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Abstract

This paper corrects and remarks on statistical interpretations of the
semilogarithmic loss function introduced for solving positive inverse prob-
lems. In this paper, we modify the original statistical model such that the
minimization of the semilogarithmic loss function matches the maximum
likelihood method. To the best of the authors’ knowledge, the induced
error distributions from the semilogarithmic loss function are novel. An-
other correction to the original paper regarding variable transformation
is also included.

Keywords: Maximum likelihood method, Probability distribution, Multiplica-
tive error, Loss function, Positive dependent variable, Regression.

1 Introduction

This paper provides statistical models for the semilogarithmic (semilog) loss
function, where the minimization of the semilog loss function is equivalent to
the maximization of the likelihood function. The semilog loss function was pro-
posed in [12] as a device for solving systems of linear approximate equations
y ≈ Xθ in a computationally efficient way, where both the unknowns θ and the
data y are positive, and the matrix X consists of non-negative elements. The
solution method based on the semilog loss function minimization was called the
method of least rectangles, paralleling the quadratic loss function minimization
in the method of least squares. However, an attempt to base the method’s sta-
tistical meaning on a maximum likelihood method has had only a limited success
because it required an unconventional interpretation of data. To overcome this
problem, we provide two statistical models which use the conventional inter-
pretation of data. One model modifies the original loss function while holding
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the original error distribution; the other modifies the original error distribution
while holding the original loss function. To the best of our knowledge, neither
the original nor modified error distributions have been found in the literature,
e.g. [2, 5, 6].

For a scalar variable y, not necessarily positive, consider a linear predictor
x′θ based on a set of explanatory variables x and a vector of unknown parameters
θ (dim x = dim θ), where the prime is for transposition. The parameter vector
θ is to be estimated based on observations of the scalar variable y and the
vector variable x. The data set of size N consist of Y := (y1, . . . , yN)′ and
X := (x1, . . . , xN )′ where Y is a N × 1 vector and X is a N × dimx matrix. A
standard method to solve such a problem is to set up a loss function or measure
of discrepancy h(y, x′θ) between y and its predictor x′θ and define the solution
by θ̂ := arg minθ

∑N
i=1 h(yi, x

′
iθ). The loss function for the method of least

squares is quadratic h(y, x′θ) = (y − x′θ)2 and for the method of least absolute
deviations h(y, x′θ) = |y − x′θ|.

Similarly for the problem restricted to the positive orthant y > 0, x ≥ 0 and
θ > 0, [12] proposed the semi-logarithmic (semilog) loss function

h(y, x′θ) :=
(

x′θ
y

− 1
)

log
x′θ
y

, (1)

which is midway between the quadratic (x′θ/y − 1)2 and the log-quadratic
{log(x′θ/y)}2 loss functions, and which has the same form as Jeffreys informa-
tion between two probability density functions f and g, Eg[(f/g − 1) log(f/g)],
see, e.g. [7]. Intuitively the semilog loss is based on the relationship

y ≈ x′θ ⇐⇒ x′θ
y

≈ 1 ⇐⇒ log
x′θ
y

≈ 0.

Note that the semilog loss function hsl(z) := (z − 1) log z is strictly convex in
z := x′θ/y, illustrated in Figure 1 as the “original semilog loss.” Along these
lines, the method of least rectangles was proposed as

θ̂ := arg min
θ

∑
i

(
x′

iθ

yi
− 1

)
log

x′
iθ

yi
. (2)

The following assumption is from [12].

Assumption 1 (The original model in [12]). For a positive dependent vari-
able yi > 0, a non-negative explanatory vector xi with at least one positive ele-
ment, and a positive unknown parameter vector θ, assume the following model,

zi(θ) :=
x′

iθ

yi
= ζi > 0, (3)

where {ζi} are independently and identically distributed (iid) disturbances from
the distribution with probability density function (pdf),

fζ(ζ) ∝ ζ1−ζ . (4)
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Under the preceding assumption, [12] presented the following theorem:

Theorem (Theorem 3 in [12]) . Under Assumption 1, the maximum likeli-
hood estimator (based on ζi = x′

iθ/yi) matches the least rectangles estimator
defined by (2).

