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ABSTRACT
Humans perform tasks such as bowl mixing bi–manually,
but programming them on a robot can be challenging spe-
cially in tasks that require force control or on-line stiffness
modulation. In this paper we first propose a user-friendly
setup for demonstrating bi–manual tasks, while collecting
complementary information on motion and forces sensed on
a robotic arm, as well as the human hand configuration and
grasp information. Secondly for learning the task we propose
a method for extracting task constraints for each arm and
coordination patterns between the arms. We use a statistical
encoding of the data based on the extracted constraints and
reproduce the task using a cartesian impedance controller.

Categories and Subject Descriptors
I.2.9 [Robotics]; I.2.6 [Learning]: Knowledge acquisition;
H.5.2 [User Interfaces]: Interaction styles

General Terms
Robot Learning

Keywords
Programming by demonstration; Task constraints extraction

1. INTRODUCTION
Daily activities, such as dish washing or preparing a meal,

require completing tasks that are implicitly bi-manual. A
challenge in programming such tasks is accounting for all
the task variables, for the motion of each arm, as well as for
their coordinated behavior. Here we take a Programming
by Demonstration (PbD) approach in which a human can
directly demonstrate the task, and propose a method for
determining and encoding bi-manual coordination patterns.

We exemplify this on a task (stirring in a bowl, as shown
in Fig. 1) that requires completing a sequence of actions
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Figure 1: The two setups used in the demonstration phase. We
alternate between the active/passive arms in the tasks, and record
complementary information from the glove and robot arm.

for each arm. According to a taxonomy of bi-manual ac-
tions proposed in [6], the task subparts can be described as:
(1) a discrete reaching motion from the initial position of
each arm to the proper configuration to start mixing; (2)
an asymmetrical coordinated motion, in which one arm is
actively stirring while the other is passively assisting; (c)
an uncoordinated reaching back action. The stirring action
requires coordination not only in arm movement, but also
with respect to the force and stiffness applied by each arm.

To be able to record the interaction forces perceived on
each hand in coordination and in conjunction with measure-
ments of the arm and finger displacement, we developed an
experimental setup displayed in Fig. 1 (see Section 3 for a
description). We analyze the demonstration data and ex-
tract (1) continuous constraints for each arm, consisting of
the variables of interest in each part of the task, expressed
in the local frame of reference of the object on which we
perform manipulation and a stiffness modulating factor; (2)
coordination patterns between the variables of interest in
each part of the motion. We represent the motion using
a time independent statistical encoding which allows using
the extracted features as continuous task constraints that
can be embedded online in the robot’s motion. For repro-
ducing the task on a bi–manual robotic platform we use a
cartesian impedance controller for each arm, parameterized
with the extracted constraints.

2. RELATED WORK
In our previous work [1], we proposed a method for en-

coding arm–motion in discrete bi–manual tasks based on de-
termining key postures during the demonstration. However
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in the present work we focus on tasks that require coordi-
nated force control. We determine continuous constraints
that apply throughout the task or in parts of the task.

For each arm we extract task constraints using the method
prosed in [7], based on analyzing the variance in the data.
We extend this approach to determine arm dominance (i.e
the relative importance of each arm). We further encode the
whole task as a sequence of states describing each action.
Alternative representations are graph-based [2], or Markov-
model based [5].

3. METHOD
To execute the task on a robotic platform we consider a

cartesian impedance controller for each arm, given by τ =
JT · RF · (λK(x − xd) + F ). The desired position xd ∈
R3, the force to be applied F ∈ R3, and a factor λ ∈ R3

that modulates the arm’s stiffness K, are extracted from
demonstration (as explained below) and are expressed in
the local reference frame of the object of interest RF .

To demonstrate the task we designed the setup shown in
Fig. 1, in which the user can perform the task by kinestheti-
cally guiding the robotic arm with one hand and by wearing
a data glove on the other hand. This particular configu-
ration has two main advantages: (1) it makes it easy for
the user to provide demonstrations (i.e. rather than han-
dling multiple degrees of freedom from two robot arms); (2)
it allows simultaneously recording complementary informa-
tion: end effector cartesian positions (xR ∈ R3) and forces
(FR ∈ R3), from a KUKA LWR arm; hand configuration
(θG ∈ R23 joint angles), and wrist position (xG ∈ R3) from
the data glove. Additionally we recorded the object’s carte-
sian position (xo ∈ R3) using an Optitrack vision system.

