A Service-Oriented Language
for Programming Mobile Agents

Hervé Paulino
Departamento de Informética,
Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa, Portugal

herve@di.fct.unl.pt

ABSTRACT

In this paper we present MOB, a service-oriented scripting
language for programming mobile agents in distributed sys-
tems. The main feature of the language is the integration of
the service-oriented and the mobile agent paradigms. MoOB
is encoded onto a process calculus with a well studied seman-
tics which provides us with a tool to prove the soundness of
the language relative to the underlying calculus.

Keywords

Mobile Agents, Service-Oriented, Programming Language

1. INTRODUCTION AND MOTIVATION

Service-Oriented programming departs from the object-
oriented paradigm by de-coupling data and processing. Ser-
vices are provided in a transparent way for clients, requir-
ing only knowledge of the contract (the service’s interface).
One of the main advantages of service-oriented program-
ming is that it provides a framework on which to develop
component-based systems. These have recently received a
lot of attention for distributed systems, namely with the
NET [14], Jini [19] and Openwings [9] platforms.

Another major technology for Web applications is that of
mobile agents. Mobile agents are computations that have
the ability to travel through a network, by halting their exe-
cution, saving their state and then restoring it in a new host.
In this paradigm, mobile agents move towards the resources
(e.g., data, servers) and interact locally, unlike the usual
communication paradigms (e.g., client-server), that require
costly remote sessions to be maintained.

Programming languages for mobile agents come in two
flavors: those designed by hand and those based on formal
systems. In the first set we have systems such as Aglets [7],
Mole [16] and Voyager [4] that mostly extend Java classes to
define an agent’s behavior, and scripting languages such as
D’Agents [5] or Ara [13]. Providing a demonstrably sound
semantics for these systems is rather difficult given the gap
between the implementation and an adequate formal model.

Languages in the second set are based on formal systems,
mostly some form or extension of the m-calculus [6,8]. This
allows researchers to build solid specifications for these pro-
gramming languages and prove the languages correct by de-
sign by providing adequate encodings onto a base calculus.
Examples of such languages have been implemented in re-
cent years, namely, JoCaml [3], TyCO [18], X-Klaim [2],
Nomadic Pict [20], Acute [10] and Alice [15].

In [12] we first introduced MOB, a programming language

Luis Lopes
Departamento de Ciéncia de Computadores,
Faculdade de Ciéncias,
Universidade do Porto, Portugal

Iblopes@dcc.fc.up.pt

for developing applications based on mobile agents. Here
we extend MOB with another main abstraction, services,
thus uniting two major abstractions for Web applications.
The main novelties introduced in this paper, in particular
relative to [12], are as follows: a) services, described as in-
terfaces implemented by agents, and (mobile) agents are the
main abstractions of the language. Agents provide and re-
quire services and are bound to these dynamically as they
move through the network; b) the MoB language has been
encoded in TyCO a form of the m-calculus extended with dis-
tribution and mobility of resources and with a well-studied
semantics [1,18]. This provides a tool to prove the soundness
of the operational semantics of the language, thus provid-
ing a form of language security not readily available in the
other languages discussed; c) the encoding onto the process
calculus provided a full specification of the front-end of the
compiler for MoB and allowed us to use the TyCO run-time
system to run compiled MOB programs.

2. THE LANGUAGE

One of the main abstractions of MOB is the agent. Agents
may be viewed as special objects, with a run-time asso-
ciated, that provide/require services to/from the network
(other agents). Agents are handled in MOB programs much
like objects are handled in object-oriented languages.

The service is another main abstraction. An agent imple-
ments services and, simultaneously, requires services pro-
vided by other agents. There is absolutely no distinction
between clients and servers. To access a service, a program-
mer must get a binding for an agent that provides it. The
binding is obtained dynamically through the primitive bind
that asks a network name service for an agent that pro-
vides the service. When the binding is received, interaction
through method invocation can happen.