In the proof of this theorem, it is crucial that the totality of ζi = x′
iθ/yi,

which is unobservable and parameterized, is accepted as a data point. If this
definition of data is acceptable, the probability density function of ζi can be
maximized with respect to θ under the parametrization of unobservable “data”
ζi = x′

iθ/yi, and then the theorem can be concluded. But this interpretation is
unconventional, and then may require theoretical justification before using it.
In this paper, the above definition of data is called the unconventional interpre-
taion of data, and the conventional interpretaion of data refers to the observable
“data” without being parameterized, that is, just a number of observations.
This paper rectifies the situation by rejecting the unconventional interpretaion
of data in favor of the conventional interpretaion, and one probable justification
of the unconventional interpretaion is considered in Appendix A.

In Section 2 of this paper, we overcome the above problem by exploring
two directions as follows. The first, described in Subsection 2.1, modifies the
loss function (1) while holding Assumption 1. The second, described in Subsec-
tion 2.2, holds the loss function (1) while modifying Assumption 1. Section 3
summarizes the results, and future directions of this research are pointed there.
Appendix A discusses the possibility of the maximum likelihood method under
the unconventional interpretation of data. In Appendix B, corrections are made
to Section 3 in [12] which concerns the convexity of the semilog loss function
after a variable transformation.

2 Statistical Interpretations of the Semilog Loss

We propose a multiplicative error model to replace Assumption 1.

Proposition 1. For a positive dependent variable yi > 0, a non-stochastic and
non-negative explanatory vector xi with at least one positive element, and a
positive unknown parameter vector θ, Assumption 1 is equivalent to the multi-
plicative error model

yi = x′
iθ εi (5)

where {εi} are iid errors with the probability density function

fε(ε) ∝ ε
1
ε −3. (6)

Proof. By transforming (3), we have yi = x′
iθεi with εiζi = 1. From probability

density function (4) of ζ, the probability density function for ε = 1/ζ is

fε(ε) ∝ fζ

(
1
ε

) ∣∣∣∣dζ

dε

∣∣∣∣ =
(

1
ε

)1− 1
ε

∣∣∣∣− 1
ε2

∣∣∣∣ = ε
1
ε −3

where |dζ/dε| is the Jacobian.
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In short, equation (6) represents the distribution of the multiplicative error ε in
(5) under Assumption 1, that is, the inverse transformation of ζ in (4).

2.1 Justification by Modifying the Loss Function

Here, we explore the possibility of adjusting the original semilog loss function so
that its minimization is equivalent to the likelihood maximization while holding
the original statistical model in Assumption 1.

Definition 1. The modified semi-logarithmic loss function is defined by

∑
i

(
x′

iθ

yi
− 2

)
log

x′
iθ

yi
. (7)

The modified least rectangles esimator is defined as a solution of the min-
imization problem of (7) with respect to θ. The original semilog loss and the
modified semilog loss functions 1 are depicted in Figure 1.
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Figure 1: Original (solid) and modified (dotted) semilog loss functions

Theorem 1. Consider model (3) in Assumption 1. The maximum likelihood
method based on data {(yi, xi)}i=1,... ,N is obtained by minimizing the modified
semilog loss function (7) (rather than the semilog loss function (1)).

1The modified semilog loss function is perhaps no longer a measure of discrepancy since
it takes negative values but remains to be a loss function which is defined as a real-valued
function bounded from below [1, 8], often expressed as a non-negative function without loss
of generality [9, 10]. See also [3].
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Proof. Recall that the multiplicative error model in Proposition 1 is equiva-
lent to the model described in Assumption 1. In statistical inference based
on data {(yi, xi)}, the likelihood function of θ is constructed as the probabil-
ity density function of iid observations Y = (y1, . . . , yN ) given non-stochastic
X = (x1, . . . , xN ),

fY (Y |θ) =
∏

i

fy(yi|θ) ∝
∏

i

fε

(
yi

x′
iθ

) ∣∣∣∣ 1
x′

iθ

∣∣∣∣ =
∏

i

1
yi

(
x′

iθ

yi

)2− x′
iθ

yi

.

