condition over the set Ω̄+
B.

Theorem 20 Given a pdBf g
(
Ω̄+

B, Ω̄
−
B

)
that admits a positive monotone extension, there exists a tight

minorant of g
(
Ω̄+

B, Ω̄
−
B

)
that is threshold.

12



Proof. Since g
(
Ω̄+

B, Ω̄
−
B

)
admits a positive monotone extension (Theorem 14), we know that:

• For any k ∈ Ω̄+
B,

there is no k′ ∈ Ω̄−B such that βk′ ≥ βk. (29)

• For any k ∈ Ω̄−B,

there is no k′ ∈ Ω̄+
B such that βk′ ≤ βk. (30)

Take an arbitrary k∗ ∈ Ω̄+
B and construct a threshold function f (Definition 15) whose separating structure

has weights λ taking value 0 or 1 such that

λ jl = βk∗
jl and θ =

∑
j∈J

n j∑
l=1

βk∗
jl . (31)

By construction, ∑
j∈J

n j∑
l=1

λ jl β
k∗
jl =

∑
j∈J

n j∑
l=1

(
βk∗

jl

)2
= θ, (32)

and f (βk∗) = 1. All that is left to show is that f (βk) = 0 for any k ∈ Ω̄−B.

Take an arbitrary point k′ ∈ Ω̄−B and proceed to a componentwise comparison with βk∗ . Since Ω̄+
B and Ω̄−B

are disjoint, it follows that βk∗ and βk′ differ on at least one coordinate:

∑
j∈J

n j∑
l=1

∣∣∣∣βk∗
jl − β

k′
jl

∣∣∣∣ ≥ 1 .

Since g is positive monotone (30) and βk∗ , βk′ since Ω̄+
B and Ω̄−B are disjoint, we have that βk′

jl < βk∗
jl on

at least one coordinate ( j, l). This implies that βk′ takes value 0 for at least one ( j, l) on which βk∗ is equal

to one. Therefore, by construction of βk∗ (31) and of the separating structure (32) of f , it follows that

∑
j∈J

n j∑
l=1

λ jl β
k′
jl =

∑
jl:βk∗

jl =1

βk′
jl ≤ θ − 1 ,

as we set out to prove. �

The inequalities (28) mean that each p-insufficient realization is also defined as p-insufficient by the

separating structure (λ, θ) characterizing the tight minorant f . Lemma 21 follows.

Lemma 21 The threshold tight minorant derived in the proof of Theorem 20 has an integral separating

structure (λ11, . . . , λ|J|n|J| , θ) ∈ Z
n
+ × Z+ and is isotone by construction, i.e., λ jl ≥ 0, j ∈ J, l = 1, . . . , n j.

A Boolean function f is said to depend on a Boolean variable β jl if there are two Boolean vectors that

differ only on β jl and for which the values of the Boolean function are not the same. Note that a threshold

function does not depend on β jl if the corresponding weight λ jl is zero in the separating structure of f .

We shall now introduce the concept of irredundant tight minorant.

13



Definition 22 A threshold tight minorant is called irredundant if it has the minimum number of weights

λ jl with non-zero value.

Theorem 23 defines the number of non-zero weights in an irredundant threshold tight minorant f of

g
(
Ω̄+

B, Ω̄
−
B

)
, and a set of conditions allowing for their generation.

Theorem 23 An irredundant threshold tight minorant f of g
(
Ω̄+

B, Ω̄
−
B

)
contains |J| non-zero weights.

Every feasible solution of the system of inequalities

∑
j∈J

n j∑
l=1

λ jl β
k
jl ≤ |J| − 1, k ∈ Ω̄−B (33)

n j∑
l=1

λ jl = 1, j ∈ J (34)

λ jl ∈ {0, 1}, j ∈ J, l = 1, . . . , n j (35)

defines an irredundant threshold tight minorant f with integral separating structure (λ, |J|) ∈ {0, 1}n×Z+.

Every point k such that
∑
j∈J

n j∑
l=1
λ jl β

k
jl = |J| belongs to Ω̄+

B.

Proof. For a joint chance constraint (3) to hold, at least one condition must be imposed on each com-

ponent of ξ (see, e.g., [31, 34]). Thus, the minimal number of non-zero weights in a threshold tight

minorant of g
(
Ω̄+

B, Ω̄
−
B

)
is |J|. This explains why, in the right-hand side of (33), we substitute (|J| − 1) in

(33) for θ as in (28).

Consider the extreme recombination k′ with βk′ being constant 1, i.e., βk′
jl = 1, l = 1, . . . , n j, j ∈ J.

Clearly, F(ωk′) = 1 and k′ ∈ Ω̄+
B. For any feasible solution for (33)-(35), we have

∑
j∈J

n j∑
l=1

λ jl β
k′
jl =

∑
j∈J

n j∑
l=1

λ jl ≥
∑
j∈J

1 = |J| .

Thus, (27) is induced by (33)-(35) and is redundant.

Consider an arbitrary separating structure (λ, |J|) feasible for (33)-(35). All possible Boolean vectors

(Definition 6) belong either to the set Ω̄+
B of relevant p-sufficient Boolean vectors, or the set Ω̄−B of

relevant p-insufficient Boolean vectors, or the set of
(
Ω−B \ Ω̄−B

)
of non-relevant p-insufficient realizations.

Constraint (33) prevents any k ∈ Ω̄−B from satisfying (36):

∑
j∈J

n j∑
l=1

λ jl β
k
jl ≥ |J| . (36)

Any k ∈
(
Ω−B \ Ω̄−B

)
is such that βk

j1 = 0 for at least one j ∈ J. Combining this result with the regulariza-

tion property (see (18) in Lemma 5), we have:

βk
jl = 0, l = 1, . . . , n j for at least one j ∈ J, k ∈

(
Ω−B \ Ω̄−B

)
.
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Therefore,
n j∑

l=1

λ jl β
k
jl = 0, for at least one j ∈ J, k ∈

(
Ω−B \ Ω̄−B

)
,

which implies that ∑
j∈J

n j∑
l=1

λ jl β
k
jl ≤ |J| − 1, k ∈

(
Ω−B \ Ω̄−B

)
,

and thus (36) does not hold for any k ∈
(
Ω−B \ Ω̄−B

)
. Hence, any k for which (36) holds belongs to Ω̄+

B. �

Theorem 23 shows that we do not need to include the disjunction (27) to generate a tight minorant of

g
(
Ω̄+

B, Ω̄
−
B

)
.