Agents may move through the network and this is con-
trolled explicitly, at high-level, by the programmer using a
primitive go. The movement of an agent involves moving
an entire virtual machine and its state to the target host in
the network. The execution resumes on arrival at the target
host, without intervention from other agents.

Agents are multi-threaded. Thread creation and synchro-
nization is supported through the fork and join primitives.
Another form of synchronization, on data-structures, is pro-
vided by the instructions lock and unlock that support a
simple form of mutual exclusion in data access.

Interaction with external services is supported with exec
which is used to implement extensions to the core MOB lan-

P = agent X (&) implements S requires S M
service S {m} | requires S | class X (%) M
join (z) | go(e) | lock (z) | unlock (z)

if(e) { P }else { P} | while(e) {P}
for (zx ine) {P} | break | return (e)
exit() | z=e | P; P

M i= {ma(@) {P1} o oma(@n) {Pr}}

e = ebope | wope | self | =z | ex
| ¢ | nul | C

C = new X(é) | fork { P} | bind (S) | host()
| exec (@) | Cm (@) | {e:e} | [

Figure 1: Syntax of the Mob programming language.

guage to support external functionality. These external ser-
vices may be implemented in other languages, such as Java,
C, TCL or Perl, or access network services, such as WWW
queries, FTP transactions, or e-mail communication.

The remainder of the language constructs provide fairly
standard support for control flow, expressions and external
calls. Due to space constraints we will briefly describe the
syntax and semantics of the language. The full definition
of the language and its operational semantics may be found
in [11]. The syntax for a MOB program is presented in fig-
ure 1. The language defines a set reserved words identified
in bold-face. The main syntactic categories are: constants
(booleans, integers and strings) ranged over by c; variables,
ranged over by x; agent and class identifiers, ranged over by
X; service identifiers, ranged over by S; method names and
method collections, ranged over by m and M, respectively;
expressions, ranged over by e; commands, ranged over by C;
arrays and maps, ranged over by {€ : €} and [€], respectively,
and; instructions, ranged over by P. A sequence of elements
of a given grammatical category « is denoted by &. The con-
crete syntax of MOB imposes some syntactic restrictions to
the above.

We exemplify the syntax with a small example of a server
and a mobile client for a simplified Time service. The server
provides the service Time with a single method getTime().
Note that the main method may be empty since MOB agents
run as daemons and some external action is required to ter-
minate their execution.

service Time { getTime }
agent TimeServer() implements Time {

main () { }

getTime() { return exec (" getTimeApplication”);}
new TimeServer();

The client requires this service and when run, it takes a
sequence of hosts, and performs a cycle in which it moves to
each of them, setting their time accordingly with the central
time from the TimeServer.

agent TimeClient(hostList) requires Time {

main () {
timeServer = bind (Time);
for (h in hostList) {
go (h);
exec ("setTimeApplication”, "" "~ timeServer.getTime());

}

new TimeClient([hostl,...,hostn]);

The semantics for the MOB core language is provided in
the form of an abstract machine that describes state transi-
tions between network configurations. Each network config-
uration is composed of a set of agents running concurrently

/ MName

Run-time
service ¢ e

HostLayer

i]
programmop m program.tyco m sesEraR
i U j K_/ ;

T TAgentiayer e

bytecode

Figure 2: Compiling and running a Mob program.

plus a name service for binding services to agents. Each
agent has its own heap, code, a set of threads running con-
currently and a set of threads suspended on resources. Be-
sides their own local environment, threads share the agent’s
heap and use it to synchronize their access to resources.

For a complete formal specification of the semantics of the
language we refer the reader to [11].

