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Abstract. We consider a two-stage non-cooperative Bertrand game with location
choice involving r firms. There are n spatially separated markets located at 
the vertices of a network. Each firm first selects the location of a facility and 
then selects the delivered price in the markets in order to maximise its profit. 
The article extends the duopolistic model with completely inelastic demand
(Lederer and Thisse 1990) to the oligopolistic scenario. Under moderate assump-
tions, a pure strategy equilibrium, which minimises social costs, exists. Further-
more, an equilibrium location can be obtained by finite steps and consists of
vertices only.
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1 Introduction

The spatial competition literature, beginning with Hotelling (1929), has focused
on the use of mill (or f.o.b.) pricing by competing firms. Hotelling considered two
firms competing in a bounded linear market in which consumers with inelastic
demand are uniformly distributed. The firms compete in price and location.

Different spatial pricing policies exist. In delivered pricing policy the firm 
provides and pays for the transportation costs. A particular case is the spatial 
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discriminatory pricing, in which the firm charges for the product, depending on
its delivery location. Hoover (1936) analysed spatial discriminatory pricing for
firms with fixed locations and concluded that a firm serving a particular market
would be constrained in its local price by the delivery cost of the other firms
serving in that market. In situations where demand elasticity is “not too high”,
market price is equal to the delivery cost of the firm with the next lowest deliv-
ery cost. This result was later extended to a spatial duopoly by Lederer and Hurter
(1986) in a compact subset of the plane, and Lederer and Thisse (1990) in a
network. We find a similar property in our oligopolistic model illustrated here.

Two different approaches are usually considered when firms choose location
and price. Some authors assume a simultaneous choice of price and location.
However, most models in this context follow Hotelling’s formulation and use a
refinement of the Nash equilibrium. More precisely, firms are supposed to choose
location and price, one at a time in a two-stage process, with the aim of max-
imising their own profits. The division into two stages is motivated by the fact
that choice of location is usually prior to decision on price. In the first stage firms
simultaneously choose their location. Given any outcome of the first stage, firms
then simultaneously choose their price in the second stage. The corresponding
two-stage solution is called a subgame perfect Nash equilibrium, which captures
the idea that when firms select their location, they all anticipate the consequences
of their choice on price competition.

The literature on spatial oligopoly with strategic choice location on networks
is relatively small. Labbé and Hakimi (1991) present a model where firms take
location and quantity decisions along a network of connected but spatially sepa-
rated markets. In a duopoly with linear demand, Labbé and Hakimi (1991) show
that under reasonable assumptions, a subgame perfect Nash equilibrium exists at
the vertices. Sarkar et al. (1997) extend the previous results in the following ways:
there is an arbitrary number of Cournot oligopolists; firms may set up multiple
facilities along the network; and the demand functions may be non-linear. Dorta-
González et al. (2004) in a similar model study the equilibrium of Stackelberg.
Lederer and Thisse (1990) present a competitive model between two profit-
maximising firms that produce and sell a single homogeneous product to cus-
tomers located on a network with completely inelastic demand. The firms compete
through their decisions concerning plant location, production technology and
delivered pricing. They prove the existence of a Nash equilibrium in location, pro-
duction technology and delivered pricing for any network configuration, and a
vertex optimality property.

Gupta et al. (1994) use delivered pricing Bertrand competition with inelastic
demand and discuss a vertical relationship. Spatial heterogeneity in the distribu-
tion of consumers in delivered pricing oligopoly is studied by Gupta et al. (1997).

In this article we analyse a Bertrand oligopoly where firms choose their loca-
tions on a network of connected but spatially separated markets. An example of
such markets is found in large urban centres connected by highways. The firms
play a two-stage game in which they take a location decision in the first stage and
choose the delivered pricing in the second stage. We restrict the study to pure
strategy equilibria. Delivered pricing is a common pricing policy for firms and
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has been extensively discussed by Phlips (1983). We assume that firms produce
at a constant marginal production cost; this implies that markets can be treated
independently when the locations of the firms are fixed.

