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ABSTRACT 
A computational method for accurately and efficiently predict-

ing unsteady viscous flow through two-dimensional cascades is pre-

sented. The method is intended to predict the onset of the aeroelastic 

phenomenon of stall flutter. In stall flutter, viscous effects signifi-

cantly impact the aeroelastic stability of a cascade. In the present 

effort, the unsteady flow is modeled using a time-linearized Navier-

Stokes analysis. Thus, the unsteady flow field is decomposed into a 

nonlinear spatially varying mean flow plus a small-perturbation har-

monically varying unsteady flow. The resulting equations that govern 

the perturbation flow are linear, variable coefficient partial differential 

equations. These equations are discretized on a deforming, multi-

block, computational mesh and solved using a finite-volume Lax-

Wendroff integration scheme. Numerical modelling issues relevant 

to the development of the unsteady aerodynamic analysis, includ-

ing turbulence modelling, are discussed. Results from the present 

method are compared to experimental stall flutter data, and to a non-

linear time-domain Navier-Stoke analysis. The results presented 

demonstrate the ability of the present time-linearized analysis to 

model accurately the unsteady aerodynamics associated with tur-

bomachinery stall flutter. 

1. INTRODUCTION 
Turbomachinery stall flutter is an aeroelastic instability of com-

pressor and fan blades that often occurs near the stall or choke lines 

on the operating map. Stall flutter usually appears at part speeds 

where blades are subjected to high mean flow incidences. The vibra-

tory frequencies associated with stall flutter generally coincide with i t  
one of the blade's lowest natural frequencies. Frequently, the mode 
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of blade vibration corresponds to the first torsional mode. However, 

stall flutter can sometimes occur in the first bending mode as well. 

A flutter model is composed of two parts: a structural dynamic 

model of the bladed-disk to predict the mode shapes and natural fre-

quencies of the airfoil vibratory modes, and an unsteady aerodynamic 

model to predict the aerodynamic forces induced by airfoil vibration. 

While current finite element models of the structural dynamic behav-

ior of bladed disks are quite acceptable for this application (at least for 

structurally tuned rotors), unsteady aerodynamic models of separated 

viscous flows that are both physically accurate and computationally 

efficient have heretofore been unavailable. Instead, designers have 

had to rely on empirical correlations. 

In conventional stall flutter, the blade vibration is the primary 

fluid dynamic driver (see Sisto (1987) and Chi & Srinivasan (1985)). 

While significant progress has been made in the computational mod-

elling of inviscid unsteady flows over the past 40 years, little head-

way has been made in modelling unsteady viscous flows, other than 

through direct simulation using nonlinear time-marching techniques. 

Unfortunately, these methods are computationally very expensive, 

and thus of limited use for routine design. 

A number of investigators have developed time-linearized models 

of unsteady inviscid flows in turbomachinery. In the time-linearized 

approach, the flow is decomposed into a nonlinear steady flow plus 

a small-perturbation harmonic unsteady flow. The resulting time-

linearized equations are linear variable coefficient equations that 

can be solved very efficiently. Verdon & Caspar (1982), Verdon 

(1987). Whitehead & Grant (1981), and later Hall (1993) devel-

oped time-linearized models of two-dimensional potential flow in 

cascades. Hall & Crawley (1989), Hall & Clark (1993), and Holmes 

& Chuang (1993) developed two-dimensional time-linearized Euler 

solvers. Hall & Lorence (1993) have developed a three-dimensional 

linearized Euler solver and showed that three-dimensional effects 

have a strong influence on unsteady flows in turbomachinery. All 
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of these analyses are inviscid, however, and thus are not capable of 
predicting unsteady flows with flow separations, an important feature 
of stall flutter. 

Recently, Clark & Hall (1995) developed a time-linearized 
Navier–Stokes analysis of unsteady viscous flows in cascades. They 
were able to predict unsteady laminar flows, including laminar sepa-
rated flows, within a time-linearized framework. Furthermore, their 
results clearly demonstrated the destabilizing influence of viscosity 
(flow separation) on the aeroelastic stability of cascades, especially 
for torsional vibrations of the blades. However, this initial work 
was limited to laminar flows, and thus neglected the important role 
of turbulence on the unsteady flow field. More recently, Holmes & 
Lorence (1998) have presented a three-dimensional time-linearized 
Navier–Stokes analysis with a k–ra, turbulence model. Their com-
putational results, however, were limited to flows with thin attached 
boundary layers. 

In this paper, we apply the time-linearization technique to the 
two-dimensional Reynolds averaged Navier–Stokes equations. The 
one-equation turbulence model due to Spalart & Alimaras (1992) pro-
vides the necessary closure for the Reynolds stress terms. We present 
computational predictions of unsteady, viscous flows resulting from 
torsional blade vibrations of a cascade of fan blades. The computa-
tional results from the present time-linearized Navier–Stokes method 
are compared to experimental data, and also to a nonlinear time-
domain Navier–Stokes analysis. Two operating conditions are con-
sidered. The first condition presented corresponds to a design point 
on the operating line of the fan, that is, the steady flow is attached 
and the blades are subjected to relatively low incidence angles. The 
second condition corresponds to off-design operation. In this case, 
the blades are subjected to high incidence angles, and the steady flow 
separates from the blade over much of the suction surface. In both 
cases, numerical predictions are found to be in good agreement with 
the available experimental data. 