Theorem 24 Any feasible solution λ of the system of linear inequalities

∑
j∈J

n j∑
l=1

λ jl β
k
jl ≤ |J| − 1, k ∈ Ω̄−B (37)

n j∑
l=1

λ jl = 1, j ∈ J (38)

0 ≤ λ jl ≤ 1, j ∈ J, l = 1, . . . , n j (39)

can be used to obtain an integral separating structure (λ̄, |J|) ∈ {0, 1}n × Z+ for an irredundant threshold

tight minorant f of g in the following way:

λ̄ jl∗j = 1 and λ̄ jl j = 0, l j , l∗j , with l∗j = argmax
l j

λ jl j > 0, j ∈ J, l j = 1, . . . , n j . (40)

Proof. We have to show that constraints (33)-(35) hold for the separating structure (λ̄, |J|). It is straight-

forward to see that the rounding procedure (40) is such that (34)-(35) holds for λ̄. What is left to prove

is that (33) holds for λ̄, which is equivalent to showing

∑
j∈J

n j∑
l=1

λ̄ jl β
k
jl ≤

∑
j∈J

n j∑
l=1

λ jl β
k
jl, ∀k ∈ Ω̄−B ⇔

∑
j∈J

l∗j∑
l=1

λ̄ jl β
k
jl ≤

∑
j∈J

l∗j∑
l=1

λ jl β
k
jl, ∀k ∈ Ω̄−B (41)

for λ̄ derived with (40) from λ feasible for (37)-(39).

Consider one component j ∈ J and let us show that:

l∗j∑
l=1

λ̄ jl β
k
jl ≤

l∗j∑
l=1

λ jl β
k
jl, ∀k ∈ Ω̄−B . (42)

If βk
jl∗j

= 1, then (40) implies that
l∗j∑

l=1
λ̄ jl β

k
jl = 1, and we have, from the regularization property (16), that:

βk
jl = 1, ∀l < l∗j and thus that

l∗j∑
l=1

λ jl β
k
jl =

l∗j∑
l=1

λ jl = 1 . (43)

The last inequality follows from (40) and the fact that λ satisfies (38).
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If βk
jl∗j

= 0, then
l∗j∑

l=1

λ̄ jl β
k
jl = 0 ≤

l∗j∑
l=1

λ jl β
k
jl . (44)

Evidently, (43) and (44) imply (42). The same result is valid for any j ∈ J, which guarantees that (41)

holds. �

In our example, the system of inequalities (33)-(35) reads:

λ11 + λ21 + λ31 ≤ 2 (45)

λ11 + λ21 + λ31 + λ32 ≤ 2 (46)

λ11 = 1 (47)

λ21 + λ22 + λ23 = 1 (48)

λ31 + λ32 + λ33 = 1 (49)

λ jl ∈ {0, 1} , ∀ j, l . (50)

Any feasible solution for (45)-(49), such as λ = (1, 0, 1, 0, 1, 0, 0), defines the separating structure of an

irredundant threshold tight minorant of g
(
Ω̄+

B, Ω̄
−
B

)
. The above results are used in the Section 4 to derive

deterministic approximations and equivalents for the original stochastic problem PMRTM.

Theorem 25 [8] If the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
is a threshold function defined on {0, 1}n, then the set of separat-

ing structures is a full-dimensional convex cone in Rn+1.

Proof. Let α, µ ≥ 0 and D = (λ, θ) and D′ = (λ′, θ′) be two arbitrary separating structures of g
(
Ω̄+

B, Ω̄
−
B

)
.

It is straightforward that αD and αD + µD′ are also separating structures of g, which proves the above

statement. �

4 Threshold Minorant Reformulation of PMRTM

In this section, we shall use the threshold structure of the tight minorant of the pdBf g
(
Ω̄+

B, Ω̄
−
B

)
to refor-

mulate the probabilistically constrained problem PMRTM. New inner approximation and deterministic

equivalent reformulations for PMRTM are derived.

4.1 Inner Approximation Formulation

In this section, we derive a linear programming formulation that constitutes an inner approximation of the

stochastic problem PMRTM. We recall that each component ti j = si j ξ j of the matrix T in (3) involves

a stochastic component ξ j.

Theorem 26 Let (w, |J|) be a feasible solution for (37)-(39) and define l∗j with (40) for each j ∈ J. The

linear deterministic constraints ∑
j∈J

si j c jl∗j x j ≤ di, i = 1, . . . , r (51)

define sufficient conditions for P(T x ≤ d) to be at least p.
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Proof. Let us take an arbitrary point feasible for (37)-(39) and construct the irredundant tight minorant f ∗

with separating structure (λ, |J|) defined according to (40). It follows from Theorem 24 that the separating

structure of f ∗ is such that∑
j∈J

βk
jl∗j
≤ |J| − 1, k ∈ Ω̄−B and

∑
j∈J

βk
jl∗j
≥ |J| for at least one k ∈ Ω̄+

B . (52)

This underlines that the conditions imposed by f ∗ (i.e., induced by its separating structure) are violated

by each k ∈ Ω̄−B but hold for at least one k ∈ Ω̄+
B. Using the definition of the binarization process (14)-(15),

one can see that (52) is equivalent to: ωk
j < c jl∗ β

k
jl∗j

= c jl∗j , for at least one j, ∀k ∈ Ω̄−

ωk
j ≥ c jl∗ β

k
jl∗ = c jl∗j , ∀ j ∈ J, for at least one k ∈ Ω̄+

. (53)

Further, the construction of the sufficient-equivalent set of cut points (see (19) in Definition 7) implies

ωk
j = c jl∗j , j ∈ J, for one k ∈ Ω̄+ . (54)

Let k′ ∈ Ω̄+ be the recombination for which (54) holds:

ωk′
j = c jl∗j , j ∈ J . (55)

Every component ti j of T is defined by: ti j = si j ξ j, i = 1, . . . , r, j ∈ J. Thus, we have

P(T x ≤ d) = P

∑
j∈J

si j ξ j x j ≤ di, i = 1, . . . , r

 . (56)

Since k′ ∈ Ω̄+, we have P
(
ξ ≤ ωk′

)
≥ p and

P

∑
j∈J

si j ξ j x j ≤
∑
j∈J

si j ω
k′
j x j, i = 1, . . . , r

 ≥ p (57)

given that x j and si j are all non-negative. This, combined with (56), implies that:

∑
j∈J

si j ω
k′
j x j ≤ di, i = 1, . . . , r ⇒ P

∑
j∈J

si j ξ j x j ≤ di, i = 1, . . . , r

 ≥ p . (58)

Using (55), we can rewrite (58) as∑
j∈J

si j c jl∗j x j ≤ di, i = 1, . . . , r ⇒ P(T x ≤ d) ≥ p , (59)

as we set out to prove. �

Corollary 27 follows immediately from Theorem 26.
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Corollary 27 The linear program LP

LP : max qTx

subject to (2) ; (4) ; (51)

is an inner approximation of the probabilistically constrained problem PMRTM. Its feasible set is in-

cluded in the feasible set of PMRTM.

