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Information-theoretic wavelet noise removal for inverse elastic wave scattering theory
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A discussion of noise removal in ultrasound~elastic wave! scattering for nondestructive evaluation is given.
The methods used in this paper include a useful suboptimal Wiener filter, information theory and orthonormal
wavelets. The multiresolution analysis~MRA!, due to Mallat, is the key wavelet feature used here. Whereas
Fourier transforms have a translational symmetry, wavelets have a dilation or affine symmetry which consists
of the semi-direct product of a translation with a change of scale of the variable. The MRA describes the scale
change features of orthonormal wavelet families. First, an empirical method of noise removal from scattered
elastic waves using wavelets is shown to markedly improve thel 1 and l 2 error norms. This suggests that the
wavelet scale can act as dial to ‘‘tune out’’ noise. Maximization of the Kullback-Liebler information is also
shown to provide a scale-dependent noise removal technique that supports~but does not prove! the intuition
that certain small energy coefficients that are retained contain large information content. The wavelet MRA
thereby locates ‘‘islands of information’’ in the phase space of the signal. It is conjectured that this method
holds more generally.@S1063-651X~99!14403-9#

PACS number~s!: 41.20.Jb, 11.80.2m, 62.30.1d, 89.70.1c
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I. INTRODUCTION

The problem of understanding and removing noise fr
measured data@1–7# is important and has been extensive
studied. Two areas that could benefit greatly from advan
in noise removal are nondestructive evaluation@8–11# and
medical diagnostics@12–15#. Wahba@1,2# has published fun-
damental works on noise removal using spline methods.
unfortunate that experimental and theoretical physicists h
overlooked these references. Coifman and Wickerhause@3#
and Wickerhauser@4# have applied wavelet methods togeth
with Shannon information to the problem of noise remov
Donoho @5# developed a soft thresholding approach a
based on wavelets and the smoothness of the signal.
soft-thresholding ofn data was implemented by subtractin
an amountsA2 ln(n)/n from each wavelet coefficientcjk .
The quantitys, is the variance of the noise and this meth
treated each scalej identically. The authors@6# treated the
wavelet scales empirically and found that two to three sca
should retain all coefficients whereas all coefficientsucjku
,« max(ucjku), where «~0,1! is a threshold, should be se
equal to zero. These scales which minimized the error no
were called ‘‘exceptional scales’’j e while all other scales
were referred to as ‘‘ordinary scales’’j 0 . Later, Van Nevel
@7# showed that the Kullback-Liebler information choos
approximately the same scales as the empirical method.
aspect of noise removal will be presented in this paper.

This work combines a diverse group of topics, such
suboptimal Wiener filtering, multiresolution analysis, info
mation theory, and orthonormal wavelets. This synthesis
resulted in a physical basis for our noise removal algorith
which often is lacking in many other ‘‘one size fits all
PRE 591063-651X/99/59~3!/3682~12!/$15.00
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statistical approaches. We conjecture that the method
sented here will hold more generally.

The organization of this paper is as follows: In Sec. II t
formulation of the elastic wave~ultrasound! nondestructive
evaluation applied inverse problem will be presented. In S
II A the data and the Wiener filter regularizer are given, w
two figures. The Kullback-Liebler cross entropy and oth
information theoretic considerations are developed in S
II B. Section II C contains a short discussion of the mul
resolution analysis used by Mallat@16,17#, for orthogonal
wavelets. An empirical scale-dependent wavelet noise
moval method is explained in Sec. II D. In Sec. III, the r
sults of a few calculations are presented. Several result
empirical scale-dependent calculations are given in Sec. I
with four figures and a table, while Sec. III B presents t
information-theoretic results, with two figures. Section
summarizes our conclusions.

II. FORMULATION

The specific inverse problem to be discussed here is s
tering amplitude estimation of a flaw in stainless steel,
plied to the nondestructive evaluation~NDE! of engineering
materials. Given the scattering amplitude estimate, inve
scattering approaches can be used to estimate the size o
flaw, providing a quantitative basis for determining wheth
and ultimately when, to replace a flawed part before failu
~but not before replacement is necessary!. The inverse prob-
lem of scattering amplitude estimation is addressed next

A. Data and Wiener filter regularizer

The signals measured in ultrasonic testing include the
fects of the measurement system, and are corrupted by n
3682 ©1999 The American Physical Society
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FIG. 1. The calculated time domain signal o
a 200-mm sphere shown together with measur
elastic wave noise with SNR 4:1 in polycrysta
line stainless steel. The solid line is the calculat
time domain scattering signal and dotted line h
the measured noise added to the signal.
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The measurement system response is both band limited
frequency dependent, resulting in measured signals w
are blurred and distorted estimates of the actual flaw sig
tures. The Wiener filter is used to estimate the scatte
amplitude of the flaw by attempting to remove the effects
the measurement system in the presence of noise. The
mal form of the Wiener filter requires estimates of the p
rameters which describe both the noise and scattering am
tude distributions.