2. THEORY 

2.1. Governing Equations 

In strong conservation law form, the two-dimensional Reynolds 
averaged Navier-Stokes equations are given by 

If cid 	Udxdy + 	(F – TJA8  dy 

– 	(1) 

where D is a deforming control volume bounded by the control 
surface OD. The quantities a f I at and ay/at are the x- and y-
components of the velocity of the control surface ap. The vector of 
conservation variables U, the flux vectors F and G. and the source 

vector S are given by 
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The first four equations are the conservation of mass, x- and y-
components of conservation of momentum, and conservation of en-
ergy, respectively. The fifth equation is the Spalart–Allmaras turbu-
lence model written in strong conservation form. 

In the above equations, p is the density, u and v are the velocity 
components in the x- and y-directions respectively, e is the total 
internal energy, H is the total enthalpy, and p is the static pressure. 
The fluid is assumed to be a perfect gas so that the total energy e is 
related to the total enthalpy H by 

(3)  p 	–1 p 2 

The shear stresses rrz , rzy , and ryy  are given by 

(A + Pt) 	– 
(40u 2 0v 

(p + Pt) (— — 
, au ay) 

ay ax 

(P + itt) 	– 
, 4 ay Thu ) 

where it. A t , and v are the molecular viscosity, the turbulent viscosity, 
and the kinematic viscosity, respectively. The terms Thz  and Thy  in 
the energy equation are given by 

Thr = urzz + Inn  – qz 
	

( 7) 

Thy urn  + wrin, – qp  (8) 

where qz  and qy  are the x- and y-components of the heat flux, re-
spectively, and can be written as 

_ (Pep + Ptep aT 

	

Jr Prt  ex 
	 (9) 
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(10) 
Pr 	Prt )ay 

where cp  is the specific heat at constant pressure. T is the tempera-
ture, and Pr and Pr t  are the laminar and turbulent Prandt1 numbers, 
respectively. 

(4)  

(5)  

(6)  

2 

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



lp (v + 0) 
ax 

= 	(v + 0) —
8U 

ay 

Tux 

In the present study, the laminar coefficient of viscosity is deter-

mined using Sutherland's law. The turbulent viscosity is modelled 

using the one-equation turbulence model due to Spalart & Allmaras 

(1992). The turbulence model describes the convection, production, 

and destruction of the turbulent viscosity p t  in terms of ü, the work-

ing "conservation" variable, i.e. 

Pt = gPfv i(x) 

where 
z 	 X3  

X = 	Jul — 
x

3 
+ 7-13 	

(12) 

The working variable is used in lieu of the turbulent viscosity 

At because a, by construction, varies nearly linearly near the airfoil 

surface. The turbulent viscosity, on the other hand, varies rapidly near 

the airfoil surface, requiring very fine grids to resolve the laminar 

sublayer. Compared to some other turbulence models – e.g. k–c 

models – which require very tight grid spacing near the airfoil surface, 

the Spalan–Allmaras turbulence model grid requirements are quite 

modest. Indeed, a computational grid with a grid spacing Ay+ = 

5.0 near the airfoil surface is acceptable. 

The remaining viscous "shear" terms in the turbulence equation 

are given by  

flow, and the Navier–Stokes equations can be linearized. Hall & 
Clark (1993) have shown that to improve the accuracy of a time-

linearized flow solver, one should make use of strained coordinates. 

Thus, we make the coordinate transformation given by 

x (e, no-) = e + f (e,70e.'" • 
	

(15) 

= 
	

(16) 

t (e, 7), T) = T 
	

(17) 

Here, f and g are small perturbation functions chosen in such a 

way that in the strained coordinate system, the airfoils appear to be 

stationary. Said another way, the coordinates e,n are attached to 

the moving airfoil. Within the blade passage, we require that the 
unsteady grid motion functions f and g vary smoothly. 

Next, we decompose the unsteady solution into a steady part, plus 

a small-perturbation harmonic part, i.e. 

u (e,n, r) = 	+ u (e, n) 
	

(18) 

Note that the flow decomposition is defined in the strained coordinate 

system. Substitution of Eq. (18) into the expression for the flux vector 

F, and expansion in a first-order perturbation series gives 

(13) 	 F 	Lr ueiwt +f .t7Feiwr +reiw r 	(19) 
au 

where P e F(U, ,77). Also, V = falae,alany and f = 
{ f , g}T . The first term on the right-hand side of Eq. (19),F, repre-

sents the mean flux vector. In general, F is a function of the spatial 

coordinates e and n, the mean values of conservation variables U, 

and gradients of the mean conservation variables. The second term 

on the right-hand side of Eq. (19), [or yaque3", represents a per-

turbation in the flux vector due to perturbations in the conservation 

variables themselves. This term will have contributions from both the 

viscous and inviscid elements of the flux vector. The third term on the 

right-hand side of Eq. (19), f • Vreo", represents the perturbation 

in the flux vector due to perturbations in the spatial location of the 

computational node. The flux vectors in the two-dimensional form 

of the Navier–StokeS equations do not depend explicitly on e and n 
and, therefore, this term is zero. (However, when using the quasi-

three-dimensional form of the governing equations, the flux terms 

do depend explicitly on e and 7), and this term would be nonzero.) 