Our work extends the article by Lederer and Thisse (1990) to the oligopolistic
scenario. We prove the existence of a subgame perfect Nash equilibrium at the ver-
tices of the network when transportation costs are concave with respect to distance.
The concavity assumption is realistic under delivered pricing policies in certain sit-
uations, such as those where the product is transported by air (Brander and Zhang
1990). The vertex optimality property implies that an equilibrium solution to the
network problem can be found by solving a discrete problem, which means that it
allows us to determine an equilibrium by investigating a finite set of candidate sites.
Moreover, we see that the locations of the firms are in equilibrium if each firm min-
imises the social cost (i.e., total cost to firms of supplying markets with goods it
demands is minimised) with respect to the competitors’ fixed location.

The remainder of the article is organised as follows. In Sect. 2 the notation
and model are introduced, followed by the equilibrium analysis discussion in Sect.
3, and concluding remarks.

2 The model

Let N = (V, E) be a undirected connected network with a finite vertex set V =
{v1, v2, . . . , vn} and edge set, E. At each vertex, vk Œ V, a market is located where
a given product is sold at unit price, pk.

Each edge [vi, vj] Œ E has a positive length. The distance between two points
x and y along the edges is denoted by d(x, y) and is the length of the shortest path
joining them.

A number of r firms located on the network at points X = (x1, . . . , xr), manu-
facture the product and ship it to markets vk Œ V. The following assumptions are
made regarding the marginal production cost and the transportation cost function.

Assumption 1. Unit transportation cost between firm i’s location x, 1 £ i £ r, and
market vk Œ V is denoted by (x) = ti(d(x, vk)) and is assumed to be positive,
concave and increasing with respect to distance.

Assumption 1 might appear artificial for those familiar with mill pricing 
location-price models, but who are unfamiliar with delivered pricing policies. For
delivered pricing, concave transportation costs are assumed by many authors
(Labbé and Hakimi 1991; Sarkar et al. 1997; Lederer and Thisse 1990, among
others). This assumption is realistic in certain situations. Consider, for example,
transport by air. As Brander and Zhang (1990) point out, the transportation cost
is far from proportional to the distance. Large costs are incurred at take off and
landing while the actual time in the air requires low costs, which yield concave
transportation cost functions. Another example is the following situation. When
the distance is small (large) the firm uses a truck (air cargo). Marginal cost for
truck transport is larger than that for air transport, thus the transportation cost
becomes concave.

ti
k
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Assumption 2. Marginal production cost is assumed to be independent of the
quantity produced and is denoted by Ci(x), 1 £ i £ r. Furthermore, it is a positive,
concave function as x moves along any edge of the network.

For the motivation of assumption 2, in terms of the objective to minimise the
total cost of inputs, the reader is referred to Labbé and Hakimi (1991) who con-
sider the following situation. Firm i, i = 1, . . . , r produces the product by using
J inputs j = 1, . . . , J. There are Hj possible sources of input j in N, denoted by
yjh, h = 1, . . . , Hj. The price of input j, at yjh, is given and denoted by pjh. The cost
of transporting one unit of input j from yjh to xi is tj(d(yjh, xi)), which is assumed
to be increasing and concave with distance d(yjh, xi). Let aji be the amount of input
j used by firm i to produce one unit of the product. The marginal production cost
at xi is then given by:

(1)

which, as a weighted sum of minima of concave functions, is a concave function
of the distances d(yjh, xi). Next, since each distance d(yjh, xi) is a concave func-
tion of xi as xi moves along an edge, C(xi) is also concave.

Notice that the marginal production cost depends only on the location of the
firm and the markets can therefore be treated independently of one another.

The marginal delivery cost of firm i at market vk is given by:

(2)

The price offered by firm i, 1 £ i £ r, at market vk Œ V is denoted by and

.

3 Equilibrium analysis

The equilibrium problem is solved in two steps, assuming that firms first decide
location and then pricing. Suppose that at each market, vk, customers have a fixed
demand for the product of lk > 0. The second stage pricing problem is solved in
the next subsection.

3.1 The second stage pricing problem

Let X = (x1, . . . , xr) be a vector of fixed locations for the firms. The second stage
problem is a non-cooperative game in which firms determine the pricing that 
maximises their profit. We investigate the Nash equilibrium in prices.