The data in this study are taken with a transducer wh
square pulses have a central frequency of 12 MHz and d
to 240 dB at 1 and 23 MHz. A measured signal can
modeled as the convolution of the measurement system f
tion with the flaw impulse response function, plus any no
present. In the time domain, this signal is given by

f i5 f ~ t i !5E
2`

t i
h~ t i2t8!a~ t8!dt81ni , ~1!

where ni5n(t i) is the additive noise andh is the known
instrument response of the transducer. Figure 1 shows a
trace of an ultrasonic signal in stainless steel with a signa
noise ratio~SNR! of 4:1. The solid line is a calculated noise
free time domain scattering amplitude from a 200-mm
spherical void in steel, and the dotted line is a signal with
grain noise~as measured by one of us, S.P.N.! added. The
measurement system used here results in grain scatt
noise that is band limited and colored~frequency dependen
within the bandwidth! resulting in time domain correlation
and autocorrelation behavior in time that do not have Dirad
falloff. The Fourier transform of Eq.~1! is

F~v!5H~v!A~v!1N~v! ~2!

in the continuous frequency case, and

Fi5F~v t!5H~v l !A~v l !1N~v l !

with $I 51,2,...,M /2% in the discrete case. After the Fourie
transformation, the functions$F,H,A,N% are all complex val-
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ued and there are half as many data as for the real va
functions$f,h,a,n% in the time domain. The problem of dete
mining an approximate scattering amplitudeÂ(v) from Eq.
~2! is an ill-posed problem@13–15,1,2,6,7,18–28# because
the data are band-limited and corrupted by noise. The re
larization of these ill-posed problems can be accomplis
by using a Wiener filter@28#, WQ :

Â5WQF5
H* F

uHu21Q2~v!
, ~3!

as well as a term from information theory. In Eq.~3!, Q2(v)
is the regularizing term. The optimal Wiener filter is we
known @28# and is given byQopt

2 5SN(v)/SA(v), whereSN

andSA are the power spectral densities of the noise and
scattering amplitude. Since this is an inverse problem,A ~and
consequentlySA) are unknown, and the optimal filter cann
be used. The power spectral density of the noise can be
timated from measurements and has been done by one
~S.P.N.! and others, see, e.g.,@11,6,7,29,30#. The frequency
independent, suboptimal Wiener filter setsQ2

5« max@uH(v)u2#, where«~0,1! is a thresholding paramete
~typically is set to 0.01!. It corresponds to a limit of260 dB
for the dynamic range of the data. The signal scattered fr
the flaw and the acoustic noise occupy the same freque
window, so no low-pass filter or smoothing in time can r
move the noise without losing information about the fla
itself. The suboptimal Wiener filter acts as a bandpass fil
removing much of the distortion due to the colored fr
quency response of the measurement system. The subop
filter does not achieve noise removal, nor change the S
within the bandwidth, since information about both the fla
and the noise are passed through the filter. It is well kno
that Eq.~3! often performs poorly for real data@28#, imply-
ing that additional information is needed. If one has indep
denta priori information, it may be incorporated by replac
ing Eq. ~3! with the expression

Â~v!5WQF1C~F !, ~4!
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FIG. 2. The real part of the noise free scatte
ing amplitude for a 200-mm sphere as passe
through the suboptimal Wiener filter.
es

pe
to
e
a

-
o

d
E

y
el
is
th
tu
ar
e

s
al
ta
r

gn

00
,
o

ch

er

the
. It
ea-

rk
the
o
er-
to

is
n

n
uni-

l
e-

py.
-
a

um
se
er-
, the
the
tal-
e

ex-
sis

h a
rix
whereC(F) is a positive-definite cost functional that carri
the additional nonredundant information. In Ref.@28# this is
done for the case of imaging, where one knows from ex
rience@28,17# that the edge sets are blurred by removing
much of the high-frequency content of the signal. Anoth
common regularizer is a smoothness condition on the
proximate solution@5,24#. A different approach using infor
mation theory and wavelets that involves part of each
these hypotheses is developed here. It is directly base
recent studies of ultrasonic grain noise in ND
@11,7,29,31,30,32#. The choice of wavelet family will pro-
vide the smoothness, and the choice of wavelet scales~to be
explained in later sections! gives a nonlinear threshold. B
using wavelets and information theory, one can effectiv
add more information to the problem to improve the no
removal process and further reduce the error norms of
reconstruction. The wavelet multiresolution analysis na
rally suggested the present approach and it seems to cl
the usefulness of the scale structure of wavelets for th
transient signals.

In order to facilitate the study of scattering amplitude e
timation with noise removal, noise corrupted flaw sign
were generated using measured acoustic noise from a s
less steel block, the measurement system response fo
actual ultrasonic system, and computer generated flaw si
tures. The noise corrupted signals for thei th flaw were cre-
ated asf (t)5h(t)r (t)1bn(t) where b is a scaling factor
used to generate the desired SNR@11,29,30,28#. This proce-
dure is described in more detail in Ref.@30#. Dozens of sig-
nals were generated for spherical flaws with radii of 75, 1
150, 200, 250, and 300mm. The SNR’s studied were 10:1
8:1, 6:1, 4:1, and 2:1. Many examples of signals and rec
structions are available~see Ref.@33#!.