Finally, the fourth term on the right-hand side of Eq. (19), Tej', 

represents the perturbation in the flux vector due to the straining of the 

computational grid that occurs when df or dg are non-zero. Because 

the mean solution is attached to the computational grid, straining the 

computational mesh coordinates induces stresses in the fluid. Only 

elements of the flux vector that depend on flow gradients (i.e., shear 

stress, heat conduction, and turbulence model source terms) will con-

tribute to this term. This last term may be neglected if the grid motion 

is rigid body translation and/or rotation in the vicinity of boundary 

layers, separated regions, and wakes (Clark & Hall, 1995). 

(14) 

where A is a constant equal to 2/3. 

Finally, the non-zero entry in the source vector S t  in Eq..(2) mod-

els the diffusion, production, and destruction of turbulence, and is 

a function of the local density, viscosity, the working variable 0, as 

well as the gradients of these quantities, and the distance from the 

fluid particle to the surface of the airfoil. (For a complete descrip-

tion of the turbulence model, the reader is referred to the paper by 

Spalart and Allmaras (1992).) Note that other than the dependence 

on the distance d from a fluid element to the surface of the airfoil, the 

turbulence model is entirely local; no global boundary layer quan-

tities, such as the momentum thickness or displacement thickness, 

are required. Furthermore, as implemented in the present effort, the 

turbulence model is similar in form to the other conservation equa-

tions, and is simply and elegantly solved as an additional conservation 

equation using an explicit computational fluid dynamic flow solver 

(see Section 3). 

We note that in the present study the flow is assumed to be fully 

turbulent, i.e., no transition model is used. 

2.2. Linearization of Governing Equations 

Next, we assume that the unsteadiness in the flow is induced by a 

small harmonic motion of the airfoils with frequency wand interblade 

phase angle a. Therefore, the unsteadiness in the flow will be a small 

harmonic perturbation about a mean, but nonuniform, background 
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The remaining flux and source vectors are similarly expanded in 

perturbation series, so that 

— 
G = G + , tleawr + f• Vgrewr + gST  (20) 

oU 

S = 3 + 	 + f • Vgeiwr + Seiwr 	(21) 
au 

Substitution of these perturbation series into the conservation equa-

tions described by Eqs. (1) and (2) and grouping terms of equal order 

in the perturbation quantities yields the zeroth-order mean flow equa-

tions, 

– de) – I I ded77 = 0 	(22) 
far 

and the first-order time-linearized unsteady flow equations, 

HD  @cad — rues  u don + (ruari  nidn — 5—Cuuck) 

= — 	 _ (dedg + d77df) + 	f • Vgdedij 

fav 
Rjcafil – f • VP – d77 – (jwg17 – f • VU – g) ig] 

	

– 
8D 

kdg – Gdfl 	 (23) 

where I is the identity matrix. Equation (23) has been arranged so 

that terms that are homogeneous in u appear on the left-hand side, 

and inhomogeneous source terms appear on the right-hand side. 

From Eq. (22), it is apparent that the mean flow is independent 

of the unsteady perturbation flow and grid motion. The perturbation 

flow, on the other hand, depends on the steady flow in two ways. 

First, the time-linearized Navier-Stokes equations are linear, inho-

mogeneous, variable coefficient differential equations. The variable 

coefficients (mew) flow Jacobians) are a function of the mean flow 

field. Second, the inhomogeneous terms of Eq. (23) are also func-

tions of the mean flow field as well as the prescribed grid motion. 

Thus, the general solution procedure is to first compute the mean flow. 

Then, with the mean flow solution known, one forms the Jacobians 

appearing on the left-hand side, and the inhomogeneous terms on the 

right-hand side of Eq. (23), and solves the resulting time-linearized 

Navier–Stokes equations. 

Finally, we note that we fully linearize all terms in the the gov-

erning equations, including Sutherland's viscosity law, the Spalart-

Allmaras turbulence model, and the artificial viscosity model used to 

capture shocks (see Section 3.2). Our experience indicates that sim-

ply "freezing" the turbulence model, that is using the steady value of 

the eddy viscosity in the unsteady analysis with no unsteady perturba-

tion in the viscosity due to the unsteady solution, produces physically 

incorrect solutions.  