Consider λ = (1, 0, 1, 0, 1, 0, 0) which is feasible for (45)-(49) and defines the separating structure of an

irredundant threshold tight minorant of g
(
Ω̄+

B, Ω̄
−
B

)
. The corresponding constraints (51) are:

2 · 7 · x1 + 3 · 6 · x2 ≤ 25 (60)

3 · 7 · x1 + 6 · 3 · x3 ≤ 32 . (61)

The associated linear programming problem LP is

max 3x1 + x2 + x3

subject to (60) − (61)

x1, x2, x3 ≥ 0

4.2 Equivalent Formulations

In this section, we build on the results of Section 4 to derive three new deterministic formulations that

are equivalent to the stochastic problem PMRTM. Instead of successively solving the system of linear

inequalities (37)-(39) to derive a threshold tight minorant and to solve the resulting inner approximation

linear programming problem LP, we propose in this section to execute the two tasks concurrently through

the solution of a deterministic problem equivalent to PMRTM.

4.2.1 Bilinear Integer Programming Formulation

We first reformulate PMRTM as a bilinear integer programming problem.

Theorem 28 The quadratic integer optimization problem QDE

QDE : max qTx

subject to (2) ; (4) ; (33) ; (34) ; (35)
n j∑

l=1
λ jl c jl = y j, j ∈ J (62)∑

j∈J
si j y j x j ≤ di, i = 1, . . . , r (63)

c j1 ≤ y j ≤ c jn j , j ∈ J (64)

is equivalent to the probabilistically constrained problem PMRTM.
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Proof. (i) Any solution feasible for QDE is feasible for PMRTM. Since constraints (33), (34) and (35)

are part of the constraint set, we can use Theorem 23 that indicates that any λ̂ ∈ {λ : (33), (34), (35)}

defines the separating structure (λ̂, |J|) of an irredundant threshold tight minorant f . In other words,

G =

{
k ∈ Ω̄B :

∑
j∈J

n j∑
l=1
λ̂ jl β

k
jl = |J|

}
⊆ Ω̄+

B. Let L =
{
( j, l) : λ̂ jl = 1, j ∈ J, l = 1, . . . , n j

}
. The definition of

the binarization process (14)-(15) implies that, for any k ∈ G, we have (see (53) in Theorem 26)

ωk
j ≥ c jl, ( j, l) ∈ L , (65)

and the construction of the sufficient-equivalent set of cut points (Definition 7) implies that there exists

k′ ∈ G such that

ωk′
j = c jl, ( j, l) ∈ L . (66)

Constraints (34) and (35) ensure that exactly one term λ̂ jl c jl in the left-hand side of each constraint (62)

is non-zero and equal to c jl, ( j, l) ∈ L, and thus y j = c jl, ( j, l) ∈ L in (62). This allows the rewriting of

(66) as

ωk′
j = c jl =

n j∑
i=1

λ jl c jl = y j, ( j, l) ∈ L . (67)

Since k′ ∈ G ⊆ Ω̄+
B, (57) and (58) hold, which, along with (67), implies that∑

j∈J

si j y j x j ≤ di, i = 1, . . . , r ⇒ P(T x ≤ d) ≥ p . (68)

(ii) Any solution feasible for PMRTM is feasible for QDE. For any k′′ ∈ Ω̄ such that P(ξ ≤ ωk′′) ≥ p,

the definition of the sufficient-equivalent set of cut points implies that there exists k′ ∈ Ω̄+
B such that

ωk′ ≤ ωk′′ and ωk′
j =

∨
l=1,...,n j

c jl, j ∈ J.

Let l∗j = argmax
l
{c jl : c jl = ωk′

j }, j ∈ J. What is left to prove is that the vector λ′

λ′jl =

{
1 if l = l∗j
0 otherwise

, j ∈ J (69)

is feasible for QDE, i.e., that λ′ ∈ {λ : (33), (34), (35), (62)}. It is evident that λ′ is feasible for (34),

(35) and (62). By construction (69), λ′ is feasible for (33) if∑
j∈J

n j∑
l=1

λ′jl β
k
jl =

∑
j∈J

λ′jl∗j
βk

jl∗j
=

∑
j∈J

βk
jl∗j
≤ |J| − 1, k ∈ Ω̄−B . (70)

The feasibility of the above constraints is ensured if βk
jl∗j

= 0 for at least one j,∀k ∈ Ω̄−B.

Note that, for any k′ ∈ Ω̄+
B, there is no k ∈ Ω̄−B such that βk ≥ βk′ (see Definition 19 of a sufficient-

equivalent set of cut points). This implies that

(βk
j1, . . . , β

k
jn j

) < (βk′
j1, . . . , β

k′
jn j

) for at least one j, ∀k ∈ Ω̄−B.

Let h ∈ J be the coordinate such that (βk
h1, . . . , β

k
hnh

) < (βk′
h1, . . . , β

k′
hnh

) for an arbitrary k ∈ Ω̄−B. Since

l∗h = argmax
l

βk′
hl = 1, we have for any l > l∗h that βk

hl = βk′
hl = 0. Thus, the vectors βk′ and βk differ only in

terms of the first l∗h components, and we have
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(βk
h1, . . . , β

k
hl∗h

) < (βk′
h1, . . . , β

k′
hl∗h

) .

The regularization property (16)-(17) indicates that this relationship can only be true if βk
hl∗h

= 0 < βk′
hl∗h

=

1. This shows that, for any k ∈ Ω̄−B, βk
jl∗j

= 0 for at least one j, which results in
∑
j∈J
βk

jl∗j
to be bounded from

above by (|J| − 1) for each k ∈ Ω̄−B and implies that λ′ is feasible for (70) and thus (33). �

Note that (64) is a strengthening of y ∈ R|J|+ and follows immediately from (34), (35), and (62). Problem

QDE is a mixed-integer nonlinear programming (MINLP) problem which is NP-hard. It includes n

mixed-integer bilinear terms x j λ jl and its continuous relaxation is non-convex. In our example, the

problem QDE reads:

max 3x1 + x2 + x3

subject to (45) − (50)

7λ11 = y1

5λ21 + 6λ22 + 10λ23 = y2

3λ31 + 4λ32 + 5λ33 = y3

2y1x1 + 3y2x2 ≤ 25

3y1x1 + 6y3x3 ≤ 32

5 ≤ y2 ≤ 10

3 ≤ y3 ≤ 5

x1, x2, x3 ≥ 0

λ11, λ21, λ22, λ23, λ31, λ32, λ33 ∈ {0, 1}

4.2.2 Mixed-Integer Linear Programming Formulation

Instead of attempting to solve the QDE problem directly, we shall linearize the |J| products x j (
n j∑

l=1
λ jl c jl)

of continuous by binary variables (see, e.g., [1, 10]). Let u j be an upper bound on the value taken by x j.