The 200-mm sphere is thought to be the critical size whi
indicates impending failure of a metal. Figure 1 depicts
time trace for a 200-mm spherical void with SNR 4:1 while
Fig. 2 shows the Fourier domain representation~real part
only! of the signal after filtering with the suboptimal Wien
filter.
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B. Information theory concepts

In Ref. @34# the Shannon entropy was used instead of
scattered energy from flaws, to detect flaws in Plexiglas
was found that the entropy measure outperformed other m
sures commonly in use. In Refs.@3,4,35#, the Shannon en-
tropy was used to select a ‘‘best’’ wavelet basis. In the wo
considered in this paper, the problem is to reconstruct
scattering amplitude which is quite different from these tw
problems, and it was found that the Shannon entropy p
formed poorly for our task. This paper shows a new way
combine scattering and information methods.

The problem of defining a measure of information
somewhat recent@28,36,37,35# but much progress has bee
made. The Shannon informationI S is defined as

I S5k(
i 51

N

pi log2~pi !, ~5a!

wherek is a positive constant,pi is the probability of thei th
event, andN events are present in the signal. It is well know
that maximizing the Shannon entropy corresponds to the
form distribution,pi51/N for eachi.

The Shannon information@36,28# has proven very usefu
in communications, signal processing, and statistical m
chanics, where its applications are called maximum entro
When there is little or no prior information, the uniform dis
tribution with one or a few physical constraints is often
good choice. However, this choice corresponds to minim
information, which is not a natural goal for many inver
problems. In these problems, maximum information on c
tain features—such as the boundary of a flaw or a cancer
size of some foreign object, or the material parameters of
scattering body—is the quality needed. Often, experimen
ists ~and even theorists! perform a least-squares fit to som
known function in order to interpret and characterize an
periment. If there is a firm experimental and theoretical ba
for the given function, this can be a powerful technique~see
Ref. @23#, where a careful inverse analysis showed suc
form to occur!. In these cases the Fisher information mat
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and the Cramer-Rao theorem@28# are very useful. If there is
not a firm basis for the assumed function, however, this
proach may not be applicable and can yield nonsensica
sults.

One method of takinga priori information into account is
to use the negative of a cross-entropy functional as the m
sure of information. One cross-entropy functional with
number of desirable features is the Kullback-Liebler info
mation measure@37#. There are a number of other measur
of information/entropy, but they are not considered here. T
information~entropy! in the Cramer-Rao structure@28,35,38#
has been shown to be directly related to shift entropy@39#.

Assumption.Of all probability distributions to contain the
real and imaginary parts of the scattering amplitude, with
constraints of finite energy, causality, and unitarity, w
choose the one which is closest to ana priori probability
distribution of known scattering amplitudes,Q
5$q1 ,...,qi ,...%. When no such probability is given, w
take the uniform distribution forN data.

If pW 5$pi% is a measured set ofN values of a scattering
amplitude, andqW is aN-vector of values taken from the give
probability distributionQ, then

I KL52(
i 51

N

p log2S pi

qi
D ~5b!

is the Kullback-Liebler cross information, Equation~5b! can
be interpreted as a measure of the discrepancy betwepW
PP, the probability space of the reconstructed scatter
amplitude, andqW PQ, the reference scattering amplitude. B
minimizing this discrepancy, the maximum information
minimum entropy is obtained. If no such probability dist
bution Q is known, the uniform distribution is chosen. Th
reduces the Kullback-Liebler information according to

I KL52(
i 51

N

pi log2S pi

1/ND
5(

i 51

N

pi log2~1/N!2(
i 51

N

pi log2~pi !

51n~N!1I S~pW !, ~6!

whereI s is the Shannon information as defined in Eq.~5a!.
Thus, maximum entropy methods are a special case
Kullback-Liebler information whenQ is the uniform distri-
bution.

C. Multresolution analysis for orthogonal wavelets

Wavelets@40–44,38,45,46,17# have been shown to hav
improved localization properties over windowed Four
transforms, to have good noise removal properties, effec
edge detection abilities, and the capability of treating non
tionary stochastic processes. In physics they have rece
been used in electronic structure calculations@47#, in the
formulation and study of correlation functions which arise
particle production@48#, and to detect structures in galaxie
@49# and two-dimensional~2D! turbulence@50#. Wavelets are
basis sets, or frames for finite energy signals inL2(RN).
These basis sets satisfy a stability inequality which ma
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them Riesz bases~a frame is a basis plus many addition
redundant elements!. Both discrete and continuous wavele
exist, but we will restrict our attention to the discrete ca
since finite sets of measured data are being studied.
study will use orthonormal bases so that frames are
needed here~continuous wavelets require frames!. One fam-
ily of discrete wavelets is written as$C jk(x):( j ,k)PZ2%
whereZ is the set of integers andZ2 is the Cartesian produc
of two ~index! sets. The functionsC jk are defined by the
dilation operatorD jk : the product of a translation byk, and
a scale change of 2j , of a single wavelet functionC(x) for
which

C jk~x!ª~D jkC!~x!52 j /2C~2 j x2k! ~7a!

provided C satisfies the three conditions:~a! the linear
span~the set of all linear combinations! of all C jk’s form a
Riesz basis forL2(Rn), ~b! the admissibility condition that

0,cC,` ~7b!

with

cC5E uĈ~k!u2

uku
dk, ~7c!

whereĈ(k) is the Fourier transform of the functionC(x),
and ~c! C(x) has zero mean

Ĉ~0!5E
2`

`

C~x!dx50. ~7d!