The corresponding log-likelihood function is

∑
i

log fy(yi|θ) ∝
∑

i

(
2 − x′

iθ

yi

)
log

x′
iθ

yi
−

∑
i

log yi. (8)

Hence the maximization problem of the log-likelihood function with respect to
θ is equivalent to the minimization problem of the modified minimum semilog
loss function,

max
θ

{Log-likelihood (8)} ⇐⇒ min
θ

∑
i

(
x′

iθ

yi
− 2

)
log

x′
iθ

yi
,

as was to be shown.

2.2 Justification by Modifying the Error Distribution

Proposition 1 states that the model described in Assumption 1 can be equiva-
lently expressed by the multiplicative error model with the error distribution (6).
Here, we explore the possibility of adjusting the error distribution so that the
minimization of the original semilog loss function is equivalent to the maximiza-
tion of the likelihood equation.

Theorem 2. In the multiplicative error model (5), assume that the probability
density function of the iid error εi is

fε(ε) ∝ ε
1
ε −2. (9)

(rather than (6)). Then the least rectangles method which minimizes the original
semilog loss function (1) matches the maximum likelihood method.

Proof. Under model (5) with the error distribution described in (9), the proba-
bility density function of the dependent variable y is

fy(y|θ) = fε
( y

x′θ

) ∣∣∣∣ 1
x′θ

∣∣∣∣ ∝ 1
y

(
x′θ
y

)1−x′θ
y

.

Then the joint probability density function of the iid observations Y = {yi}
given the non-stochastic {xi}, which is the likelihood function of the parameter
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vector θ, is

L(θ|Y ) := fY (Y |θ) =
∏

i

fy(yi|θ) ∝
∏

i

1
yi

(
x′

iθ

yi

)1− x′
iθ

yi

,

and the log-likelihood function is

log L(θ|Y ) ∝
∑

i

(
1 − x′

iθ

yi

)
log

x′
iθ

yi
−

∑
i

log yi. (10)

Therefore, the maximization problem of the log-likelihood is equivalent to the
minimization problem of the [12]’s original semilog loss function (1),

max
θ

{Log-likelihood (10)} ⇐⇒ min
θ

∑
i

(
x′

iθ

yi
− 1

)
log

x′
iθ

yi
,

which was to be shown.

We are now in a position to state how the model in Assumption 1 should be
modified in accordance with the conventional concept of data.

Proposition 2. Under model (3) with the error distribution

fζ(ζ) ∝ ζ−ζ (11)

(rather than (4)), the maximum likelihood method for the unknown parameters
θ matches the least rectangles method.

Proof. To set up the likelihood equation for the unknown parameters θ, we need
the joint distribution of Y given X . For that purpose, we derive the multiplica-
tive error model which is equivalent to model (3) with error distribution ∝ ζ−ζ .
In the same way as Proposition 1, we can show that such an equivalent multi-
plicative form is y = x′θε with the error distribution ∝ ε1/ε−2 where ε = 1/ζ.
The proposition then holds by Theorem 2.

2.3 Derived Error Distributions

The derived distributions in [12] and this paper, i.e. equations (4), (6), (9),
and (11), have not been found in the literature, such as [2, 5, 6]. Hence, it
is desirable to confirm analytically that they are definitely probability density
functions. As equations (4) and (11) are the inverse transformations of (6) and
(9) respectively, it is sufficient to show that (6) and (9) are probability density
functions.