We assume that customers purchase from the cheapest source. Thus, if 
, "j π i, customers located at vk will buy from firm i at price . Define:pi
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(3)

(4)

Then Ki is the set of markets controlled by firm i and Mi is the shared market by
firm i.

The profit for firm i can be written as:

(5)

where is the number of firms that share the market vk with firm i, that is:

(6)

In our formulation we assume that firm i will not price below its marginal
cost. We do not consider predatory pricing because a strategy of this type is dif-
ficult to justify in the context of a one-period model. For any pricing policy ,
j π i, the optimal pricing policy for firm i is then:

(7)

where e > 0 is arbitrarily small.
For small e we see that a customer will be served by the firm with the lowest

marginal delivery cost at a price slightly less than the next lowest competitors,
marginal delivery cost. At its limit,

(8)

and the resulting market price at which consumers will buy the homogeneous
product is the second lowest marginal delivery cost of serving that market, that
is:

(9)

with i* such that .

If is a ranking of the marginal delivery costs in market vk,
then the market price at vk is:

(10)

Under the rule used to define the profit function, at least two firms have to
split the market demand, since they charge identical prices. Note, however, that
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for any positive e, demand goes to the lower cost firm. This discontinuity in the
demand relationship may be eliminated by redefining the equal price rule, so that,
if two firms have identical customer prices, the firm with the lowest marginal
delivery cost will serve the customer. Such a rule is reasonable and intuitive
because the firm with the cost advantage can serve the customer just by cutting
its price by an arbitrarily small amount. Redefining the profit functions using this
rule will result in profits being continuous for e = 0, and the following pricing
policy:

(11)

is a Nash equilibrium.
Having characterised equilibrium pricing policies for fixed locations, we next

analyse the existence of equilibrium locations.

3.2 The first stage location problem

The objective of the first stage game is to find an r-vector of locations such that
no firm unilaterally finds it profitable to relocate. A vector of locations X =
(x1, . . . , xr) is a Nash equilibrium if location xi maximises the profit of firm i
given the competitor locations xj, j π i.

The profit for firm i can be written:

(12)

and

(13)

Next we consider the equilibrium locations of the firms under the Nash equi-
librium prices in the second stage. Using the concept of social cost defined by
Lederer and Hurter (1986), we will illustrate that there is a relationship between
social cost and a firm’s profit.

Definition (Lederer and Hurter 1986) The social cost is the total cost incurred
by the firms to supply demand to consumers in the market space in a cooperative
cost minimising manner. If the firms are located at X, then when the firms are
cooperating to supply demand in a cost minimising manner, social cost is:
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There is a relationship between social cost and a firm’s profit under equilib-
rium pricing policies.

Proposition 1. Under assumption 2, the profit function in the first stage can be
written:

(15)

Proof. Directly from definition of  and SC. �

Thus, the profit to firm i is the total cost that would be experienced by its rivals
if they were serving the entire market in a cooperative manner, minus the social
cost. This means that a firm will strive to minimise social cost, not its own deliv-
ered cost, in order to maximise its profit.

The relationship stated in proposition 1 leads to the following results:

Proposition 2. The following results are obtained:
(i) Under assumption 2, a vector of locations is a Nash equi-

librium if and only if each location minimises the social cost SC, given the
location of each competitor . Moreover, a socially optimal location
decision is a Nash equilibrium of the first stage game.

(ii) Under assumptions 1 and 2, SC (X) is a concave function in xi when xi moves
along any edge of the network and xj is unchanged, "j π i.

Proof.
(i) From proposition 1, assuming xj fixed, "j π i, the first element in the profit

function is constant. The profit function is then maximised in that location
which minimises the social cost. Therefore, is a Nash equilibrium
if and only if:

(16)

Moreover, if is a global minimum of SC(X), then:

(17)

and therefore,

(18)
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along any edge of the network. Furthermore, SC(X) is the addition of concave
functions, therefore SC(X) is a concave function of xi when xi moves along
any edge of the network and xj is unchanged. �

This proposition shows that the locations of the firms are in Nash equilibrium
if for each firm, its location minimises the social cost given the competitor loca-
tions. Moreover, an equilibrium may be found by minimising social cost. This
means that if a firm anticipates that equilibrium prices will be employed by the
other firms which are already located, the firm will strive to minimise social cost
in order to maximise its profit.