For signalsf PL1(Rn)ùL2(Rn) the Grossmann-Morlet~Cal-
deron! @45# inverse automatically exists. The completene
of the $C jk% allows wavelet analysis of any signalf PL2 by
examining and comparing its wavelet coefficients

cjk~ f !5^ f uC jk&. ~8a!

If f PL1(Rn)ùL2(Rn), then

f ~x!5(
j ,k

cjk~ f !C jk~x!, ~8b!

and the Grossmann-Morlet inverse of Eq.~8a! exists and is a
reconstruction inL2(R1

1 ).
Strictly speaking, the reconstruction is taken as the

verse solution which minimizes an error norm. Equation~8a!
is called the wavelet analysis of a signalf by a fixed wavelet
family $C jk(x):( j ,k)PZ2%. Hence Eq.~8b! is called the
wavelet reconstruction~synthesis! of f PL1(Rn)ùL2(Rn).
The scale changes by 2j is the new feature of wavelets whe
compared to Fourier analysis of signals. It corresponds
zooming in to finer details,x→22 j x, and zooming out to
coarser detail,x→2 j x( j .0). For this reason, special atten
tion is paid to the scale structure of these inverse reconst
tions. The multiresolution structure, which was first intr
duced by Mallat@16,17#, will be used to obtain a new scale
dependent noise removal process from a Wiener fi
regularized inverse reconstruction. The reader is remin
that the term ‘‘synthesis’’ is general, but that reconstructi
should only be used when it is known in what space ‘‘lives
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Also, a reconstruction in the noise-free case with comp
data has a solution that exists, is unique, and depends
tinuously on the initial data. However, these conditions
not met in measured data.

Since only orthogonal wavelets are used in this study,
MRA of Mallat @16,17# is used; various other types of wav
lets ~including nonorthogonal! are discussed in Refs.@14,7,
22,40,42–44,38,45#.

A multiresolution analysis ofL2(R1) is a nested sequenc
of closed subspaces$Vj% j PZ of L2(R1) whereZ is the set of
all integers, for which conditions~a!–~d! are satisfied: ~a!
Vj,Vj 11 , ; jPZ; ~b! ø j PZ Vj is dense inL2,

ù
j PZ
Vj5$0%;

~c! f (t)PVj if and only if f (2t)PVj 21 , ; jPZ; ~d! a scaling
function F exists, which; jPZ satisfies

$F jk~ t !5~D jkF!~ t !ª2 j /2F~2 j t2k!ukPZ%; ~9!

and is an orthonormal basis forVj . At each scalej, the
scaling subspaceVj is the low frequency bandpass part
Vj 11 , and the closed wavelet subspaceWj is the high fre-
quency band pass part ofVj 11 . The wavelet families written
in Eq. ~7a! provide an orthonormal basis for the spacesWj ,
for eachj. The scale functions in Eq.~9!, together with the
wavelet functions in Eq.~7a!, are generated from finite se
of masking coefficients$hk :k51,...,N% for which the dila-
tion equations

F~ t !5(
k

hkF~2t2k!, ~10a!

C~ t !5(
k

~21!khN2kF~2t2k! ~10b!

are satisfied for eachkPZ. These masking coefficients ar
tabulated in a number of the references@40,38,46#, and the
most recent version of masking coefficients with a numbe
corrections is available in Ref.@44#. The MRA is a tightly
woven mathematical structure since the pair$F(t),C(t)%
are compactly supported and still generate an orthonor
basis forL2(R1). This amazing mathematical result is due
Daubechies@46#. It is often advantageous to require add
tional smoothness conditions beyond Eq.~7d! for k
51,2,3,...m for somemPZ, m.2,

E tkC~ t !dt50, ~11!

which increases the ability of the wavelet family genera
by C to approximate fine details. These are shown to
useful for ultrasound in the next section. A tradeoff exi
between the minimum interval of support of a wavelet fam
and the order of approximation.

The wavelet analysis and synthesis Eqs.~8a!, ~8b! will be
used as follows in our studies of inverse elastic wave s
tering. In the empirical method of Sec. II HD, the analysis
performed by calculating the wavelet coefficients$cjk% of a
signal and treating different sets of scales as described.
information-theoretic Kullback-Liebler method starts with
te
n-

e

e

f

al

d
e
s

t-

he

useful ‘‘trick’’ by Frieden @28# and then uses the maximiza
tion of I KL by removing small coefficients on some scale
subject to a signal energy constraint. This constraint requ
that the signals have an energy greater than or equal to
implied by the given approximate SNR. The constraint
essential and is assumed in order to avoid removing us
signal energy while eliminating energy due to various no
processes. In this sense, the inverse problem is some
analogous to the combined first and second laws of ther
dynamics shown in Eq.~4!.