2.3. Boundary Conditions 
For the steady flow problem, the total pressure, total density, and 

tangential velocity are prescribed at the upstream far-field boundary; 

the static pressure is prescribed at the downstream far-field boundary. 
On the airfoil surface, the no-slip condition requires that the velocity 

be zero. We also require boundary conditions for the turbulence 

model. At the upstream far-field boundary, the mean flow turbulence 

17 is prescribed to be a small but nonzero number, just large enough 

to "seed" the flow with a small amount of turbulence. On the airfoil 

surface, we require that 17 be zero, because the turbulent viscosity 

must go to zero at the surface. Finally, the flow is required to satisfy 

periodicity, i.e., 

+ G) = •17(, n) 	(24) 

where G is the blade-to-blade gap. 

Similarly, for the unsteady time-linearized flow solution, we re-
quire that the flow be periodic with interblade phase angle a, i.e., 

u(e, 77 + G) = u(e, r7)en 	 (25) 

An unsteady no-slip condition must also be specified on the airfoil 

surface. Toward that end, let the vector R(s, r) describe the position 

of the airfoil surface where s is the distance along the airfoil surface. 

Because the motion of the airfoil is small and harmonic, we may 

write that 

R(s,r) =11.(s) + r(s)e 2" 	(26) 

Substitution of Eq. (26) into the no-slip condition and collection of 
first-order terms gives the unsteady no-slip equation 

v(s) = juir(s) 	 (27) 

where v is the perturbation velocity on the airfoil surface. 
Finally, for the unsteady flow, we require that outgoing acous-

tic, vortical, and entropic waves pass through the far-field boundary 
without reflection. This is equivalent to requiring that there be no 

incoming waves at the far-field boundary. 

3. NUMERICAL IMPLEMENTATION 
3.1. Computational Grid 

For the present investigation, we use a block-structured grid topol-
ogy (see Fig. 1). An 0-grid is generated around the airfoil so that 

grid nodes can be concentrated in viscous regions near the airfoil 

without wasted grid resolution in the far-field region. In the far-field, 

an H-grid is used because, in this region, one would like a nearly 

uniform grid to resolve acoustic waves. The grid is generated nu-

merically using the elliptic grid generation technique of Thomas and 

Middlecoff (1980) with modifications to generate grids with periodic 

boundaries required for modelling turbomachinery cascades. Inho-
mogeneous "source" functions are used to cluster grid points near the 
airfoil surface and provide control over grid orthogonality. A typical 

computational grid generated using this technique is shown in Fig. 2. 

Similarly, a linearized elliptic grid generation technique has been 

developed to generate the unsteady grid motion functions f and g 

- 
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Figure 1: identification and location of numerical boundary types 

in computational domain. 

Figure 2 Typical computational grid generated for experimental 

fan blade (Butfum et al., 1996). Multiple passages are shown for 

clarity. 

required for flutter calculations. The boundary conditions on f and 
g are that the motion of the grid be equal to the displacement of the 
airfoil at the surface of the airfoil, and that the motion of the grid be 
equal to zero on the periodic and far-field boundaries. 

3.2. Numerical Integration Scheme 

For numerical integration of Eqs. (22) and (23), we add a pseudo-
time term to the nonlinear mean and time-linearized unsteady Navier- 

Stokes equations, as suggested by Ni and Sisto (1976), so that 

cy 	Urkdri + 
8 
 (F — G ck) = 	Sdecln (28) 

 IL r 	 7) 

a'fL uded7,± f (jud -
a 
— au) u decin 

S 

+ (-8F  udn — —8G  uck) = b 
ap au 	au 	 (29) 

where b represents the right-hand side of Eq. (23). The addition of the 
time-dependent terms, the first term on the left of Eqs. (28) and (29), 
enables us to solve these equations using conventional time marching 
algorithms. The equations are advanced in pseudo time until the 
conservation variables reach their steady state values. Hence, the 
time derivative terms introduced into Eqs. (28) and (29) are driven 
to zero, and the original steady nonlinear and unsteady linearized 
Navier-Stokes equations are recovered. 

To solve Eqs. (28) and (29), we have implemented a modified ver-
sion of an explicit finite-volume Lax-Wendroff scheme .(Ni, 1982; 
Saxer, 1992; Davis et al., 1987; Clark, 1998). All spatial deriva-
tives used to evaluate the viscous shear stresses, heat fluxes, etc., 
are centered differences and are second-order accurate in space. A 
combination of second and fourth-order smoothing is used to cap-
ture shocks (for transonic flows) and eliminate spurious sawtooth 
modes from the solution (Holmes & Connell, 1989). Because only 
the steady state values of the mean and perturbation flow are required, 
there is no need to advance the equations time accurately. Thus, we 
accelerate convergence using local time stepping and multiple grid 
acceleration techniques. 