The user performed the task in two phases, by alternating
the roles of the active and passive hands. This allowed us to
record both robot data and glove data for both the active
and the passive arm. We recorded N = 6 demonstrations in
each phase. We aligned the recorded data using Dynamic
Time Warping (DTW). The final data set for phase 1 is ξ1 =
{xAR, FA

R , x
P
G, θ

P
G, xo}, where the upper indices refer to the

hand performing an active (A) or passive (P) task. Similarly
a data set ξ2 is obtained in the second phase.

Uni-manual constraints.
To extract the constraints of each arm, we consider for

each phase i = 1..2, a subset ξiR = {xR, FR} of ξi. The
glove wrist position xG is used for aligning the robot motion
in the two phases. We analyze the robot data in the refer-
ence frame of the object (i.e. the bowl), as described in [7].
For each recorded variable (position and force), across each
dimension, we compute a criterion based on the observed
variance in the data [7]. This allows us to compare in a
relative manner variables of different types. We consider at
each time step the variable of interest to be the one with the
maximum computed criterion. When this changes a segmen-
tation point is created, resulting in a set of states ψs. For
the current task representation see Fig. 2. The arm motion
in each segment is encoded as a non-linear dynamical system
[4]. The force components are encoded in a Gaussian Mix-
ture Model (GMM) as a function of position. We compute
a stiffness modulation factor λ as the difference between the
criterion computed for position and the one computed for
force on each axis. Additionally for each state we determine
a corresponding hand configuration θG,s.

Arm1

Arm2

Reaching

Reaching

Holding–passive arm

Mixing– active arm

Reaching

Reaching

Time[s]0 25

1 2 3

End-state

coupling

Action

coupling

No

coupling
y y y

Figure 2: The identified motion segments for each arm, and corre-
sponding coupling.

Bi-manual coordination.
Comparing the obtained criteria between the two arms

allows us to determine at each time step which arm is domi-
nating in either position or force applied in the task. This is
similar to results on human subjects showing that the arms
can change the active and passive roles during manipulation
and this is caused by a force-motion relation, rather than
prior knowledge or routine in executing the task [3].

Hand dominance thus influences the way we model the
task subparts. For the active arm we encode the motion
and force profile as described above. However for the pas-
sive arm the motion is insignificant, while the forces sensed
on the arm are reaction forces responsible for keeping the ob-
ject in place. Therefore we choose to encode using a GMM
model its force p(FP

R , F
A
R ), and stiffness profiles p(KP

R , F
A
R )

as dependent on the forces sensed on the active arm. This
allows the passive arm to apply compensating forces to the
ones applied by the active arm.

4. CONCLUSION AND FUTURE WORK
We presented a procedure for recording bi–manual demon-

strations that reduces user’s effort and maximizes the ob-
tained information. We analyze the data to extract con-
straints for each arm and encode coordination patterns.

Future work involves determining a two levels encoding
of the task: (1) skill level as general knowledge about the
action, and (2) task level, as a parametrization of the learned
skill. This enables policy reusability for similar tasks, such
as stirring in a bowl of dough, and applying the same skill
for stirring coffee.
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[2] R. Jäkel, S. R. Schmidt-Rohr, M. Lösch, and R. Dillmann.
Representation and constrained planning of manipulation
strategies in the context of programming by demonstration. In
ICRA, 2010.

[3] R. S. Johansson, A. Theorin, G. Westling, M. Andersson,
Y. Ohki, and L. Nyberg. How a lateralized brain supports
symmetrical bimanual tasks. PLoS Biol, 4(6):e158, 2006.

[4] S. M. Khansari-Zadeh and A. Billard. Learning Stable
Non-Linear Dynamical Systems with Gaussian Mixture Models.
IEEE Transaction on Robotics, 2011.

[5] S. H. Lee, H. K. Kim, and I. H. Suh. Incremental learning of
primitive skills from demonstration of a task. In HRI, 2011.

[6] C. L. MacKenzie and R. G. Marteniuk. Bimanual coordination.
volume 23 of Advances in Psychology, pages 345 – 358. 1985.

[7] A. L. Pais, K. Umezawa, Y. Nakamura, and A. Billard. Task
parametrization using continuous constraints extracted from
human demonstrations. Submitted, 2013.

265