Theorem 29 The bilinear set

S Bi =

(x, λ) ∈ R|J|+ × {0, 1}
n :

∑
j∈J

si j x j

 n j∑
l=1

λ jl c jl

 ≤ di ; (34)

 (71)

is equivalent to the linear set

S Li =

(x, z, λ) ∈ R|J|+ × R
|J| × {0, 1}n :

∑
j∈J

si j z j ≤ di ; z j ≥ c jl x j − (1 − λ jl) (c jl − c j1)Mi j, j ∈ J, l = 1, . . . , n j ; (34)


(72)

where

Mi j =

 min
{
u j,

di
si j c j1

}
if si j c j1 > 0

u j otherwise
, j ∈ J . (73)
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Proof. First, we show that Mi j is an upper bound on the value that x j can take if si j and c j1 have the same

sign and are both different from 0. Consider the inequality

∑
j∈J

si j x j

 n j∑
l=1

λ jl c jl

 ≤ di (74)

in S Bi (71). The value that x j can take is maximal if x j′ = 0,∀ j′ , j. Since the cut points c jl are arranged

in increasing order and the set partitioning constraints (34) require that one λ jl be equal to 1, while all the

other λ jl be equal to 0, the smallest value that the expression
( n j∑

l=1
λ jl c jl

)
can take is c j1 when λ j1 = 1.

Therefore, if si jc j1 > 0, we have

x j ≤
di

si j c j1
,

and the largest value that x j can take in constraint (74) is: Mi j = min
{
u j,

di
si j c j1

}
. On the other hand, if

the product of si j by c j1 is not strictly positive, we set Mi j = u j.

We shall now prove that the feasible sets defined by S Bi and S Li are equivalent and that the substitution

of z j for x j

( n j∑
l=1
λ jl c jl

)
in (74) is valid. In order to do so, we show that:

1. The linearized constraints

z j ≥ c jl x j − (1 − λ jl) (c jl − c j1)Mi j, j ∈ J, l = 1, . . . , n j, (75)

in S Li (72) imply that

z j ≥ x j

 n j∑
l=1

λ jl c jl

 . (76)

Due to (34), exactly one variable λ jl, l = 1, . . . , n j is equal to 1 for each j ∈ J while all the others

are equal to 0. Let l′j be such that λ jl′j = 1, λ jl = 0,∀l , l′j. It follows that
n j∑

l=1
λ jl c jl = c jl′j and (76)

can be rewritten as:

z j ≥ x j c jl′j . (77)

For l = l′j, the inequality (75) reads z j ≥ c jl′j x j and is the same as (77). This shows that the

constraints (75) imply (76). If we replace x j

( n j∑
l=1
λ jl c jl

)
by z j in (74), we have

∑
j∈J

si j z j ≤ di ⇒
∑
j∈J

si j x j

 n j∑
l=1

λ jl c jl

 ≤ di .

2. The linearized constraints do not cut any feasible solution of S Bi .

For l = l′j, the inequality (75) requires z j to be at least equal to c jl′j x j and is equivalent to (76).
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Consider now the other indices l , l′j for which λ jl = 0. Along with the fact that the cut points are

sorted in increasing order, the set partitioning constraints (34) imply that:

c jn j ≥
n j∑

l=1
λ jl c jl = c jl′j ≥ c j1 (78)

x j

n j∑
l=1
λ jl c jl ≥ x jc j1 (79)

To prevent (75) from cutting any feasible solution, we must ensure that the right-hand sides of the

constraints (75) (l , l′j) are each at most equal to x jcl1, which reads:

x jc j1 ≥ c jl x j − (c jl − c j1)Mi j, ∀ j , l′j . (80)

The inequalities (80) can be equivalently rewritten as:

Mi j(c jl − c j1) ≥ x j(c jl − c j1), ∀ j , l′j ,

which is always true since Mi j is an upper bound on the value that x j can take. This provides the

result that we set out to prove. �

A direct consequence of Theorem 29 is that the bilinear integer problem QDE can be equivalently refor-

mulated as the MIP problem MIP1. Lemma 30 follows.

Lemma 30 The probabilistically constrained stochastic programming problem PMRTM can be equiv-

alently reformulated as the MIP problem MIP1:

MIP1 : max qTx

subject to (2) ; (4) ; (33) ; (34) ; (35)∑
j∈J

si j z j ≤ di , i = 1, . . . , r (81)

z j ≥ c jl x j − (1 − λ jl) (c jl − c j1)M̄ j , j ∈ J, l = 1, . . . , n j , (82)

where M̄ j = min
i

Mi j, j ∈ J

In our example, MIP1 is given by:

max 3x1 + x2 + x3

subject to (45) − (50)

2z1 + 3z2 ≤ 25

3z1 + 6 z3 ≤ 32

z1 ≥ 7x1

z2 ≥ 5x2 z2 ≥ 6x2 − (1 − λ22) ·
25
15

; z2 ≥ 10x2 − (1 − λ23) · 5 ·
25
15

z3 ≥ 3x3 z3 ≥ 4x3 − (1 − λ32) ·
32
18

; z3 ≥ 5x3 − (1 − λ33) · 2 ·
32
18

x1, x2, x3 ≥ 0

λ11, λ21, λ22, λ23, λ31, λ32, λ33 ∈ {0, 1}
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4.2.3 Strengthened Mixed-Integer Linear Programming Formulation

We shall now strengthen the linearized formulation MIP1 and derive valid inequalities. Consider the set

G j =

(x j, z j, λ jl) ∈ R+ × R × {0, 1}n j : z j ≥ c jl x j − (1 − λ jl) (c jl − c j1)M̄ j, l = 1, . . . , n j ;
n j∑

l=1

λ jl = 1

 .

(83)

Theorem 31 The inequalities

z j ≥ c jl x j − (1 − v jl) (c jl − c j1)M̄ j , l = 1, . . . , n j , (84)

with v jl =

n j∑
r=l

λ jr , l = 1, . . . , n j , (85)

are valid for G j and are tighter than

z j ≥ c jl x j − (1 − λ jl) (c jl − c j1)M̄ j, l = 1, . . . , n j . (86)

Proof. Let λ be feasible for the continuous relaxation of the set G j and let l′ = argmax
l

λ jl > 0. For l ≥ l′,

v jl = λ jl and the corresponding inequalities (84) and (86) in G j are identical.

