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Monte Carlo simulations of linear Kihara fluids with embedded point 
quadrupoles are reported for several elongations and values of the quadrupole. 
The quadrupolar contribution to the Helmholtz free energy is obtained and the 
effect of quadrupole on the structure is studied. The data obtained should be 
useful to check perturbation theories of convex quadrupolar Kihara fluids. An 
attempt to model carbon dioxide with the quadrupolar Kihara model has also 
been carried out. It is shown that accounting for the quadrupole moment in the 
model improves the agreement with measured properties. Overall this agreement 
is found to be good. These results encourage further theoretical work with this 
potential model. 

1. Introduction 
During the last decade the statistical mechanics of linear nonpolar fluids has been 

successfully developed for several potential models. For the site-site model there are 
several perturbation schemes that involve extensions of the Weeks-Chandler-Andersen 
(WCA) [1] method to fluids of linear [2-7] and nonlinear molecules [8], and also 
integral equations [9]. Perturbation theories have also been developed [10-13] for the 
Gaussian potential model [14]. Finally, for the Kihara potential model [15] there are 
also successful perturbation theories [ 16-18], thus for site-site, Gaussian overlap and 
Kihara model fluids there are now quite good theories. 

For polar fluids the situation is less satisfactory. Although the Pople-Stell- 
Gubbins-Gray theory [19] has given very good results for spherical or quasi-spherical 
polar molecules, the results are not so satisfactory for molecules possessing both 
nonspherical shape forces and long range multipole interactions. Attempts based on 
WCA first-order theories give rather poor results [20]. Most previous studies of fluids 
of linear polar or multipolar fluids have thus been carried out by simulation methods. 
These include simulations of the two-centre Lennard-Jones plus point quadrupole 
model (2CLJQ) [20-23], quadrupolar hard dumbbells (HDQ) [24, 25] and their 
mixtures [26], and the hard Gaussian overlap with point quadrupole (HGOQ) [27]. 
There is no reported simulation study of muitipolar Kihara molecules. 

In this work we study a fluid consisting of molecules that interact with a Kihara 
potential having an embedded point quadrupole (KQ). Such a fluid provides a simple 
model for such important real fluids as N2, C12 and CO2. The utility of such a model 
is twofold. First, it allows a semiquantitative description of the thermodynamics 
of real fluids in the liquid phase, and second, because of its simplicity, it constitutes 
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(a) Geometry of the linear core used in this work, The shortest distance between the 
cores is p. We also show the unit vector/~ in the direction of p. 

a tractable model for theoretical calculations. In fact, Boublik [28] has recently 
developed a promising perturbation scheme for Kihara quadrupolar fluids based on 
the Pople-Stel l-Gubbins-Gray theory [19] with a nonspherical reference system. The 
theory was applied to a linear KQ model but due to the lack of  simulation data it 
could not be tested against simulation results of  the same model. In this work we first 
present simulation results for the KQ model for several state conditions and quad- 
rupole strengths which can be useful to test theories for this kind of  molecules. We 
then apply the model to CO2, and compare simulation results with experimental data. 

The scheme of  the paper is as follows. In section 2 we describe the potential models 
that are used as well as the simulation methodology. In section 3 we report the 
thermodynamic and structural results of  the simulations. Section 4 contains an 
attempt to describe CO2 with the Kihara quadrupolar model, and finally section 5 
gives the main conclusions of  this work. 

2. Simulation method 

We have carried out Monte Carlo (MC) simulations of  quadrupolar linear mol- 
ecules interacting through two different types of  potential. The first one, which we 
shall call Kihara with quadrupole (KQ), is given by: 

u~Q(r, tol ,  0 2 )  = uK(r, ~Om, to2) + uo(r ,  ~o,, co2), (1) 

where r is the distance between the centres of  mass of  the molecules, ~oj = (G, Or) 
defines the polar angles of  molecule 1 and analogously for (o2. The potentials uK and 
UQ are given by 

uK = 4e[(a/p)  '/2 - (tT/p)61, (2) 