3. THE COMPILER AND RUN-TIME

The compiler is divided in two main stages (figure 2).
First, the front-end of the compiler takes the MOB source
code and outputs the corresponding code in the TyCO lan-
guage, as specified by the encoding of MoB in TyCO. The
front-end of the compiler performs type inference on the
MoOB source code and in particular finds the types for both
the implemented and the required services for agents. At
this point the name service is contacted and a type-check is
performed. The types inferred by the compiler are matched
with those assumed for the service in the network. If the
agent implements a service yet not registered, the interface
provided becomes the de facto interface for that service. If
type-checking succeeds, the source MOB program is trans-
formed into a program written in the TyCO language.

The back-end of the MOB compiler is just the compiler
for the TyCO language. It takes the TyCO code generated
by the front-end and produces code written in an intermedi-
ate language called MIL (Multi-threaded Intermediate Lan-
guage [17]), which is compiled just-in-time by the run-time
system before being executed. This scheme allows the run-
time to check type information in the MIL code before run-
ning it.

The run-time system is divided into two layers. The top
layer is the host layer and is implemented as a service that
must run on every MoB-enabled host in a network. This
layer is responsible for managing agents within a host and
supporting their mobility. More specifically, it provides the
means to create, execute, marshall, send, unmarshall and
receive agents.

The second layer is the agent layer and implements agents
and the name service (also an agent). All are executed with
the TyCO run-time system. Each agent is implemented with
two concurrent threads: the first is an instance of the MIL
virtual machine that runs the MIL code for the agent; the
second handles network communication for the MIL virtual
machine.

4. RELATED WORK

Of the languages more closely related to MoB none ad-
heres to the service-oriented paradigm.

JoCaml [3] is a programming language based on the Join-
calculus that provides support for distributed and mobile
agent based applications. The language uses a custom vir-
tual machine and supports the migration of trees of compu-

tations (an agent and its tree of sub-agents) between hosts
in a network. Just as in MOB, type-checking is mostly done
at compile time except for interaction with other modules
which is done dynamically. The required type information
is annotated in the source program.

The X-Klaim [2] language is an implementation of the
Klaim model with ad-hoc extensions to incorporate higher-
order constructs, asynchronous reading of tuple-spaces and
hierarchical structured networks. Programs in X-Klaim are
compiled into Java classes that resort to a package, Klava,
to run. Mobile agents in X-Klaim are processes with a single
execution flow, rather than the multi-threaded agents found
in MoB. This makes the migration of multi-threaded agents
a complex and user aware operation.

Nomadic Pict [20] is perhaps the closest to ours in that it
grows from another process calculus based language, Pict,
and adding primitives for programming mobile computa-
tions such as agent creation, agent migration and asyn-
chronous communication between agents. Nomadic Pict also
focuses on verification and a proof of correctness for an in-
stance of the infrastructure has been achieved. Despite the
similarities our aim is to provide a scripting language that
abstracts away from network location dependent informa-
tion. In this respect we feel that MOB, even in its core
language is higher level than Nomadic-Pict.

Acute [10] is a programming language for mobile agents
built on top of Objective Caml. The language provides
type-safety through a partially static/dynamic type check-
ing scheme. Moving computations is achieved through an
atomic operation that captures a collection of threads in a
structure (a thunk) that can afterwards be marshalled and
moved across the network. This contrasts to MOB where
marshalling of objects or agents is transparent to the pro-
grammer. In the case of agents the primitive go implements
the marshalling required for sending the agent to another
node in the network. The MOB service on that node will be
responsible for unmarshalling the agent and restart it. In
this respect Acute provides a finer, lower level, control over
migration and marshalling than MOB.

Alice is a programming language based on Oz and its im-
plementation, Mozart [15] (itself based on Standard ML).
The functionality provided by Alice is similar to that of
Acute. The front-end of the Alice compiler produces Oz in-
termediate code so that the Oz run-time, Mozart, is used to
run Alice applications. The approach is similar to the one we
use since the front-end of the MoOB compiler produces TyCO
code that is then executed with TyCO’s run-time system.