Frieden’s trick is to take the complex valued estimat
scattering amplitudesÂ(v) and the noise-free calculated re
erence scattering amplitudeAr(v), and treat them as inde
pendent real variables, i.e., Re@Â(v)#, Im@Â(v)#, etc., using
the absolute values after an appropriate normalization, to
able their use in the information cost functional. To show t
dependence on scales explicitly, expand Eq.~5! as

I KL5(
j ,k

~ I KL ! jk5(
j

(
k

pjk log2S pjk

qjk
D . ~12!

Using Eq.~8b! for a fixed wavelet family, one has

Â~v!5(
j ,k

cjkC jk~v! ~13a!

and

Ar~v!5(
j ,k

djkC jk~v!. ~13b!

Using the trick, together with Eqs.~13a!, ~13b!, Eq. ~12!
becomes

I KL5(
j

(
k51

Nj

Re@ â~v!# jk log2F Re@ â~v!# jk

Re@ar~v!# jk
G

1(
j

(
k51

Nj

Im@ â~v!# jk log2F Im@ â~v!# jk

Im@ar~v!# jk
G . ~14!

The maximumI KL is obtained subject to the energy co
straint using the wavelet coefficients of the real and ima
nary parts ofÂ(v). The sums overk run from 1 toNj ~an
integer depending on the scalej!. The scattering amplitude
were suitably normalized and the absolute values taken
allow for the probabilistic interpretation, the lower caseâ
and ar indicating the estimated and the reference scatte
amplitudes divided by(Â(v i) and (Ar(v), respectively.
Thusar(v) plays the role of the reference distributionq in
the Kullback-Liebler information. A different use of th
Kullback-Liebler information was used by Coifman an
Saito @35# for classifying features of a signal. The real an
imaginary parts of the estimated scattering amplitude w
also treated separately here. This approach will also be
cussed.

The wavelet analysis of a discrete signal such asf in Eqs.
~10! or ~2! has a perfect reconstruction by Eq.~8b! if all
wavelet coefficients are retained. The signal is said to
compressed if all of the small wavelet coefficientsucjku,« ~a
threshold! are discarded, provided the imperfect reconstr
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tion of f is deemed satisfactory. These small coefficients c
tain a small amount of the signal energy, and compress
ratios of 20 or 30:1 are common. We take the opposite vie
point: a small energy coefficient may be important, es
cially if it carries a large information content. The locatio
of the zeros, maxima, and minima of the scattering am
tudes are several key features for this paper. The small c
ficients near any of these features increase the accurac
their determination.

The inverse reconstruction here will begin with the su
optimal Wiener filter regularized estimate of the scatter
amplitude. Thel 1(R) ~or vision norm! is given by

«1ª(
i

N

uÂ~v i !2Ar~v i !u, ~15a!

and thel 2(R), or energy norm is

«2ª(
i

N

uÂ~v i !2Ar~v i !u2, ~15b!

whereÂ is the estimated scattering amplitude,Ar is the ref-
erence scattering amplitude, andN is the number of data
points. The number of data points limits the number of sca
j that can be used in the analysis; forN5256 or 512~as in
our data!, j max57 or 8, with j min50. In practice,j max is cho-
sen to be less than the theoretical maximum. In orde
investigate the effects of the order of approximati
~smoothness! of the analyzing wavelets, several wave
families were used: D4-D28, DS8-DS20, andC6-C24,
whereDN stands for Daubechies minimum phase wavele
DSN for Daubechies least asymmetric, andCN for Coiflets
~as per Daubechies@41#!, and the integerN here denotes 2m
from Eq. ~11!.

D. Empirical wavelet scales for noise removal

In this subsection we will now discuss the technique
pruning coefficients by scale versus chopping them by co
parison with a size threshold« t . By chopping we mean the
removal of all coefficientsucjku,« t , which is a standard
technique. Pruning entails partitioning the scales$0,1,...,j max%
into ‘‘ordinary’’ and ‘‘exceptional’’ scales. The ordinary
scales are ones for which the coefficients are chopped, w
the exceptional scales do not undergo any chopping.
assumption is that the exceptional scales may contain s
coefficients with low signal energies, but that these sca
have a high information content with regard to the sign
This suggests the question of whether these excepti
scales$ j e% exist and, if so, which values ofj are exceptional
and what threshold value« t should be used. This empirica
method, even if successful, does not provide understan
of why this method would improve the reconstructions.