3Q2 [1 
UQ ~ - 5(~ + ~ )  - 15~c~ + 2(s, s2c - 4c, c2)2], (3) 

where e is the well depth of  the dispersion forces, a the value of  p where uK is zero, 
Q the quadrupole moment, ci = cos 0i, si = sin 0i and r = cos(4h - 4~2)- In (3), the 
polar axis connects the centres of  mass of  the molecules. The shortest distance 
between the cores of  the two molecules is denoted as p. In this work we shall use a 
linear rod as the molecular core (see figure 1). Algorithms to evaluate the shortest 
distance between two rods are available elsewhere [29]. The presence of  the quad- 
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Figure 2. The intermolecular pair potential for several relative orientations. Solid line, 
aligned configuration (01 = 0, 02 = 0, ~b,2 = undefined), dashed line parallel configur- 
ation (01 = n/2, 02 = r~/2, ~bl2 = 0), dot--dashed line T configuration (01 = n/2, 02 = O, 
~b,2 = undefined), dotted cross configuration (01 = n/2, 02 = n/2, ~P~2 = n/2). The 
elongation of the molecule is L* = L[a = 0-8118. (a) Q.2 = 0 (In this case the parallel 
and cross configuration are indistinguishable) (b) Q.2 = 2. 

rupole strongly modifies the well depth o f  the pair potential for every relative orien- 
tation. This is shown in figure 2. The T configurat ion is favoured by the presence o f  
the quadrupole.  I f  the W C A  decomposi t ion is applied to the potential o f  (2) [17] and 
we add a quadrupola r  term we obtain the W C A  with quadrupole  fluid (WCAQ)  
which is given by 

UWCAQ = UWCA + UO, (4) 

where UWCA is given by 

UWCA = 4 , ~ [ ( o ' / p )  12 -- (alp) 6] + e, p < 21/6(r, (5) 

MWC A = 0 ,  /9 > 2ura. (6) 

The potentials, UKQ and UWCAO constitute the two models studied in this work.  To 
study their the rmodynamic  properties we have carried out  M C  simulations according 
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to the standard procedure of Metropolis et al. [30]. In all the simulations we have used 
256 particles in a cubic box with periodic boundary conditions. We started all the 
runs from an ~t fcc lattice. A run consist of an initial period of 3000-5000 trial moves 
per particle to reach equilibrium followed by a period of 6000-10000 trial moves per 
particle to obtained the averages. Every trial move consists of an attempt to change 
the position of the centre of mass and the orientation of the molecule. The acceptance 
ratio was kept in the range 35-55%. An order parameter [31] was evaluated during 
the runs to be sure that the system was orientationally equilibrated. 

The pressure p or residual internal energy U is obtained by adding a long range 
contribution to the value of the property evaluated during the run. We neglect the 
contribution of the quadrupole to the long range correction and only consider the 
long range correction due to the dispersion forces. A similar treatment was used in 
[20]. For the WCAQ fluid we did not add any long range contribution, since the 
dispersion forces are zero at long distances. For the KQ fluid this long range contri- 
bution was evaluated assuming a uniform fluid when p > Pc where Pc is the cutoff 
distance. Formulae for the evaluation of this long-range contribution to p and U are 
given in [32] and [33]. Typically Pc was chosen as B/2-L where B is the length of the 
side of the box and L the length of the rod. The transition probabilities along the 
Markov chain were, however, determined by truncating the pair interaction at 
p = 2.5 tr. This procedure has already been used by Kantor and Boublik [34]. 

The structure of the system is described in terms of the intermoleculr frame 
expansion coefficients of  the pair correlation function g(r, to~, to2) in spherical 
harmonics [19]: 

g(r, o91, co2) = 4n ~ gl, t2m(r)Yi, m(~ol)Yi2_m(t02), (7) 
I112 "7 

where the polar axis is the one which connects the centres of mass of  the molecules. 
The quadrupolar contribution to the internal energy U ~ can be easily formulated in 
terms of  three of  the coefficients of the pair correlation function as [21]: 

UQ = 12nnQ2 f 5 (g220(r) + ~ag~,(r) + ~g222(r))/r3dr, (8) 

where n is the number density. The quadrupolar contribution to the pressure, Z ~ is 
given by 

Z 0 = P ~  - 5U~ (9) 
N k T  3NkT" 