3.3. Unsteady Far-Field Boundary Conditions 

Because the computational domain must be finite in extent, non-
reflecting far-field boundary conditions are applied at the inflow and 
outflow boundaries to prevent spurious reflections of outgoing pres-
sure, entropy, and vorticity waves. The development of highly ac-
curate nonreflecting boundary conditions continues to receive much 
attention in the literature. In the present study, we use the Fourier 
mode decomposition technique developed for time-linearized Euler 
equations (Hall & Crawley, 1989; Giles, 1990; Hall et al., 1993). If 
the far-field steady flow is uniform and inviscid, then the unsteady 
pressure, vorticity, and entropy waves (eigenmodes) will be Fourier 
modes in the circumferential direction. Each wave (eigenmode) will 
have a corresponding wavenumber (eigenvalue). The direction of 
propagation of a given wave is determined by the wavenumber and 
the corresponding dispersion relation. Thus, at each iteration of the 
flow unsteady flow solver, the time-linearized solution is Fourier 
transformed in the circumferential direction to determine the amount 
of each incoming and outgoing wave present in the solution. For flut-
ter problems, all waves should originate inside the domain. There-
fore, the incoming waves are set to zero. The remaining waves are 
converted back to conservation variables, and inverse Fourier trans-
formed to obtain the solution along the far-field boundary. 
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Figure 3: NASA Lewis oscillating cascade facility. 

To apply the Fourier decomposition technique, two simplifying 
assumptions are implicitly made. First, we assume that unsteady 
viscous forces may be neglected. This assumption is valid since the 
waves that persist over long distances are long wavelength distur-
bances for which spatial derivatives, and hence viscous forces, are 
small. Second, we assume that the mean flow in the far field is 
uniform. This is clearly not true in the downstream region where a 
substantial velocity defect exists in the steady viscous wake. In fact, 
small reflections do occur, especially in the vicinity of the wake. 
However, these reflections tend to have short wavelengths, and thus 
are acoustically cut off. Any reflections tend to decay rapidly as they 
propagate upstream and, therefore, have little effect on the solution 
in the vicinity of the airfoil. 

4. COMPUTATIONAL RESULTS 

This section presents a flutter stability analysis for a tip section 
of a low aspect ratio fan blade. The influence of frequency, inci-
dence and flow separation on the aeroelastic stability of the cascade 
is investigated. Numerical solutions from the present method are 
compared to experimental data and numerical results obtained from 
a nonlinear, time-accurate time-marching analysis. 

4.1. Benchmark Flutter Data 

In this paper, we compare the results of our unsteady time-
linearized Navier-Stokes analysis to a set of data recently obtained 
in the NASA Oscillating Cascade Facility (Buffum et al., 1996). The 
NASA Lewis Oscillating Cascade Facility (see Fig. 3) is a linear cas-
cade wind tunnel capable of inlet flow speeds approaching Mach 1.0. 
The tunnel has a high-speed airfoil drive system capable of oscillat-
ing the cascaded airfoils in a torsional motion at prescribed interblade 
phase angles with realistic values of reduced frequency. 

The airfoils used in the experiment have a cross section similar to 
that found in the tip region of modern low aspect ratio fan blades. The 
airfoil section was designed using the Pratt & Whitney compressor 
aerodynamic design system. Loading levels, losses, solidity and 
stagger angle are representative of current design practices, although 
Mach numbers are somewhat smaller. The aerodynamic chord of  

4,1;0 
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Figure 4: Steady pressure distribution on airfoil surfaces of But-
turn cascade. M = 02,131 = 60 ° , Re = 380,000. 

the airfoil c is 8.90 cm. The airfoils have a maximum thickness 
of 4.8 percent of the chord, with the maximum thickness located at 
62.5 percent of the chord. The linear cascade has nine airfoils set 
at a stagger angle 7 of 60°  and a solidity of 1.52. Pressure taps are 
distributed on several of the airfoil surfaces to measure both steady 
and unsteady pressure distributions. 

Buffum et al. (1996) measured the unsteady aerodynamic re-
sponse of the airfoils pitching about their midchords for several 
combinations of steady Mach number and incidence, and unsteady 
reduced frequency and interblade phase angle. In this paper, we com-
pare the present time-linearized Navier-Stokes analysis to data ob-
tained at two operating conditions, a low-speed low-incidence case, 
and a low-speed high-incidence case. The later case is representative 
of operating conditions conducive to stall flutter. 

4.2. Low-Speed, Low-Incidence Flutter 

The first operating condition considered corresponds to an inlet 
Mach number Afo, of 0.2, an inflow angle /31 of 60°  (0°  of in-
cidence measured with respect to the chord line), and a Reynolds 
number Re based on chord of 380,000. At this low-incidence flow 
condition, viscous effects are thought to be insignificant because the 
flow remains attached over most of the airfoil and the boundary lay-
ers are thin. Figure 4 shows the experimentally measured steady 
surface pressure data for this case along with the numerical results 
obtained using the present method (; = — poo )1(pco Uce2  )). 
The computational grid used here and throughout the paper unless 
otherwise noted contained 129 x 33 nodes in the 0-grid region, and 
33 x 33 nodes in the upstream and downstream H-grid regions. The 
different symbol types in Fig. 4 correspond to data acquired from 
different airfoils in the cascade. All three instrumented blades are 
in fair agreement with one another, indicating that reasonable steady 
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Figure 5: Steady Mach contours in blade passages of Buffum 
cascade. M = 02, th = 62 ° , Re = 380,000. 

passage-to-passage periodicity has been obtained in the experiment. 