We show now that the inequalities (84) are tighter than (86) for l′ > l. For l < l′ (l′ > 1), we have

v jl ≥ λ jl from (85), which successively implies that

(1 − λ jl) M̄ j ≥ (1 − v jl) M̄ j ⇒ c jl x j − (1 − v jl)(c jl − c j1)M̄ j ≥ c jl x j − (1 − λ jl)(c jl − c j1)M̄ j . (87)

Thus, z j is limited from below by c jl x j − (1 − v jl)(c jl − c j1)M̄ j in (84) which is larger than or equal to

the lower bound c jl x j − (1 − λ jl)(c jl − c j1)M̄ j on z j defined by (86). Further, from (85) and the fact that

l′ = argmax
l

λ jl > 0, it follows that v jl > λ jl, l = 1, . . . , l′ − 1. Hence, (l′ − 1) of the inequalities (87) are

strict. This shows that the inequalities (84) (l < l′) are tighter than (86).

We show now that the inequalities (84) do not cut any feasible solution of GJ and are thus valid.

Recall that l′ = argmax
l

λ jl > 0. From any fractional solution λ, we can easily derive a integral solution

for (84) and (86) by setting: v jl = 1, l = 1, . . . , l′, v jl = 0, l > l′, λ jl′ = 1, and λ jl = 0, l , l′. The

inequalities (84) read

z j ≥ c jl x j, l = 1, . . . , l′ . (88)

Observe first that the inequality (86) corresponding to the component l′ requires

z j ≥ c jl′ x j . (89)

Note further that, since the cut points are sorted in ascending order (15), we have that

c jl′ x j ≥ c jlx j, l = l′, . . . , n j . (90)
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The above relationships (89) and (90) imply that the constraints (88) do not cut any feasible solution for

G j and are thus valid. �

Observe that, by construction (see (85)), we have v j1 = 1 and z j ≥ c j1x j. Lemma 32 is a direct conse-

quence of Theorem (31).

Lemma 32 Problems MIP1 and MIP2 are equivalent and therefore problem PMRTM can be equiva-

lently reformulated as the MIP problem MIP2:

MIP2 : max qTx

subject to (2) ; (4) ; (33) ; (34) ; (35) ; (81)

z j ≥ c jl x j − (1 − v jl) (c jl − c j1)M̄ j , j ∈ J, l = 1, . . . , n j (91)

v jl =
n j∑
r=l
λ jr , j ∈ J, l = 1, . . . , n j (92)

In our example, MIP2 reads:

max 3x1 + x2 + x3

subject to (45) − (50)

2z1 + 3z2 ≤ 25

3z1 + 6 z3 ≤ 32

z1 ≥ 7x1

z2 ≥ 5x2

z2 ≥ 6x2 − (1 − v22) ·
25
15

z2 ≥ 10x2 − (1 − v23) · 5 ·
25
15

z3 ≥ 3x3

z3 ≥ 4x3 − (1 − v32) ·
32
18

z3 ≥ 5x3 − (1 − v33) · 2 ·
32
18

v11 = λ11

v21 = λ21 + λ22 + λ23 ; v22 = λ22 + λ23 ; v23 = λ23

v31 = λ31 + λ32 + λ33 ; v32 = λ32 + λ33 ; v33 = λ33

x1, x2, x3 ≥ 0

The optimal solution (x∗, z∗, λ∗) = (1.52, 0.24, 0︸        ︷︷        ︸
x∗

; 10.67, 1.22, 0︸          ︷︷          ︸
z∗

; 1, 0, 0.15, 0.85, 1, 0, 0︸                     ︷︷                     ︸
λ∗

) for the continuous

relaxation of problem MIP1 violates the constraint z2 ≥ 6x2 − (1 − v22) · 25
15 in the continuous relaxation

of problem MIP2.
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5 Numerical Evaluation

5.1 Test Laboratory

In this section, we test the contribution of the solution framework for the numerical solution of optimiza-

tion problems including multirow probabilistic constraints with random technology matrix. The tests are

conducted on instances of a multi-period capital rationing problem in which uncertainty concerns the

value of each possible project, the cash outflows associated with each of them, and the capital available

at each period in the planning horizon. Random variables are in both the technology matrix and the

right-hand sides of the probabilistic constraint.

The capital rationing process consists in the allocation of a limited budget to profitable projects. A

survey considering Fortune 500 firms indicates that more than 60% of them place a limit on the internal

capital available for investment plans [25]. We refer to [16] for a review of the mathematical program-

ming approaches used for capital rationing purposes. The problem of rationing capital under uncertainty

was first studied by Lorie and Savage [21] who describe the challenges of capital rationing problems

involving multi-period projects that generate inflows and outflows dispersed across their lifetimes. The

first chance-constrained formulation for capital rationing was proposed by Naslund [27] and maximizes

the expected value of the adopted projects across a multi-period horizon, plus the amount of money

lent, minus the amount of money borrowed. The model includes several individual chance constraints

requiring that the probability of having a budget deficit in each period is kept low. Sarper [35] rejects

the use of the normal distribution for characterizing the uncertain cash flows and supports the use of uni-

formly distributed variables. Gurgur and Luxhoj [11] assume that cash flows and available budgets are

asymmetrically distributed random variables and follow a Weibull distribution. Most recently, Beraldi

et al. [4] propose a formulation with joint probabilistic constraints in which the random variables are

finitely distributed. They propose a specialized branch-and-bound algorithm and evaluate the impact of

introducing risk measures.

Let r denote the number of periods in the horizon and J be the set of possible projects. The binary

decision variables x j define whether project j is selected (i.e., x j = 1) or not. The random variable

ξi j, i = 1, . . . , r, j ∈ J represents the cash outflow due to project j in period i, while ζi, i = 1, . . . , r denotes

the random budget that will be available in period i. We denote by V j the random value of project j. The

initial cash outflows and the currently available budget are known and denoted by a0 j, j ∈ J and b0. The

formulation reads:

max
∑
j∈J

E[V j] · x j (93)

subject to
∑
j∈J

a0 j · x j ≤ b0 (94)

P

(∑
j∈J
ξi j · x j ≤ ζi, i = 1, . . . , r

)
≥ p (95)

x ∈ {0, 1}|J| (96)
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The objective function (93) maximizes the expected value of the selected projects. Constraint (94) en-

sures that the initial cash outflows do not exceed the current budget. Constraint (95) requires that the

cash outflows of the selected projects do not create a budget shortfall at any of the periods of the horizon

with a probability at least equal to p.

The “aggregated” random matrix T ∈ Rr×(1+|J|r)
+ in PMRTM includes the random cash outflows ξi j

and available budgets ζi. Each row Ti includes up to (|J| + 1) non-zero components:

Ti = [0, . . . , 0, ξi1, ξi2, . . . , ξi|J|, 0, . . . , 0,−ζi, 0, . . . , 0] , i = 1, . . . , r. (97)

The first (r · |J|) components of Ti are the cash flows incurred by each project j at the successive periods

i, while the r last components of Ti are the budgets that will be available in the future periods i.