To determine if there is a clear dependence on the sc
j, the following numerical experiment was performed: Thel 1

andl 2 error norms@Eqs.~15a!, ~15b!# were calculated for 30
Wiener filtered reconstructions of flaws of known radius~ini-
tially 200 mm! and a fixed SNR~initially 8:1! using the
suboptimal filter given in Eq.~3!. A wavelet decomposition
of both the real and imaginary part of the estimated scat
ing amplitudeÂ(v) was performed, decomposing the sign
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into six or seven scales using a fixed wavelet family. In t
part of the study we limited the choice of wavelet family
D4, D10, D28, DS8, andC18. Following the decomposi
tion, a variety of combinations of scales were used as exc
tional scales, and the coefficients were pruned. With this n
coefficient set, the inverse wavelet transform is perform
which results in a new reconstruction of the scattering a
plitude. The error norms were then calculated again us
this new estimate. The sets of scales that were used as
ceptional scales included several triples (j 1 , j 2 , j 3) and all
doublets (j 1 , j 2). The threshold parameter« t was found to
depend on the SNR, ranging from« t50.2 at SNR 10:1, to
« t50.35 at SNR 8:1, to« t50.75 at SNR 2:1. Some result
of the empirical pruning and thresholding for sets of exce
tional scales and a few wavelet families are shown in Tabl
Only one triplet ~3,4,5! was found to provide low error
norms. A number of other flaw radii were studied in Refs.@6,
7# and many more results from these works are available
the WWW @33#.

Next, several existing methods of noise removal we
tried in the hopes of explaining that the choice of exceptio
scales gave a useful noise removal structure. Methods
posed by Donoho@5#, Coifman and Wickerhauser@35#, and
Wickerhauser@38# were tried. Donoho’s method used so
thresholding with different threshold values in differe
scales. Soft thresholding is different from the chopping d
scribed earlier, in that all coefficients are reduced in mag
tude by the threshold amount and any coefficient less t
the threshold is set to zero. The other methods@35,38# were

TABLE I. The l 1 and l 2 error norms of 200-mm spherical voids
in stainless steel with SNR 8:1 forD4,D10,C18 wavelets for the
ensemble average of 30 signals. The noisy, suboptimal Wiener
error is given near the top of the list and the error norms for
choices of exceptional scales are presented for comparison.

Wiener filter
l 2 Real
0.86918

l 2 Imag
1.24146

l 1 Real
0.93163

l 1 Imag
1.46722

D4 wavelet
j e51,2 0.35294 0.38552 0.36349 0.46548

52,3 0.19973 0.30495 0.20180 0.36515
53,4 0.17827 0.26589 0.18186 0.31476
54,5 0.27568 0.25965 0.29410 0.30977
55,6 0.27654 0.25730 0.28591 0.30230
53,4,5 0.17953 0.25774 0.18159 0.30622

D10 wavelet
j e51,2 0.31748 0.38308 0.36102 0.48856

52,3 0.23943 0.29939 0.25952 0.38376
53,4 0.20858 0.21956 0.21942 0.27978
54,5 0.24385 0.19542 0.27386 0.25554
55,6 0.22349 0.23036 0.25927 0.29983
53,4,5 0.21030 0.21052 0.22525 0.26764

C18 wavelet
j e51,2 0.33870 0.39060 0.39086 0.46942

52,3 0.23207 0.30046 0.27017 0.35717
53,4 0.17162 0.24619 0.20648 0.28002
54,5 0.22570 0.27710 0.28679 0.31115
55,6 0.23589 0.27680 0.28386 0.31389
53,4,5 0.17225 0.25131 0.20975 0.28050
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FIG. 3. The real part of the noise-corrupte
scattering amplitude, using the suboptim
Wiener filter, with SNR 6:1. Contrast this with
Fig. 2.
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based on Shannon information~entropy!. The methods in@5#
produced reconstructions that were comparable to the re
in Fig. 3, except that some cases were worse. When c
puter generated noise was used, it performed well and
published results were reproduced, but the method was c
pletely unable to treat the measured ultrasonic grain n
studied here. The improvements obtained by using@35,38#
were smaller and more erratic than the empirical thresh
ing. The results of the empirical thresholding will be show
in the next section.

E. Kullback-Liebler maximization for noise removal

The information-theoretic technique, which was found
give results very similar to the empirical method just d
scribed, was a constrained Kullback-Liebler information@37#
maximization approach. This is a maximum information
minimum entropy method, in contrast to the maximum e
tropy approach. The constraints include thea priori informa-
ult
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he
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r
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tion of the SNR, an energy threshold«e dependent on the
SNR, and the knowledge that a flaw is present in the ti
window. The reference distribution is taken from the real a
imaginary parts of the reference scattering amplitude fo
given flaw size. For realistic flaws, the flaw would not b
spherical and the effective radius would be different in d
ferent incident sonification directions of the backscatter. T
situation would require the use of a Radon transform, suc
those used in@13,22,27#, and is well worth pursuing later
Also, a Lagrange multiplier coefficientl on the Kullback-
Liebler information term in Eq.~16! should be studied.