The dashed line corresponds to the steady solution computed using 

the present method for an inflow angle of 60 0 . The predicted surface 

pressure distribution has a similar shape to the data, but the pressure 

levels are not well predicted. By adjusting the inflow angle Oi to 

62° , the surface pressure distribution, denoted now by the solid line, 

more closely agrees with the experimental results. As errors in the 

measurement of the cascade stagger angle and/or inflow angle may 

occur that can substantially alter the steady pressure distribution, it 

is not unreasonable to adjust the numerically prescribed inflow angle 

to obtain a closer match to the steady experimental data. Note that 

with the 20  adjustment, the overall agreement between the present 

method and the experimental data is quite good. 

Also shown in Fig. 4 is the steady pressure distribution computed 

by Capece (1998) using NPHASE, a fully nonlinear time-accurate 

time-marching computational model for predicting two-dimensional, 

nonlinear, unsteady flows through vibrating cascades. NPHASE uses 

an implicit, cell-centered, finite-volume algorithm based on Roe's ap-

proximate Riemann solver. The Baldwin-Lomax (1978) turbulence 

model is used to compute the eddy viscosity. A detailed descrip-

tion of the NPHASE algorithm is given by Ayre and Verdon (1994). 

Capece found that the best match to the experimental data was ob-

tained by NPHASE with a prescribed inflow angle of 61.5 0 . While 
the overall agreement is good, the pressure on the suction surface of 

the airfoil is slightly under predicted by NPHASE. 

Figure 6: Unsteady pressure distribution on pitching airfoil sur-

faces of Buffum cascade. M =02, th = 62° , Re = 380,000, k = 12, 
a = 180° . 

Figure 5 shows the steady Mach number contours for this low-

speed low-incidence case computed using the present steady Navier-

Stokes analysis. The boundary layers are seen to be relatively thin, 

although on the suction surface there is a small separation bubble near 

the leading edge — the flow re-attaches approximately 5 percent of 

the chord downstream of the leading edge — that causes an immediate 

thickening of the suction surface boundary layer. 

Having computed the steady flow, we next consider the unsteady 

flow arising from torsional vibrations of the airfoils in cascade. For 

this example, the airfoils in the cascade pitch about their tnidchords 

with an interblade phase angle a of 180°  and a reduced frequency 

k wc/Uot, of 1.2. The amplitude of torsional vibration a is 

1.2° , an amplitude typical of that observed in actual flutter. As with 

the steady flow calculations, the unsteady flow computations were 

performed using a single blade passage regardless of interblade phase 

angle. 
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380,000. 

Shown in Fig. 6 is the computed unsteady real (in-phase) and 
imaginary (out-of-phase) parts of the unsteady surface pressure pre-
dicted using the present time-linearized Navier-Stokes analysis. 
Also shown for comparison is the experimental data, together with 
the results of the NPHASE computational model. (The unsteady 
pressures have been nondimensionalized by pc°  Voila.) Unsteady 
pressure levels predicted by the present time-linearized method are 
in reasonably good agreement with the experimental data of Buffum 
et al. (1996), as are the NPHASE results. The largest differences be-
tween the two computational solution solutions are near the leading 
edge of the suction surface. 

Next, for this steady operating condition and reduced frequency 
of torsional vibration, the unsteady aerodynamic moment and work 
per cycle were computed for a range of interblade phase angles a 
and reduced frequencies k. Results for three different reduced fre-
quencies are shown in Fig. 7 for interblade phase angles a ranging 
from -180°  to +180° . Shown is the aerodynamic work done on the 
blade per vibration cycle E as a function of interblade phase angle a . 
As defined in the present effort, if the work per cycle is positive, then 
the unsteady aerodynamic loads (in the absence of any mechanical 
damping) result in the aeroelastic instability of flutter. From this fig-
ure, we conclude that over a range of interblade phase angles a from 
0°  to 165°  the system is aeroelastically unstable. Note, however, 
that increasing the reduced frequency k has a stabilizing influence 
on the system in two ways. First, as the frequency is increased, the 
range of unstable interblade phase angle decreases. Second, the max-
imum work per cycle for each reduced frequency is reduced. This 
is consistent with industrial design experience with unstalled flutter, 
i.e., that increasing the reduced frequency generally has a stabilizing 
influence on unstalled torsional flutter. 