Let us omit the zero-components in (97) and rewrite the vector Ti of the random technology matrix

T accordingly: Ti = [ξi1, ξi2, . . . , ξil,−ζi]. We denote by c j1, . . . , c jn j , j ∈ J the cut points associated with

the random variable ξi j, and by c0l, l = 1, . . . , n0 the cut points associated with −ζi.

Owing to the structure of the capital rationing problem, namely the stochasticity of the right-hand

side, the set S B (71) corresponding to the ith inequality in (95) can be rewritten as

S CR
Bi

=

(x, λ) ∈ {0, 1}|J|+n+n0 :
∑
j∈J

si jx j

 n j∑
l=1

λ jl c jl

 ≤ n0∑
l=1

λ0l c0l ; (34)

 .

Note also that c jl ≥ 0, l = 1, . . . n j, j ∈ J, and si j = 1 or = 0. It is straightforward to see that

S CR
Li

=

(x, λ, z) ∈ {0, 1}|J|+n+n0 × R|J| :
∑
j∈J

si jz j ≤

n0∑
l=1

λ0l c0l; z j ≥ c jl x j − (1 − λ jl) M jl,∀ j : si j > 0 ; (34)

 ,
where M jl is a sufficiently large positive number, is equivalent to S CR

Bi
.

In order to find the tightest possible continuous relaxation of S CR
Bi

, the constants M jl, j ∈ J, l = 1, . . . , n j

should be set to the smallest values that yet ensure the validity of the formulation. Taking into account

the specifics of the capital rationing problem, Proposition 33 provides the smallest values that can be

assigned to the parameters M jl.

Proposition 33 For every inequality z j ≥ c jl x j − (1 − λ jl) M jl, j ∈ J, l = 1, . . . , n j in S CR
Li

,

M jl = c jl − c j1 (98)

is the smallest value that M jl can take to ensure the equivalence between S CR
Li

and S CR
Bi

.

Proof. The equivalence between S CR
Li

and S CR
Bi

is based on the substitution of z j for
∑
j∈J

x j(
n j∑

l=1
λ jl c jl), and

the assignment of acceptable values to the constants M jl. Finding the smallest, non-negative valid value

for each M jl′′ , l′′ = 1, . . . , n j can be represented as the optimization problem:
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min M jl′′

subject to x j

 n j∑
l=1

λ jl c jl

 ≥ c jl′′ x j − (1 − λ jl′′) M jl′′

M jl′′ ≥ 0

(99)

The set partitioning constraints require that exactly one of the variables λ jl takes value 1 while the others

take value 0. Let λ jl′ = 1. The left-hand side in (99) becomes: x j

( n j∑
l=1

λ jl c jl

)
= x jc jl′ and is lower-

bounded by x jc j1. The following cases can occur:

1. If λ jl′ = λ jl′′ = 1, then M jl′′ is unrestricted by (99) and can take value 0;

2. If λ jl′ , λ jl′′ (λ jl′′ = 0) and c jl′ > c jl′′ , then M jl′′ is unrestricted by (99) and can take value 0;

3. If λ jl′ , λ jl′′ (λ jl′′ = 0), c jl′ < c jl′′ , and x j = 0, then M jl′′ is unrestricted by (99) and can take value

0;

4. If λ jl′ , λ jl′′ (λ jl′′ = 0), c jl′ < c jl′′ , and x j , 0 and (thus x j = 1), then (99) is binding and restricts

the value that can be assigned to M jl′′ . In that case, (99) becomes c jl′ ≥ c jl′′−M jl′′ , which requires:

M jl′′ ≥ c jl′′ − c jl′ .

The right-hand side of the above inequality is minimal when l′ = 1 and c jl′ = c j1. Hence, we have

M jl′′ ≥ c jl′′ − c j1, as we set out to prove. �

To generate the problem instances, we use the approach described by Beraldi et al. [4] and decompose

a planning horizon into a finite number of periods. The budget available is known for the first period,

while it is stochastic for the next ones. We consider a number of potential projects ranging between 10

and 20. Such numbers of projects are typical for the capital rationing problem, as the project selection

is typically preceded by a screening phase in which homogeneous groups of projects are defined and

are later on subjected to a joint evaluation [7]. The project outflows ξi j and project values V j have been

randomly generated from a uniform distribution (see [4, 35]). We also generate the available budgets

from a uniform distribution defined on [0.2Ci, Ci], where Ci is the average (over all potential projects)

cash outflow at period i.

We create 60 types of problem instances characterized by the tuple (|Ω|, p, r, |J|,U). The instances

differ in terms of the number of realizations (|Ω|=10000,15000), the number of periods (r=1,2,3) in

the planning horizon, the number of considered projects (|J|=10,20), and the enforced probability level

(p=0.85,0.90,0.95), and the interval U on which the uniformly distributed project outflows ξi j are defined.

We consider two intervals for the project outflows: [300, 600] and [3000,4000]. For each instance type,

we generate ten problem instances and solve the 600 problem instances with four algorithms proposed

in this paper and with three other formulations and methods (see Section 5.2). The binarization process

employed for deriving the proposed MIP formulations is implemented in Matlab. The AMPL modeling

language is used to formulate the mathematical programming problems. The mixed-integer programming
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formulations are solved with the Cplex 12.5 solver and the mixed-integer nonlinear programming ones

(with nonconvex continuous relaxations) are solved with the Couenne solver. Each problem instance is

solved on a 64-bit Dell Precision T5400 Workstation with Quad Core Xeon Processor X5460 3.16GHz

CPU, and 4X2GB of RAM. The next subsection analyzes the computational tractability of the several

equivalent problem formulations proposed in Section 4.2.

5.2 Comparative Analysis of Equivalent Reformulations and Algorithmic Techniques

As mentioned above, we have created 600 problem instances that we solve with:

• The four methods and formulations presented in this study:

1. the MINLP solver Couenne [2] to solve the bilinear integer problem QDE with nonconvex

continuous relaxation;

2. the Cplex 12.5 standard branch-and-bound algorithm to solve the MIP problem MIP1;

3. the Cplex 12.5 standard branch-and-bound algorithm supplemented by the valid inequalities

(84) to solve the MIP problem MIP2;

4. a new branch-and-cut algorithm in which, at each node of the tree, the valid inequalities (84)

violated by the optimal solution of the incumbent continuous relaxation are introduced in the

formulation of the problem. At each node of the tree, all the valid inequalities violated by the

solution of the current node’s continuous relaxation are added at once.

The above four methods are thereafter referred to with the abbreviations QDE, MIP1, MIP2-
B&B, and MIP2-B&C.