In general, uniqueness is not satisfied because SC(x1, . . . , xr) may have several
global minimisers and, more importantly, equilibrium strategies need not globally
minimise social cost SC. The equation:

(19)

only requires minimisation in each individual component of SC. Therefore,
socially optimal equilibria may not exist.

An example with several global minimisers is portrayed in the following: Con-
sider r = 2 and the segment line [1, 3] with nodes at points 1, 2, 3, and l1 = 2, l2

= 1, l3 = 1. The marginal cost at any point x on the network is Ci(x) = 1, and
ti(d(x, vk)) = d(x, vk), for i = 1, 2, 3. We can check that the social cost is minimised
when one firm is located at v1 and the other at v2 or at v3. Then (v1, v2) and (v1,
v3) are Nash equilibria in the network and the equilibrium is therefore not unique.

The concavity of the social cost function guarantees the optimisation at the
vertices, as shown in the following result:

Proposition 3. Under assumptions 1 and 2, each firm minimises the social cost
at some vertex of N, regardless of where its competitors are located.

Proof. This is a direct consequence of proposition 2(ii). �

Thus, we must limit ourselves to the vertices of the network to find equilib-
rium locations. This corresponds to a Hakimi-type property, where firms may limit
themselves to vertices on the network, established here in the context of an oli-
gopolistic spatial competition model.

Using proposition 3 we can now establish the existence of a subgame perfect
Nash equilibrium consisting of vertices only in the following result:

Proposition 4. Under assumptions 1 and 2, equilibrium locations always exist in
the first stage of the game. Furthermore, there exists an equilibrium consisting of
vertices only.

Proof. From proposition 3 we can restrict the set of candidate sites to the set V
of vertices. Given any starting location for a firm, we show that if each firm in
turn responds by relocating at a vertex that minimises the social cost, then this
process converges, in a finite number of iterations, to an equilibrium. By the 

SC x x x SC x x x x N i ri r i r i1 1 1, ..., , ..., , ..., , ..., , , .( )£ ( ) " Œ £ £
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reduction-to-absurd method, assume that r sets , 1 £ i £ r, of vertices
exist, which represent the choice sequence of locations by firms 1, 2, . . . , r,
respectively, with firm 1 being the first player, firm 2 being the second player, and
so on, such that:

(20)

, 1 £ i £ r, i.e., the
process cycles. Since at least one of these expressions is a strict inequality, when
we add up all these expressions, we obtain:

(21)

where , 1 £ i £ r. Putting all the terms on the left-hand side, we get:

(22)

Finally, the fact that , 1 £ i £ r, implies that all the terms on the left-hand
side cancel and a contradiction occurs. �

Thus, there exists a set of equilibrium locations consisting of vertices only and
the search for an equilibrium can be limited to vertices that minimise social cost.

Proposition 4 provides an easy method to find a subgame perfect Nash equi-
librium for networks satisfying assumptions 1 and 2. The following algorithm can
be used to obtain a subgame perfect Nash equilibrium.

Algorithm
Step 0. Take h = 0 and let be a set of initial locations in V. Let

.

Step 1. For 1 £ i £ r, find such that
and take

Step 2. If SCh+1 = SCh then stop. The equilibrium is . Otherwise, set 
h = h + 1 and go to step 1.

From proposition 4 this process converges, in a finite number of iterations, to
an equilibrium.

4 Conclusion

We have analysed the Bertrand game involving r firms that first locate their facil-
ities on a network connecting n spatially separated markets and then determine
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the pricing in order to maximise profit. Under moderate assumptions a pure strat-
egy equilibrium exists. An equilibrium location consists of vertices only and can
be obtained by finite steps. Each firm will strive to minimise social cost in order
to maximise its profit. In general, uniqueness is not satisfied because social cost
may have several global minimisers and, more importantly, equilibrium strategies
need not globally minimise social cost.
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