Shown in Fig. 8 is the magnitude of the (complex) unsteady aero-
dynamic moment in influence coefficient form. The influence coef- 

Figure 8: Magnitude of pitching moment influence coefficients 

for three reduced frequencies. M = 0.2, pi = 62 ° , Re = 380,000. 

ficients are obtained by performing a discrete Fourier transform on 
the unsteady moment as a function of interblade phase angle. The 
result is a measure of the influence of the individual blades on a 
reference blade. Thus, the blade index corresponding to n = 0 de-
scribes the moment produced on the reference blade due to vibration 
of the reference blade itself. The rt = I coefficient indicates the mo-
ment produced on the reference blade due to a unit vibration of the 
neighboring blade on the suction side of the reference airfoil, and so 
on. For this example we note that the n > 2 coefficients are rela-
tively small. Physically, this means that only the reference blade and 
its two nearest neighbors significantly influence the reference blade. 
Experimentally, this implies that good unsteady passage-to-passage 
periodicity can be obtained using the nine-bladed NASA Lewis os-
cillating cascade facility. 

4.3. Low-Speed, High-Incidence Flutter 

Next, we consider the case where the inlet Mach number M. is 
0.2 and the Reynolds number Re is 380,000 as before, but the ex-
perimentally reported inflow angle th is now 70 ° . Figure 9 shows 
the computed steady surface pressure distribution computed using 
the present method along with the experimental data for this case. 
As before, all three instrumented blades are in good agreement with 
one another indicating that steady passage-to-passage periodicity has 
been maintained in the experiment. The solid line corresponds to the 
steady solution obtained using the present method for an inflow angle 
of 69° . Again, the inflow angle has been adjusted slightly to obtain a 
mean flow solution more closely in agreement with the experimental 
data. The one area where the present method does not match the 
data very well is in the leading edge region of the suction surface. A 
nearly constant pressure region is experimentally observed over the 
first 20 percent of the chord. The present method, however, shows 
a monotonically increasing pressure rise. This minor disagreement 
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Figure 9: Steady pressure distribution on airfoil surfaces of But-
turn cascade. M = 0.2, /31 = 70° , Re = 380,000. 

between the data and the present method arises because we assume 

that the flow is fully turbulent, whereas the actual flow is likely lami-

nar, transitioning to turbulent in this region. This hypothesis has been 

verified in numerical studies with a potential/boundary layer inter-

action code (Epureanu et al., 1999). Finally, the dashed line shown 

in Fig. 9 shows the steady surface pressures distribution computed 

using NPHASE. The best data match by NPHASE occurred when 
the inflow angle was 670 . 

Figure 10 shows the predicted steady Mach contours for this high 

incidence case. Note the large separated region that extends from the 

suction surface leading edge to approximately the airfoil's midchord. 
Also note that the airfoil wakes are much thicker than those predicted 

for the low incidence configuration (see Fig. 5). To visualize experi-
mentally this high incidence flow, Buffum coated an airfoil's surface 
with an oil-pigment mixture. At 10 0  incidence, separation from the 

suction surface was observed. The largest separated region was found 

to exist at the midspan where the flow was observed to separate from 

the leading edge and re-attach at 40 percent chord. The separated 

region predicted by the present method is slightly larger, extending 

over approximately 50 percent of the chord. 

Figure 11 shows a comparison between the predicted unsteady 
surface pressures using both numerical algorithms and experimental 

data. As before, the unsteady pressures have been nondimensional-

ized with pc,,,V0,2  a. The computed imaginary part of the unsteady 

surface pressure predicted by the present linearized Navier—Stokes 

method method is in excellent agreement with the experimental data. 

The computed real part does not agree as well, but is qualitatively 
in agreement with the experiment. Surface pressure predictions pro-
vided by NPHASE, on the other hand, agree with the experimental 

data on the pressure surface, but large differences in the unsteady 
surface pressure are observed between NPHASE. It may be that 

Figure 10: Steady Mach contours in blade passages of Buffum 
cascade. M = 0.2, /31 = 69° , Re = 380,000. 

the Baldwin-Lomax turbulence model used by NPHASE is not well 

suited for massively separated flows. 

Figure 12 shows the steady and unsteady pressure distributions 

computed using the present method using three different computa-

tional grids, a coarse grid (65x 17 nodes in the 0-grid region), a 

medium resolution grid (129x33 nodes), and a fine grid (257 x 65 

nodes). Although some differences in the solutions are observed, 
especially on the suction surface, the medium and fine grid solutions 

are in very good agreement indicating the solution is nearly grid 
converged. 

Finally, as before, unsteady flow calculations were performed 
over a range of frequencies and interblade phase angles. Figure 13 

shows the aerodynamic work per cycle E as a function of interblade 

phase angle a. From this figure, we conclude that over a range of 
interblade phase angles ranging from 00  to 165° the system is aeroe-
lastically unstable. Note the strong effect of increased frequency on 

the system's stability. As before, increasing the reduced frequency 

has a stabilizing influence on the aeroelastic system in that the range 

of unstable interblade phase angles diminishes as the frequency of 
vibration increases. However, the peak work per cycle actually in-

creases as the frequency of vibration increases from k = 0.4 to k = 
0.8. This result may explain in part why increasing blade stiffness 

has not always been an effective strategy for eliminating observed 
stall flutter. 