• The Cplex 12.5 solver applied to the basic MIP formulation that associates a binary variable to

each realization. We refer to it with the abbreviation BIP;

• The two most recent proposed solution techniques for problems of form PMRTM:

1. the specialized branch-and-bound algorithm proposed by Beraldi and Bruni [3];

2. the algorithm based on the concepts of weakly and strongly feasible solutions proposed by

Beraldi et al. [4].

The above two are referred to with the abbreviations BB and BBV.

The results of the experiments are presented in Tables 3 and 4. The first five columns in Table 3

describe the problem instances. Column 1 (resp., 2, 3, 4, and 5) indicates the number of scenarios (resp.,

reliability level, number of periods, number of projects, and the interval on which the random variables

can take value). Columns 6 to 8 provide the average computational time with the algorithms MIP1,

MIP2-B&B, and MIP2-B&C for each of the 30 types of problem instances in which 10000 scenarios
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are considered. The last column provides the average number n̄ of cut points – equal to the number of

binary variables necessary for the reformulation of the probabilistic constraint – in the mixed-integer

reformulations. Table 3 has the same structure and contains the results for the 30 types of instances in

which 15000 scenarios are considered.

Table 3: Average Computational Times for each Algorithm and Number of Cut Points when |Ω| = 10000

Families of Problem Instances (|Ω|, p, r, |J|,U) Average Computational Times Cut Points
|Ω| p r |J| U MIP1 MIP2-B&B MIP2-B&C n̄

10000 0.95 1 20 [300, 600] 0.02 0.02 0.02 30.1
10000 0.9 1 20 [300, 600] 6.42 5.2 5.98 60.9
10000 0.85 1 20 [300, 600] 10.04 8.15 7.62 88.4
10000 0.95 2 10 [300, 600] 0.03 0.02 0.02 32.1
10000 0.9 2 10 [300, 600] 5.24 5.15 5.33 62.1
10000 0.85 2 10 [300, 600] 11.56 7.81 8.42 94.5
10000 0.95 2 20 [300, 600] 0.09 0.08 0.09 60.1
10000 0.9 2 20 [300, 600] 50.08 31.12 44.87 115.2
10000 0.85 2 20 [300, 600] 107.13 87.29 84.21 176.7
10000 0.95 3 10 [300, 600] 0.02 0.02 0.02 31.8
10000 0.9 3 10 [300, 600] 6.79 6.57 6.69 64.7
10000 0.85 3 10 [300, 600] 9.4 10.02 11.16 96.1
10000 0.95 3 20 [300, 600] 0.16 0.19 0.19 92.1
10000 0.9 3 20 [300, 600] 121.32 84.23 97.09 179.7
10000 0.85 3 20 [300, 600] 143.31 115.14 112.71 265.1
10000 0.95 1 20 [3000, 4000] 4.46 2.96 3.3 102.2
10000 0.9 1 20 [3000, 4000] 52.21 40.12 37.89 200.1
10000 0.85 1 20 [3000, 4000] 98.04 64.89 70.28 296.2
10000 0.95 2 10 [3000, 4000] 8.81 8.24 7.98 107.6
10000 0.9 2 10 [3000, 4000] 87.29 71.23 74.52 208.5
10000 0.85 2 10 [3000, 4000] 103.57 90.33 88.74 313.9
10000 0.95 2 20 [3000, 4000] 9.36 7.85 10.82 207.1
10000 0.9 2 20 [3000, 4000] 153.39 96.98 102.36 400.7
10000 0.85 2 20 [3000, 4000] 201.23 142.92 163.68 608.8
10000 0.95 3 10 [3000, 4000] 4.05 4.23 4.52 161.4
10000 0.9 3 10 [3000, 4000] 102.36 74.63 72.06 312.3
10000 0.85 3 10 [3000, 4000] 157.94 98.36 103.14 471.8
10000 0.95 3 20 [3000, 4000] 13.72 12.26 14.63 309.9
10000 0.9 3 20 [3000, 4000] 160.45 107.18 104.97 621.3
10000 0.85 3 20 [3000, 4000] 229.49 163.04 205.74 894.2

The three algorithms MIP1, MIP2-B&B, and MIP2-B&C solve to optimality all the 600 problem

instances. To distinguish among these three algorithms, we focus on the 24 problem instance types

which require an average computing time of at least one minute. The MIP2-B&B (resp., MIP2-B&C)

algorithm is the fastest for 17 instance types (resp., 7). Figure 1 displays the average computational
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Table 4: Average Computational Times for each Algorithm and Number of Cut Points when |Ω| = 15000

Families of Problem Instances (|Ω|, p, r, |J|,U) Average Computational Times Cut Points
|Ω| p r |J| U MIP1 MIP2-B&B MIP2-B&C n̄

15000 0.95 1 20 [300, 600] 0.02 0.03 0.02 29.9
15000 0.9 1 20 [300, 600] 6.22 6.37 6.49 61.4
15000 0.85 1 20 [300, 600] 10.24 9.96 10.31 91.2
15000 0.95 2 10 [300, 600] 0.03 0.02 0.02 32.2
15000 0.9 2 10 [300, 600] 5.87 5.4 5.71 61.6
15000 0.85 2 10 [300, 600] 9.24 8.48 8.77 96.8
15000 0.95 2 20 [300, 600] 0.07 0.05 0.06 61
15000 0.9 2 20 [300, 600] 57.23 27.23 45.29 120.9
15000 0.85 2 20 [300, 600] 103.51 91.36 99.78 181.2
15000 0.95 3 10 [300, 600] 0.02 0.02 0.02 45.5
15000 0.9 3 10 [300, 600] 7.2 6.12 5.97 61.3
15000 0.85 3 10 [300, 600] 8.4 8.01 7.74 95.2
15000 0.95 3 20 [300, 600] 0.17 0.18 0.23 93.2
15000 0.9 3 20 [300, 600] 114.21 80.38 91.62 180.1
15000 0.85 3 20 [300, 600] 144.12 108.12 113.37 264.8
15000 0.95 1 20 [3000, 4000] 4.12 3.09 3.12 103.2
15000 0.9 1 20 [3000, 4000] 49.85 37.46 41.23 205.6
15000 0.85 1 20 [3000, 4000] 115.25 66.12 72.34 308.4
15000 0.95 2 10 [3000, 4000] 10.23 7.89 8.09 105.8
15000 0.9 2 10 [3000, 4000] 98.24 75.23 72.85 212.6
15000 0.85 2 10 [3000, 4000] 103.71 88.23 98.17 311.8
15000 0.95 2 20 [3000, 4000] 8.65 7.23 8.12 208
15000 0.9 2 20 [3000, 4000] 149.87 101.2 118.32 411.2
15000 0.85 2 20 [3000, 4000] 192.15 130.39 145.27 609.7
15000 0.95 3 10 [3000, 4000] 4.66 4.89 5.23 160.3
15000 0.9 3 10 [3000, 4000] 101.63 77.32 70.86 320.5
15000 0.85 3 10 [3000, 4000] 164.1 102.36 128.32 477.6
15000 0.95 3 20 [3000, 4000] 18.57 15.09 16.52 308.2
15000 0.9 3 20 [3000, 4000] 138.23 111.23 129.78 625.1
15000 0.85 3 20 [3000, 4000] 234.51 159.39 201.54 891.6