By maximizing the information measure in Eq.~14!, the
resulting error norms given by Eqs.~15a! and~15b! are sig-
nificantly reduced. Given an estimate of the signal to no
ratio one can estimate the expected total energy containe
the signal of interest. The power spectral density of the m
sured signal~true signal plus noise! is given by ST5SÂ
1SN whereSÂ andSN are the power spectral densities of th
li-
FIG. 4. The result~solid line! of empirical
thresholding usingj e53,4,5, and wavelet family
C18 compared to the noise free case~dotted line!.
This is for the real part of the scattering amp
tude, with a SNR 10:1.
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FIG. 5. The result~solid line! of empirical
thresholding usingj c53,4,5 and wavelet family
D10, compared to the noise free case~dotted
line!. This is for the imaginary part of the scatte
ing amplitude, with SNR 8:1.
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estimated signal and the noise, respectively. Since S
5SÂ /SN we can writeST2SN5SN3(SNR). This allows
one to approximate the amount of energy that can be
carded safely in the Kullback-Liebler maximization proce
No iteration in the algorithm is allowed to violate this co
straint.

To maximize Eq.~14!, given the neededa priori informa-
tion, one begins by calculating a baselineI 0 , using the initial
Â. Any changes made to the estimateÂ, must increase the
information content, i.e., maximize Eq.~14!. Following this
initialization, a wavelet coefficientcjk @ from Eq. ~13a!# is
chosen at random, from any scale, and reduced by a s
percentage. The reduction of a wavelet coefficient is
cepted for the new estimate ofÂ if the energy constraint is
not violated, and if the information content is increased (I m
.I m21). The process is then repeated until several hund
iterations pass without any changes being accepted.
conditions usually resulted in this convergence: A low
R

s-
.

all
-

d
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r

limit on the energy had been reached, or the informat
given by Eq.~14! had been maximized. In the next sectio
results for both the empirical and the information theore
approach are presented.

III. RESULTS

A. Empirical wavelet scale-dependent noise removal

A few of the results from the empirical scale-depende
pruning technique will first be presented and discuss
Thirty signals were formed from measured noise in stainl
steel combined with calculated scattering amplitudes. Ini
noisy estimates of the scattering amplitude were then ca
lated using the suboptimal Wiener filter. Table I presents
results for a subset of the exceptional scale selections, a
subset of the wavelet families used, for a particular fl
radius, at SNR 8:1. From our calculations and the oth
available via the WWW@33#, two observations follow: ~1!
li-
FIG. 6. The result~solid line! of empirical
thresholding usingj c51,2 and wavelet family
D4, compared to the noise free case~dotted line!.
This is for the real part of the scattering amp
tude, with SNR 8:1.
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FIG. 7. A Kullback-Liebler maximum infor-
mation reconstruction of the 200-mm scatterer in
stainless steel, using theD10 wavelet family, and
a 90% threshold for the energy.
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There was a clear scale dependence withj 53,4,5 or 4,5
~intermediate frequencies! as the best choices, whilej 51,2
~high frequency! performed poorly. ~2! There was no clea
‘‘best’’ choice of wavelet. Overall, theD4 wavelet per-
formed the worst, while theD10 worked the best for
Im@Â(v)#, andC18 was the best for Re@Â(v)#. Wavelets with
more smoothness performed markedly better than those
less differentiability. This agrees with the observations
Tobocman@14,15# with analytic wavelets.

The noisy Wiener filtered scattering amplitude estima
are all similar to Fig. 3. Ideally, the noise removal procedu
would result in a plot similar to the one seen in Fig. 2.
order to better understand the 40–50 % reduction in thel 1

and l 2 error norms over the noisy Wiener filtered estimat
some figures will be shown. A few of the cases where
method failed, such as forj e51,2, or using theD4 wavelet,
are also presented. Reconstruction of the real part of
scattering amplitude for a 200-mm sphere with SNR 8:1
using empirical scale dependent pruning with wavelet fam
C18, j e53,4,5, is shown in Fig. 4. The solid line is th
theoretical noise-free case for comparison. Figure 5 disp
the results for the imaginary part using theD10 wavelet, and
scalesj e54,5. Note some large amplitude oscillations in t
region 20–35 MHz, which would require more smoothi
than is provided by the empirical pruning, but the main sc
tering features up to 20 MHz are accurate. The last exam
in Fig. 6, illustrates the dependence of the reconstruction
the choice of exceptional scales and wavelet family. Num
ous noise artifacts appear, but the principal features are
ognizable ~although somewhat inaccurate!. The noise re-
moval was performed using aD4 wavelet with exceptiona
scalesj e51,2.

As stated before, a large archive of other calculatio
encompassing many other flaw radii, many different wave
families, and varying SNR’s are available via the WW
@51#. These results are a sample from the greater ensemb
work. From the table and the figures it seems that a thres
« t51.5/SNR, with exceptional scalesj e53,4,5 or j e54,5
improves the scattering amplitude estimate by removin
good deal of noise. This immediately raises the question
ith
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why it works—a question to be addressed in the next sect

B. Kullback-Liebler information theoretic wavelet noise
removal

The best answer found so far, to the question of w
empirical pruning works is that the relative informatio
~relative to the known reference distributionQ! is maxi-
mized.