5. CONCLUSIONS

We have produced an implementation of the MoB lan-
guage compiler and its run-time system. Currently we are
working to prove the soundness of the MOB language. In
other words, given an encoding map [-], from MoB abstract-
machine states into TyCO programs, we wish to prove the
following conjecture:

Conjecture (Soundness) Let N and N’ be network config-
urations in the MOB abstract-machine. If N — N’ (reduces
to in MOB) then, [N] = [N'] (is congruent to in TyCO) or
[N] — [N'] (reduces to in TyCO).

6. REFERENCES
[1] A. Ravara et all. Lexically Scoping Distribution: What
You See Is What You Get. In F. of Global Computing,

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

volume 85(1) of ENTCS. Elsevier Science, 2003.

L. Bettini, R. D. Nicola, and R. Pugliese. X-Klaim
and Klava: Programming Mobile Code. In TOSCA
2001, volume 62. Elsevier Science, 2001.

S. Conchon and F. L. Fessant. Jocaml: Mobile Agents
for Objective-Caml. In ASA/MA’99, pages 22-29.
IEEE Computer Society, 1999.

G. Glass. Overview of Voyager: ObjectSpace’s
Product Family for State-of-the-art Distributed
Computing. Technical report, CTO ObjectSpace,
1999.

R. S. Gray. Agent Tcl: A Transportable Agent
System. In CIKM’95 Workshop on Intelligent
Information Agents, 1995.

K. Honda and M. Tokoro. An Object Calculus for
Asynchronous Communication. In ECOOP’91, volume
512 of LNCS, pages 141-162. Springer-Verlag, 1991.
D. B. Lange and M. Oshima. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

R. Milner, J. Parrow, and D. Walker. A Calculus of
Mobile Processes (parts I and II). Information and
Computation, 100(1):1-77, 1992.

Openwings. Openwings: A Service-Oriented
Component Architecture for Self-Forming,
Self-Healing, Network-Centric Systems.
http://www.openwings.org, 2001.

P. Sewell et all. Acute: High-Level Programming
Language Design for Distributed Computation.
http://www.cl.cam.ac.uk/users/pes20/acute/.

H. Paulino and L. Lopes. Mob Core Language and
Virtual Machine. Technical Report DCC-2005-05,
DCC - FC and LIACC, Universidade do Porto, 2005.
http://www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-05. pdf.

H. Paulino, L. Lopes, and F. Silva. Mob: A Scripting
Language for Mobile Agents Based on a Process
Calculus. In ICWE 2003, volume 2272 of LNCS, pages
40-43. Springer-Verlag, 2003.

H. Peine and T. Stolpmann. The Architecture of the
Ara Platform for Mobile Agents. In MA’97, volume
1219 of LNCS, pages 316-323. Springer-Verlag, 1997.
D. Platt. Introducing Microsoft .NET, Third Edition.
Microsoft Press, 2003.

G. Smolka. Concurrent Constraint Programming
Based on Functional Programming. In Programming
Languages and Systems, volume 1381 of LNCS, pages
1-11. Springer-Verlag, 1998.

F. Straber and J. Baumann. Mole - A Java Based
Mobile Agent System. In M. M., editor, Special Issues
in Object Oriented Programming, pages 301-308, 1997.
V. Vasconcelos and L. Lopes. A Multithreaded
Assembly Language and Virtual Machine.
Unpublished.

V. Vasconcelos, L. Lopes, and F. Silva. Distribution
and Mobility with Lexical Scoping in Process Calculi.
In HLCL’98, volume 16(3) of ENTCS, pages 19-34.
Elsevier Science, 1998.

J. Waldo. The Jini Architecture for Network-Centric
Computing. Commun. ACM, 42(7):76-82, 1999.

P. T. Wojciechowski and P. Sewell. Nomadic Pict:
Language and Infrastructure Design for Mobile

Agents. IEEE Concurrency, 8(2):42-52, 2000.