Another useful function for convex bodies is the average surface-surface corre- 
lation function gay(P) [35]. This function represents an average ofg(r, o91, to2) over all 
the distances and orientations which have a given surface to surface distance p. It can 
be easily evaluated from the recorded number of pair (Na,(p)) in a given interval 
(p - Ap[2, p + Ap/2) of surface to surface distance as 

g~v (P) = 2(N,,(p))  (10) 
n ( N -  l)[V~+,+~,/2+c- V~+o_~/2+c]' 

where V~+p+ c is the average volume over all the relative orientations of a combined 
body formed by the centre of molecule 2 when it moves around molecule 1 with a 
constant surface to surface distance. Formulae for the evaluation of V~§ can be 
found in [35]. 
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The contribution to p and U of  any continuous potential depending on the 
shortest distance p between two convex bodies can be written in terms of  gay (p) as [32], 

= n]2 fuc(p)gav(p)S~+p+~dp, C = K, WCA, UC /N (11) 

n f / d u c \  Z c = l - 6k---T (rp)pg'v(P)Sc+P+c ~ - ~ p ) d p ,  C = K, WCA, (12) 

where p is a unit vector in the direction of  the shortest distance between the cores (see 
figure l) and Sc+p+c is the average surface area of  the body formed by molecule 2 
moving around molecule 1 with a given surface-surface distance p. 

We checked the program in three different ways. The first was to simulate a pure 
Kihara fluid without quadrupole and to compare with Boublik's results [16]. We did 
a run for T* = [T/(e/k)] = 0-85, n* = n a 3 = 0.3407 and L* = L/a = 1. We 
obtained Z = 3-72 and U/NkT  = -5-83 ,  which compares well with Boublik's 
reported results, Z = 3-70 and U / N k T  = - 5-81. As a second check we obtained the 
quadrupolar  contribution to the internal energy from (8) and compared with the one 
obtained in the run. We got U ~  = - 1-071 and U ~  = - 1.068, respect- 
ively, with T* = 1.50, n* = 0.36, Q,2 = 3 and L* = 0-8118, where Q* = Q/(tas) m. 
As a third check we did a run for T* = 1.0935, n* = 0-8508 and L* = 0. For  
L *  = 0 the uKo reduces to a Lennard-Jones fluid with point quadrupole. Our results 
were U ~  = - 2 . 9 4 ,  U / N k T  = - 7 . 8 3  which compares well with the results 
U ~  = - 2-95 and U/NkT  = - 7-83 of  [20]. 

A significant thermodynamic property is the change in Helmholtz free energy of  
the fluid due to the presence of  the quadrupole, A ~ at constant temperature and 
density. Using the quadrupole as the coupling parameter  within Kirwood's  formalism 
[36] this change is given by 

Q2 
A ~ = A(Q = Q ) -  A(Q = 0) = ( U ~  2. (13) 

To get .40 we did several runs for a given L*, n*, T* and different values of  Q. 
From the runs U ~ was obtained and following the procedure of  Patey et aL [37] we 
fitted UQ/NkT to the expression: 

U Q aQ*4(bQ .2 + 2) 

N k T  (1 + bQ*:) 2 

Substituting (14) in (13) one gets 

A Q aQ* 4 

N k T  (1 + bQ*:)" 

(14) 

05) 

3.  S i m u l a t i o n  resu l t s  

3.1. Thermodynamic properties 

As our intention is to provide data to test theories we choose two different 
elongations to study. The first is L* = 0.30 and corresponds with the anisotropy of  
a N: model. The second is L* = 0.8118 and corresponds to a CO2-1ike elongation. 

To apply (13) it is necessary that no phase transitions occurs along the integration 
path. Unfortunately the phase diagram of  linear quadrupolar  fluids is still unknown. 
As vapour  pressures are typically low along the vapour-l iquid coexistence curve we 
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Table 1. MC results for KQ and WCAQ fluids. Q,2 = Q2/(eo.5). 