In Fig. 7, a reconstruction maximizing the Kullback
Liebler information@given in Eq.~14!# is shown. The scat-
tering amplitude shown is for a 200-mm sphere, with SNR
10:1, using aD28 wavelet. The result from using the sam
scattering parameters, but a different wavelet family (D10)
is shown in Fig. 8, and a plot of the relative error norms
ten signals usingD10 wavelets is shown in Fig. 9. Thes
reconstructions are of reasonably good quality, and m
more of similar quality were also obtained. In fact, thel 1 and
l 2 error norms of ten KL information theoretic reconstru
tions were better than the empirical thresholding method~as
can be seen from Fig. 9!. One concern was that the algorith
was overtrained, and not robust outside the initial test po
lation of spheres. The concern was that, given a signal w
no flaw scattering present, the algorithm would still return
reconstruction that looked like a flaw scattering amplitud
To test the algorithm, the reference distributionQ was kept
as the reference scattering amplitude, while the experim
tally measured grain noise was input as the signal. The re
of the KL noise removal algorithm then gave the dotted li
reconstruction in Fig. 10. These results reassured us tha
noise removal system was sound and robust.

IV. DISCUSSION

From the table and the ten figures, both scale-depen
empirical thresholding and the information-theore
Kullback-Liebler noise reduction methods were shown
improve the reconstructions of ultrasound scattering am
tudes over those obtained from a suboptimal Wiener fil
The empirical thresholding has no physical basis, but it d
show that the time-frequency representation of wavelets p
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FIG. 8. Same as Fig. 7 with a 50% thresho
level for the energy.
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vides an additional mathematical tool to improve~or make
worse! the inverse reconstructions. The information-theore
Kullback-Liebler approach minimizes the discrepancy~and
thereby error norms! between a noisy Wiener filtered sign
and a noise-free reference signal. This corresponds to m
mizing the information or minimizing the entropy while pre
serving the noise free signal energy. Actually this proc
does not contradict the maximum entropy method beca
these experiments incorporate additional information. T
additional knowledge is encoded in the reference distribu
Q which is required for the KL information measure. In a
dition, there is additional structure which has not yet be
used: the unitarity of the scattering amplitude. For forwa
scattering,Q>0, this exclusion would not be a good ide
but the problems would be manageable for the backsca
ing studied here.

The method developed can~and does! fail in some in-
stances. The example in Fig. 6 shows that noise artifacts
persist after applying empirical thresholding. At the low
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SNR’s all choices of scales and wavelets passed some n
artifacts through the noise removal process. Nevertheless
noise removal technique shown works much better than
suboptimal Wiener filter, and the Kullback-Liebler cros
information theory gives a physical basis for the method.

Information-theoretic inverse theories have certain adv
tages over statistical methods, one of which is analogou
the combined first and second laws of thermodynamics
Eq. ~4!. This combination requires that the information in th
cost functional must be nonredundant from that in theL2

error norm. The fact that the KL method works well sugge
that the L2 energy error and the KL information are no
redundant. In thermodynamics, this crucial requirement
nonredundance is taken into account by the ‘‘equation
state’’ of the material. In inverse problems, the equation
state is unknown and, in this sense, is the knowledge wh
is sought here. This study has shown that the KL informat
is largely independent of the energy error, in contrast to
poor performance of the Shannon information@6#. This line
or
he
FIG. 9. The relativel 2 error norms for ten
signals are shown as circles, while the err
norms for signals after noise removal using t
KL technique are shown as1.
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of thought is supported by the following interpretation of t
results of Hughes@34# who studied the detection problem fo
large flaws in Plexiglas using Shannon information, but
scattered energy. It was found in Hughes’ study that the
annon information detected large flaws better than the s
tered energy. Since the studies that had preceded@34# had
good detection performance, though not as good as
Hughes’ method, we infer that the Shannon information
largely ~but not completely! redundant with the scattered e
ergy.

Many statistical methods suffer from the fact that they
a ‘‘one size fits all’’ approach, so that they do not general
to use additional information easily. Of course, statistics
part of any inverse problem involving real data, but all of t

FIG. 10. Grain noise in the time domain is shown as the so
line, while the dotted line represents the signal following no
removal using the KL information maximization, using the noi
free scattering amplitude reference distributionQ. This figure helps
support our claim that the algorithm is not overtrained, and is
bust.
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information available about a problem should be used. T
cost functional approach@28# allows the use of more of thea
priori information available, which can appear in two ind
pendent parts of the analysis.

Another desirable feature of the KL approach is the f
that minimal input information is required; all that is need
is a reference probability distributionQ and an approximate
estimate of the SNR. It is also desirable that the Kullba
Liebler information reduces to the maximum entropy meth
if Q is chosen to be a uniform distribution. The fact that, f
a few samples, the empirical thresholding produced sma
error norms than the KL method suggests that better cho
may exist for a reference probability distribution. Th
method of Coifman and Saito@35# will be studied in the
future. The combination of the performance of the empiri
thresholding and its close relation to the maximum inform
tion method may say something about orthonormal wav
families themselves. That is, different scales carry differ
amounts of energy and information, and they are not
same. The exceptional scales are islands of information
the time frequency plane. We conjecture that this is true
other inverse problems besides the ultrasonic problem s
ied here@51–55,47–50#.
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