time for the 24 problem instances with computational time above 60 seconds and shows that the MIP2-
B&B algorithm is on average more than 39.27% and 9.81% faster than the MIP1 and MIP2-B&C
methods. The MIP2-B&C method outpaces the MIP1 method by 26.83%. The MIP2-B&B and MIP2-
B&C methods which both use in some fashion the valid inequalities (84) are faster than the MIP1
method, which points out the benefits of the valid inequalities (84). Among the two, the branch-and-

bound algorithm MIP2-B&B outperforms the branch-and-cut algorithm MIP2-B&C for the instances

considered in this study.
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Figure 1: Average Computational Time for Instances Requiring more than 60 Seconds

The comparison of Tables 3 and 4 which respectively concern the instances with 10000 and 15000

scenarios shows clearly that the computing time does not increase with the number of scenarios used

to represent uncertainty. This is highlighted by Figure 2 which displays the average computational

time of the MIP1, MIP2-B&B, and MIP2-B&C algorithms for two of the challenging instance types

((|Ω|, p, r, |J|,U) = (10000,0.85,3,20,U2) and (15000,0.85,3,20,U2)) that only differ in the considered

number of scenarios (10000 vs. 15000). It can be seen that the average solution times with the MIP2-
B&B, and MIP2-B&C algorithms are smaller for the instances including 15000 scenarios than for those

including 10000 scenarios. This is due to the fact that the number of binary variables in the MIP re-

formulations is equal to the number of cut points and that the latter is not an increasing function of the

number of scenarios. Table 5 focuses on the instances (10000,p,3,20,U2) and (15000,p,3,20,U2). The

average number of cut points in the instances of type (15000,0.85,3,20,U2) and (15000,0.95,3,20,U2) is

marginally smaller than the average number of cut points in the instances of type (10000,0.85,3,20,U2)

and (10000,0.95,3,20,U2). When p is equal to 0.9, the average number of cut points is smaller when

10000 scenarios are considered.
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Figure 2: Average Computational Time as a Function of Number of Scenarios

Finally, we also notice that the computational time is a decreasing function of the enforced reliability

level p and an increasing function of the interval on which the random variables can take value. As

the value of p decreases and/or the range U increases, the number of cut points needed to binarize the

probability distribution and therefore the number of binary variables in MIP1 and MIP2 increases. The

computing time is also an increasing function of the size of the random vector. Not surprisingly, the
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Table 5: Average Number of Cut Points and Binary Variables as a Function of Number of Scenarios

Average Number of Cut Points and Binary Variables
|Ω| p=0.95 p=0.9 p=0.85

10000 309.9 621.3 894.2
15000 308.2 625.1 891.6

MINLP formulation QDE takes much more time to solve than its three MIP counterparts. The QDE
problems are solved with the MINLP solver Couenne and only two instance types can be solved to

optimality within one hour of computing time. The average computational times for these four types

of instances (10000, 0.95, 2, 10,U1) and (15000, 0.95, 2, 10,U1), are respectively equal to 2476.21 and

1508.2 seconds. This is why we have not included any computational time for QDE in Tables 3 and 4.

None of the instances could be solved to optimality by our implementation of the algorithms BB
and BBV proposed in [3] and [4]. Note that the algorithms BB and BBV were respectively tested by

their authors (see [3] and [4]) on problem instances comprising up to 500 and 200 realizations, while the

instances considered in this paper have no less than 10000 realizations.

Similarly, the basic MIP formulation BI could not prove optimality, nor reach the optimal solu-

tion for any of the instances in one hour of CPU time. For example, for the problem instances of

types (10000, 0.95, 2, 20,U1), (10000, 0.9, 2, 20,U1), and (10000, 0.65, 2, 20,U1) for which optimality

is proven relatively easily with the proposed MIP formulations (see Table 3), the average relative MIP

gap obtained after one hour of computing time with the BI formulation is respectively equal to 21.50%,

24.12%, and 26.89%.

6 Conclusion

We develop a new modeling and exact solution method for stochastic programming problems that in-

clude a joint probabilistic constraint in which the variables in the multirow random technology matrix

are discretely distributed. We binarize the probability distribution of the random variables in such a way

that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic

constraint. We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure

of the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the proba-

bilistic constraint and takes the form of a system of linear constraints. We use the separating structure to

derive three new deterministic formulations equivalent to the studied stochastic problem. We derive a set

of strengthening valid inequalities for the reformulated problems. A crucial feature of the new integer

formulations is that the number of integer variables does not depend on the number of scenarios used

to represent uncertainty. The proposed reformulation method makes it possible to solve very efficiently

probabilistically constrained stochastic programming problems with multirow random technology ma-

trix. The computational study, based on instances of the stochastic capital rationing problem, shows

that the MIP reformulations are much easier and orders of magnitude faster to solve than the MINLP
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formulation. The method integrating the derived valid inequalities in a branch-and-bound algorithm

performs best.

The proposed method and the one presented in [19] have similarities. Both are based on the bina-

rization of the probability distribution of the random variables using a consistent set of cut points, model

a chance constraint as a pdBf, and ultimately provide equivalent integer programming formulations in

which the number of binary variables is typically orders of magnitude smaller than the number of scenar-

ios. While germane to Lejeune’s method [19] for joint probabilistic constraint with random right-hand

sides, the present approach constitutes a major extension as it permits to solve efficiently more complex

and more general probabilistic programming problems with random technology matrix. The method in

[19] rests on the concept of p-pattern to model the satisfiability of a chance constraint with random right-

hand sides and derive an MIP formulation equivalent to the stochastic programming problem. In this

study, we define the concept of tight minorant of a threshold Boolean function to separate p-sufficient

from p-insufficient recombinations and derive a set of mixed-integer quadratic inequalities to model the

satisfiability of a chance constraint with random technology matrix. An additional step involving the

linearization of the bilinear terms is needed to obtain several equivalent MIP reformulations.
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[29] Prékopa A. 1973. Contributions to the Theory of Stochastic Programming. Mathematical Program-
ming 4 (1), 202-221.
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[32] Prékopa A. 2003. Probabilistic Programming Models. Chapter 5 in: Stochastic Programming:
Handbook in Operations Research and Management Science 10. Eds: Ruszczyński A., Shapiro
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