Model L* 7"* n* Q,2 U/NkT U~ Z 

KQ 0-3 1"80 0"55 0 - 2"381 0 3-706 
KQ 0-3 1"80 0"55 0"5 - 2'474 - 0-094 3"554 
KQ 0"3 1-80 0"55 I - 2-706 - 0"358 3"335 
KQ 0"3 1"80 0"55 2 - 3"538 - 1-303 2-546 
KQ 0-3 1"80 0"55 3 - 4-768 - 2"696 1"356 

WCAQ 0"3 1"80 0"55 0 0'712 0 7"190 
WCAQ 0"3 1-80 0"55 0-5 0'625 - 0-098 7" 106 
WCAQ 0-3 1"80 0-55 I 0-382 - 0"365 6"830 
WCAQ 0"3 1"80 0-55 2 - 0"495 - !'335 5"872 
WCAQ 0-3 1-80 0"55 3 - 1 "712  -2-712 4"685 

KQ 0"8118 1"50 0-36 0 -2"773 0 4"173 
KQ 0"8118 1"50 0"36 0"5 -2 ' 809  -0"043 4"179 
KQ 0"8118 1"50 0"36 1 -2"903 -0"151 4"075 
KQ 0"8118 1"50 0"36 2 -3"230 -0"517 3'726 
KQ 0"8118 1"50 0"36 3 -3-718 - 1.071 3"269 

KQ 0-8118 1-10 0"36 0 -4"068 0 3"253 
KQ 0"8118 1"10 0-36 0"5 -4 .127 -0 ' 070  3-222 
KQ 0"8118 l'10 0"36 i -4.275 -0 .247 3-157 
KQ 0"8118 1-10 0"36 2 -4"840 -0"862 2"447 
KQ 0"8118 1-10 0"36 3 - 5"578 - 1"697 1'699 

WCAQ 0.8118 1.10 0.36 0 0.731 0 8.993 
WCAQ 0.8118 1. I 0 0.36 0.5 0.663 - 0-070 8.899 
WCAQ 0.8118 1.10 0.36 1 0-494 - 0.261 8.734 
WCAQ 0.8118 1-10 0.36 2 -0 .096 -0-897 8.021 
WCAQ 0.8118 1-10 0.36 3 -0-888 - 1.776 7.234 

have chosen state points with relatively high density and with high pressure in order  
to avoid the l iqu id-vapour  transition. 

We have chosen T* = 1-80 and n* = 0.55 for  L* = 0.30 as the first state point  
to study (SP1), T * - - 1 - 5 0 ,  n* = 0-36, L * - - 0 . 8 1 1 8  (SP2), and T* = 1.10, 
n* = 0-36 and L* = 0-8118 (SP3). For  every state point  we did simulations for 
Q,2 = 0, 0.5, l ,  2, 3 with the UKQ potential model. Fur thermore  we have studied the 
SPl and SP3 with the UWCAQ model.  

Table 1 contains the results. F rom the results several conclusions can be drawn. 
The first is that  the contr ibut ion to the internal energy from nonquadrupo la r  part  o f  
the potential (K or  W C A )  given by (U - U ~ is not  much affected by the presence 
o f  the quadrupole.  In general it turns out  that: 

(uC)Q=0 < (uC)e=e  C = K, WCA.  (16) 

Similar results were obtained by Bohn et al. [20] for the 2CLJQ fluid. The 
contr ibut ion to the internal energy coming f rom uK or  UWCA can be expressed in terms 
Ofgav(p) (see (11)). The fact that  this energy is not  much affected by the presence o f  
the quadrupole  might  suggest that  gay(P) may be only slightly modified by the 
presence o f  the quadrupole.  We shall come to this point  later. The contr ibut ion to the 
pressure f rom uK or UWCA is, however, strongly affected by the presence o f  the 
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Table 2. Coefficients a and b in (14) and (15) obtained from the MC data of table 1. 

Model L* T* n* a b 

KQ 0.30 1-80 0"55 - 0"1958 0-0584 
WCAQ 0-30 1-80 0"55 - 0.2033 0.0751 
KQ 0"8118 1-50 0-36 - 0-0871 0.0988 
KQ 0.8118 1.10 0"36 -0.1453 0.1147 
WCAQ 0.8118 1.10 0"36 -0.1538 0-1183 

quadrupole. In general it turns out that: 

(ZC)o=0 < (zC)o=o. c -K ,  wc^ (17) 

The coefficients a and b of(14 and 15) are shown in table 2 for the different cases. 
In figure 3 we show A Q and U Q for the state points SPI, SP3 and the potential models 
KQ, WCAQ. It is interesting to point out that A ~ the change in the Helmholtz free 
energy due to the presence of  the quadrupole is very similar for the KQ and WCAQ 
models. Obviously the theoretical treatment of  the WCAQ results is simpler than for 
KQ, due to the short range of  the WCA potential. This suggests the following 
perturbation scheme: 

A KQ = ,4 K + A ~ ,  (18) 

where A KQ is the Helmholtz free energy of  the KQ fluid, A K that of  the nonpolar 
Kihara system K, and A~ is the change in free energy due to Q. Figure 3 shows that 

A~ - A~ (19) 

is a good approximation where AOwcx is the change in free energy that the WCA system 
undergoes due to the presence of  the quadrupole. A K can be obtained from pertur- 
bation theory [16-18, 38]. The only problem that remains is then the evaluation of  
AQWCA . 