That equation (9) is a probability density function is shown as follows 2.
First note that function f(x) is a probability density function if it satisfies the
following three conditions (see [4], p.17); f(x) is a Baire function, f(x) ≥ 0, and∫

f(x)dx = 1. It is obvious that the second condition is satisfied for (9), and
the last one is shown by the following theorem, which can be found in say, [11],
pp.106–107.

2It is shown in the same way that equation (6) is a probability density function.
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Convergence Theorem in Improper Integral . For a continuous function
f(ε) > 0 defined on interval [c, +∞) with c ∈ R, if limε→+∞ εα f(ε) = l < +∞
for α > 1, then

∫ ∞
c

f(ε)dε converges absolutely.

In this theorem, set f(ε) = ε1/ε−2 and α = 2, then ε2 f(ε) = ε1/ε → 1 as ε → +∞.
Therefore, the normalization constant Cε :=

∫ ∞
0 ε1/ε−2dx exists, and Cε ≈ 1.995

by numerical integration. Hence (
∫ ∞
0

ε1/ε−2dx)/Cε = 1, which completes the
last condition.

Finally, for the first condition, note the following useful theorem (see [4],
p.395); a real-valued function f(x) is a Baire function if and only if {x : f(x) ≤ c}
is a Borel set for ∀c ∈ R. Owing to this theorem, it is sufficient to show {ε ∈ R :
ε1/ε−2/Cε ≤ c} is a Borel set for ∀c ∈ R. For ∀c < maxε ε1/ε−2/Cε < +∞, there
exists some constant A(c) < B(c) such that the set {ε ∈ R : ε1/ε−2/Cε ≤ c}
takes a form of [0, A(c)] ∪ [B(c),+∞), and the set {ε ∈ R : ε1/ε−2/Cε ≤ c} is
[0, +∞) for ∀c ≥ maxε ε1/ε−2/Cε, and they are Borel sets. Hence the function
ε1/ε−2/Cε is a Baire function.

This shows that equation (9) is a probability density function. The exact
form of error distribution (9) is, therefore,

fε(ε) =
ε

1
ε −2

Cε
.

Figure 2 illustrates the original (4) and the corrected (11) semilog distri-
butions, of ζ under model (3). Figure 3 illustrates the original (6) and the
corrected (9) inverse semilog distributions, of ε = 1/ζ under the multiplicative
error model (5).

3 Concluding Remarks

The original statistical interpretations of the least rectangles (the semilog loss)
method required the unconventional interpretation of data. To remedy the situ-
ation, we proposed two solutions to this problem. The first modifies the original
loss function while the error distribution remains the same as the original. The
second modifies the original error distribution while the loss function remains
the same as the original. In both cases the loss function minimization becomes
equivalent to the log-likelihood maximization. In these ways, the method us-
ing the semilog loss function matches the maximum likelihood method under
the conventional interpretation of data 3, which clears hurdles for statistical
intepretations of the least rectangles method in [12].

To the best of our knowledge, the distributions derived in [12] and this paper
from statistical interpretations of the semilog loss function, i.e. equations (4),
(6), (9), and (11), are novel. We have not yet found them in the literature,
such as [2, 5, 6]. Further studies on the semilog loss method, such as statistical

3One probable justification of the maximum likelihood method under the unconventional
interpretation of data in [12] is discussed in Appendix A.
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Figure 2: Original (dotted) and corrected (solid) semilog distributions (ζ)
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Figure 3: Original (dotted) and corrected (solid) inverse semilog distributions
(ε = 1/ζ)
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properties of the estimator and derived error distributions, are work in progress,
and will be presented in the near future. An extension of the semilog loss
function has been proposed in [13] to cover linear inverse problems X θ ≈ y
under the box constraints a < X θ < b. A natural direction for further research
would be to extend the statistical models in this paper to the box-constrained
inverse problems when X and y are observations, a and b are vectors of known
constants, and θ a vector of unknown parameters.
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A Discussion: Unconventional Interpretaion of
Data