Finally, Fig. 14 shows an estimate of the cascade influence co- 
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Figure 11: Unsteady pressure distribution on pitching airfoil sur-
faces of Buff urn cascade. M = 0.2, = 69 ° , Re = 380,000, k = 1.2, 
a = 180° ). 

efficients. Interestingly, there is much more participation by distant 
neighboring blades in this high incidence configuration than in the 
low-incidence case. The influence coefficient corresponding to blade 
indices ±4 are still large when compared to the blade's self influence 
coefficient. This may indicate that the mechanisms of stall flutter 
are fundamentally different than those of unstalled flutter. Further-
more, the NASA Lewis oscillating cascade facility, which has just 
nine fan blades, may not have enough airfoils to ensure unsteady 
passage-to-passage periodicity. 

4.4. Computational Efficiency 

One advantage of a time-linearized analysis, often cited by pro-
ponents of this modelling strategy, is its computational efficiency 
compared to conventional time-accurate, time-marching algorithms. 
Because the governing equations are solved in the frequency do-
main, conventional steady-state acceleration techniques may be used 

Figure 12: Steady and unsteady pressure distribution on airfoil 
surfaces of Buff um cascade for various grid resolutions. M =0.2, 

= 69° , Re = 380,000, k = 1.2, a = 180° ). 

to speed convergence. In addition, the use of complex periodicity 
conditions allows one to compute the unsteady flow using a compu-
tational grid spanning a single blade passage, regardless of the in-
terblade phase angle, greatly reducing the number of computational 
grid points required. 

For example, for the low-speed high-incidence example reported 
in Section 4.3, the computations were performed on a single proces-
sor Silicon Graphics workstation equipped with an RI 0000 processor 
operating at 195 MHz. The steady code required 4341 iterations to 
converge six orders of magnitude, and 42 minutes of CPU time. the 
unsteady analysis for k = 1.2 and a = 180°  required 8378 iterations to 
converge, and 161 minutes of CPU time. These times are, of course, 
only representative, and will vary with Mach number, reduced fre-
quency, interblade phase angle, Reynolds number, etc. Nevertheless, 
a single unsteady calculation requires on the order of just 3.8 times as 
much computational time as the corresponding steady flow calcula-
tion. Thus, the present linearized analysis requires one to two orders 
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Figure 14: Magnitude of pitching moment influence coefficients 
for three reduced frequencies. M = 0.2, f3 = 69 ° , Re = 380,000. 

of magnitude less computational time to converge than conventional 

time-accurate, time-marching algorithms. (We would also note that 

the unsteady calculations are performed using complex arithmetic, 
which simplifies code development, but also degrades computational 

performance. It is possible to write the unsteady code using only real 

arithmetic, improving somewhat the computational efficiency.) 

5. CONCLUDING REMARKS 

In this paper, we have presented a novel time-linearized Navier-

Stokes computational analysis of stall flutter in cascades. Based on 

the results obtained to date, we make the following observations. 

I. The time-linearized Navier-Stokes analysis is able to model 
the complex steady and unsteady flow associated with stall flutter, 

including large separated flow regions. Results of this analysis com-

pare quite well with experimental data of high-incidence stall flutter. 

2. The method is computationally efficient making it useful for 

routine use in aeroelastic design; the computational time required 

to compute the unsteady flow due to a single mode shape of blade 

motion at a single frequency and interblade phase angle is of the 
same order as the time required to compute the background steady 

flow. Furthermore, results obtained with the present time-linearized 

Navier-Stokes analysis agree with experimental data as well as pre-
dictions obtained using a conventional (and computationally expen-

sive) nonlinear time-domain analysis. 

3. Numerical results from the low-speed, incidence-incidence 

example are consistent with industrial design experience, i.e., that 

increasing the reduced frequency generally increases aerodynamic 

damping. The high-incidence results, on the other hand, seem con-

tradictory to standard design practices, as the range of unstable in-

terblade phase angles is reduced by increasing the reduced frequency, 
but the aerodynamic damping of the least stable interblade phase an-

gle becomes more unstable with increasing reduced frequency. Ad-

ditional numerical and experimental studies need to be performed to 

understand this phenomenon. 

4.. While the present method is two-dimensional, stall flutter in 

actual turbomachines is likely to be highly three-dimensional with 

the extent of the separated region varying significantly from hub to 

tip. Nevertheless, the results presented in this paper demonstrate 

the feasibility of using a time-linearized Navier-Stokes model to 

predict stall flutter, and the method should be readily extendable to 

three dimensions, albeit with an attendant increase in computational 

requirements. 

Before gas turbine engine designers can consistently avoid stall 
flutter, the underlying mechanisms must be understood. Computa-

tionally efficient and experimentally validated models, such as the 

present time-linearized Navier-Stokes code, are an invaluable tool 

for studying the aerodynamics of stall flutter. 
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