3.2. Structural results 
In the previous subsection we pointed out that U c (C = K, WCA) is not strongly 

modified by the presence of the quadrupole. That  would suggest that gay(P) remains 
almost unchanged. In figure 4 we show gay(P) for the SP2 and for two values of  Q*, 
confirming this suggestion. There are, however, important changes in the preferred 
relative orientations with the presence of  the quadrupole. In figure 5 we show the 
radial distribution function g(r) (gooo(r)) and the g220(r) coefficient for several values 
of  the quadrupole in SP2. Both g(r) and g22o(r) are greatly changed by the presence 
of  the quadrupole. The effect of  the quadrupole on g(r) is to increase the height of  the 
first peak and to delay the distance at which g(r) starts to be different from zero. The 
same changes were found for 2CLJQ [20] and for H D Q  [24]. It is also interesting to 
note that the presence of  the quadrupole in linear fluids strongly modifies the coef- 
ficients gooo(r) and g22o(r) as well as the rest of  the coefficients of  the expansion, while 
the presence of  dipoles modifies only slightly gooo(r) and g22o(r), and its major effect 
is on the coefficients gtm12m(r) with l~,/2 odd as was found previously [39]. Therefore 
quadrupoles have a much greater effect than dipoles on the radial distribution 
function (gooo(r) ). 

In figure 3 we show that A Q is very similar for the KQ and the WCAQ fluid. That 
seems to indicate that for a given value of  the quadrupole the structure of  the KQ fluid 
is very similar to that one of  the WCAQ system. In figure 6 we show gay(P) for SP3 
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Figure 4. The surface-to-surface average correlation function gay(P) (10) for L* = 0.8118, 
T* = 1.50, n* = 0-36 and the KQ model. Solid line Q.Z = 0 and dashed line Q,2 = 3. 

with Q,2  = 3 for the KQ and WCAQ fluids. Although there are small differences, 
they are quite similar. This fact was already found for the Kihara nonpolar fluid [32] 
and seems to hold also for polar molecules. 

We conclude that the presence of  the quadrupole strongly modifies the coefficients 
gt,t2m(r) but not gav(P)- For  a given Q value the structure of  the KQ and WCAQ 
models are very similar at high densities. 

4. COz with the Kihara plus quadrulmle model 
In this section we try to explore how well the thermodynamics of CO2 can be 

described by the KQ model. We examine whether the inclusion of  the quadrupole 
improves the thermodynamic description of CO2, and to what extent. 

The independent variables are L*, Q*, e and a. To simplify the problem we took 
L* = 0.8118 as obtained from the Boublik [16] perturbation theory of  COz. This 
value agrees quite well with the value L* = 0.782 chosen by Kihara [40] in his study 
of CO2 and with the value L* = 0-793 chosen by Fischer et al. [41] in their study of  
CO2 with the 2CLJ fluid. 

We study four values of  Q*~, namely Q,2 = 0, 1.5, 2-5, 3.5. For  every value of  Q,Z, 
e and a were determined as follows. As in [42] e was determined by fitting the residual 
internal energy at zero pressure obtained from MC to the experimental one. The 
experimental residual internal energy at zero pressure was obtained from extra- 
polation to zero pressure of  an empirical equation of  state [43] (EOS) for CO2. Once 
e had been obtained, a was determined by minimizing the deviations between simu- 
lated and experimental pressures at four to six state points. 