In this Appendix, we consider the maximum likelihood method based on the
unconventional interpretaion of data in [12], and let us call it “unconventinal”
maximum likelihood method here. In the “conventional” maximum likelihood
method, unknown parameters are imposed on the probability density function
of data, i.e. the likelihood function, while in the statistical model in [12], the
maximum likelihood method is applied to the unconventional “data” which is
unobservable and parameterized, and therein the probability density function
of such data is free from the unknown parameters. Hence, in the conventional
maximum likelihood method, we estimate unknown parameters by adjusting the
probability density (likelihood) to its maximum value based on the given data,
while the unconventional method can be interpreted as to estimate unknown
parameters by adjusting data to the point which yields the maximum of the
given probability density. Therefore, the difference between the conventional
and unconventional maximum likelihood methods depends on whether one ad-
justs the distribution or the data to attain the maximum probability density.
The unconventional method may deserve a philosophical and theoretical explo-
ration.

To understand the difference between the conventional and unconventional
methods, let us consider the following model like (3).

g(xi, yi; θ) = ζi

g : a known function
xi : an observable independent variable vector, non-stochastic
yi : an observable dependent scalar variable
θ : an unknown parameter vector
ζi : an unobservable random variable with pdf fζ , scalar

To apply the conventional maximum likelihood method in this setting, we
first derive the joint probability density of {yi} as the likelihood function,
Πfy ∝ Πfζ(g(xi, yi; θ))|dζi/dyi|. Then we maximize this likelihood function
with respect to θ. On the other hand, to perform the unconventional method,
[12] maximizes Πfζ(ζi) with respect to {ζi}, and which is attained by the
maximization of Πfζ(g(xi, yi; θ)) with respect to θ under the parametrization
ζi = g(xi, yi; θ). Hence, if the Jacobian term |dζ/dy| = |dg(x, y; θ)/dy| does not
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depend on the unknown parameters θ, then the conventional and unconventional
maximum likelihood methods coincide, and this happens to the additive error
model such as g(x, y; θ) = y − x′θ, for example. But these methods generally
yield different solutions, e.g. in the multiplicative error model considered in [12]
and this paper. The conventional maximum likelihood method has desirable
statistical properties, such as the asymptotic efficiency of the estimator. The
statistical properties of the unconventional method may merit further consider-
ation.

B Corrections to Section 3 in [12]

In Section 3 in [12], the parameters θj > 0 are reparametrized by δj ∈ R as

θj ∝ eδj

for each j = 1, . . . , dim θ, which are convex functions of δj . Proposition 3 in [12]
states that the loss function h = {z(θ) − 1} log z(θ), where z(θ) = x′θ/y, is
convex in δ := (δ1, . . . , δdim θ)′, which is wrong since a composition of strictly
convex function is not always strictly convex, although the convexity of h in z
and θ is right as shown in Proposition 1 and Theorem 1 in [12] respectively.

The first derivatives of the loss function h with respect to δj are

hj :=
(

1 − 1
z(θ)

+ log z(θ)
)

θjxj

y
, j = 1, . . . , dim θ, (12)

and their second derivatives are

hjk :=
1 + z(θ)
z(θ)2

θjθkxjxk

y2
, for j �= k, (13)

hjj :=
1 + z(θ)
z(θ)2

(
θjxj

y

)2

+ hj , (14)

and hjj can be negative since hj is negative for 0 < z(θ) < 1, which implies that
the loss function h is not always covex in δ. Therefore, algorithms which assume
the convexity of the loss function may fail. The recommendation would then be
to fall back to the original formulation without the variable transformation, viz.
to solve directly equation (2) in this paper by using the steepest descent for a
while, and switch to Newton’s method when close to the optimal.

At the same time, Proposition 5 in [12], which has consisted of equations (12)
and (13), should be corrected by adding equation (14) to them. Finally, the first
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matrix in equation just above Definition 4,
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
...

. . . Zij . . .
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has to be changed to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/y1

. . .
1/ydim θ

...
. . . Zij . . .

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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