In table 3 we show the MC results used to determine the potential parameters. In 
table 4 we show the potential parameters obtained along with the quadrupole of  the 
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Figure 6. The surface-to-surface average correlation function gay(P) (10) for L* ----- 0-8118, 
T* = 1"10, n* = 0"36, Q,2 = 3. Solid line KQ model and dashed line WCAQ model. 

model. All the models underestimate the experimental value of  Q in CO2 which is [44] 
Q = -4-010-26esu.  We shall return to this point later. The value of a for PSI-PS4 
remains almost unchanged so that the volume of  the molecule remains nearly con- 
stant. As the value of  Q,2 increases, the value ofe  decreases so that the internal energy 
remains constant. Similar behaviour was found in a recent attempt to find potential 
parameters of  a real dipolar molecule [39]. To decide between these models we did 
several runs for liquid state conditions and compared with the experimental results. 
The results for Q,2 = 0, 1.5, 2.5 are shown in table 5. We do not include the results 
for Q,2 = 3.5 because they did not improve the description. From table 5 we see that 
PS3 is the best model. As the temperature of  the triple point [45] of  CO2 is Tt = 217 K, 
and the critical temperature is Tr --- 304 K, the results presented correspond to two 
subcritical isotherms and a supercritical one. For  the two suberitical isotherms the 
smallest density corresponds to a point close to the orthobaric density. We have also 
included in table 5 the results of  a more sophisticated model of CO2 [46]. First, by 
comparing the results of PSI and PS3 we see that in fact, the inclusion of  the 
quadrupole improves the description of  CO2. Second, we see that the agreement 
between the simulated (PS3) and the experimental results is good, and not significantly 
worse than the results of  a more sophisticated model. In passing let us point out that 
recent simulation data for a 2CLJQ model of  CO2 have been obtained [47] showing 
also good agreement with experimental results. 

The value Q = - 3 . 5 3  10-26esu (PS3) is smaller than the experimental one. An 
explanation for this could be that we are using a point quadrupole instead of  a more 
realistic discrete charge quadrupole model. Lombardero et al. [25] have shown that 
for the HDQ fluid with L* = 0-60 the differences between ideal quadrupole and point 
charge quadrupole can be important at high densities and at large values of  the 
quadrupole. Furthermore, a point quadrupole always gives a more negative quadru- 
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MC results used to get the potential parameters o f  CO2 modelled with the KQ pair 
potential with L* = 0.8118. 

Q,2 n* T* U[ Nk T U~ / Nk T Z 

0 0-325 0.7333 - 5-885 0 0.022 
0 0-325 0.75 - 5-738 0 0.152 
0 0.35 0.65 - 7.296 0 - 0.050 
0 0.35 0.70 - 6.711 0 0.396 

1-5 0-30 0-85 - 5-118 - 0.597 - 0-059 
1.5 0.30 1 - 4.191 - 0.453 0.706 
1-5 0.325 0.80 - 5.994 - 0-732 - 0.054 
1-5 0.325 0.85 - 5.569 - 0.667 0.294 
1.5 0.35 0.70 - 7.606 - 1-009 - 0.402 
1.5 0.35 0-75 - 6.994 - 0.894 0.057 

2-5 0.325 0.90 - 5-983 - 1.468 - 0.016 
2.5 0.325 0.95 - 5.600 - 1.3608 0.342 
2.5 0.3425 0-855 - 6.761 - 1.712 - 0.053 
2.5 0-3425 0.875 - 6.553 - 1.654 0.122 
2-5 0.36 0.85 - 7-184 - 1-862 0.406 
2.5 0.36 0.90 - 6-655 - 1-67 0.851 
2.5 0.36 0.95 - 6.238 - 1.546 1-124 
2.5 0-36 1 - 5.834 - 1.431 1-557 

3-5 0.3425 0.9833 - 6.616 - 2-423 0.004 
3.5 0.3425 1.05 - 6-046 - 2.174 0.530 
3.5 0.36 0-9333 - 7.449 - 2-784 0.046 
3.5 0-36 1 - 6.811 - 2.508 0.566 

p o l a r  ene rgy  t h a n  the  p o i n t  c h a r g e  m o d e l ,  so tha t  one  needs  a sma l l e r  va lue  o f  the  

p o i n t  q u a d r u p o l e  to  fit the  resul ts  o f  the  in t e rna l  ene rgy  fo r  a p o i n t  c h a r g e  q u a d r u -  

pole .  T h e  s a m e  d e v i a t i o n s  were  f o u n d  fo r  the  H G O Q  wi th  p o i n t  q u a d r u p o l e  a n d  the  

H G O  wi th  d i scre te  c h a r g e  m o d e l ,  s u p p o r t i n g  this  a r g u m e n t  [48]. 

W e  can  c o n c l u d e  tha t  the  PS3 K Q  m o d e l  yields a r e a s o n a b l e  de sc r ip t i on  o f  the  

l iqu id  b e h a v i o u r  o f  CO2.  T o  check  w h e t h e r  we c o u l d  a lso  o b t a i n  a g o o d  desc r ip t i on  

o f  the  gas  phase  b e h a v i o u r ,  we  e v a l u a t e d  the  s econd  vir ia l  coeff ic ient  B2 fo r  the  m o d e l s  

P S I  PS2  a n d  PS3.  T h e  s econd  vir ia l  coeff ic ient  is g iven  by 

= - 2n f ( ( e x p  ( -  u / k T ) )  - l ) r  2 dr,  (20) B2 

whe re  the  b r acke t s  ( )  s t and  fo r  an  u n w e i g h t e d  a v e r a g e  o v e r  the  re la t ive  o r i en t a t i ons .  

W e  e v a l u a t e d  the  a v e r a g e  us ing  the  C o n r o y  [49] i n t e g r a t i o n  m e t h o d  wi th  n = 4822 

o r i en t a t i ons .  T h e  resul ts ,  a l o n g  wi th  e x p e r i m e n t a l  va lues  a r e  s h o w n  in t ab le  6. W e  see 

tha t  the  a g r e e m e n t  is n o t  g o o d ,  a n d  the  w o r s t  is fo r  the  PS3 m o d e l .  I t  is, t he re fo re ,  

Table 4. Potential parameters of  CO2 obtained from the results o f  table 3. L* = 0"8118. 

Parameter set Q,2 (e/k)/K a/A Q 10 -26 esu 

PSI 0 340 2.815 0 
PS2 1-5 304-5 2.82 - 2.85 
PS3 2.5 271 2-82 - 3-48 
PS4 3.5 239 2.8275 - 3.89 
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Table 6. 

C. Vega and K. E. Gubbins 

Second virial coetl~cient of CO2 from experiment [43], and as estimated from the KQ 
model with the potential parameters of table 4. 

B2( T )/cm 3 moi-i 

T[K Exp. PSI PS2 PS3 

210 * -247  -235  - 229 
250 - 184.5 - 174 - 162 - 154 
300 - 122.7 - 120 - 109 - 100 
400 - 60.5 - 63 - 54 - 4 7  
600 - 12-1 - 15 - 9 - 4  

clear that a good description of  both the liquid and gas phases cannot simultaneously 
be achieved with the K Q  model. The PS3 model must be regarded as an effective pair 
potential for the liquid phse. Similar conclusions were obtained for other potential 
models when the potential parameters were fitted to liquid state properties [50]. 

In conclusion we can say that the KQ model gives a reasonable description of CO2 
in the liquid state for internal energy and pressure, and can be regarded as a simple 
effective pair potential of  CO 2; however, a simultaneous description of  the liquid and 
gas phases can not be achieved with this model. 

5. Conclusions 

In this work we have carried out MC simulations of  the Kihara model with an 
embedded point quadrupole. From the simulations we have obtained the contribution 
of  the quadrupole to the Helmholtz free energy A o. Since this is the property typically 
obtained in theoretical treatments, the data should be useful to test theoretical 
approaches. The quadrupole modifies the structure of  the fluid, the changes being 
similar to those observed in the H D Q  and in 2CLJQ models. The function gay(P) is 
not, however, much affected by the quadrupole. We have observed that A ~ is very 
similar for the K Q  fluid and WCAQ fluids. Further theoretical work on purely 
repulsive quadrupolar  fluids is therefore needed. 

Finally, we have shown that the KQ model provides a good effective pair potential 
for CO2 in the liquid phase, although it is not able to reproduce simultaneously the 
thermodynamic behaviour in gas and liquid phases. The description of  CO2 with the 
Kihara potential model is improved when a point quadrupole is included. 

One of  us (C.V.) would like to thank the Plan de Formacion del Personal 
Investigador of  Spain for a grant, and the hospitality at Cornell University during his 
visit. We thank the Department  of  Energy, Division of Basic Chemical Sciences, for 
a grant in support  of  this research. 
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