
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 4, 2015 Article ID IJIM-00313, 11 pages

Research Article

Numerical solution of two-dimensional fuzzy Fredholm integral

equations using collocation fuzzy wavelet like operator

N. Hassasi ∗, R. Ezzati †‡

————————————————————————————————–

Abstract

In this paper, first we propose a new method to approximate the solution of two-dimensional linear
fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then,
we discuss and investigate the convergence and error analysis of the proposed method. Finally, to
show the accuracy of the proposed method, we present two numerical examples.
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1 Introduction

T
he concept of fuzzy integrals was initiated
by Dubois and Prade [11] and then investi-

gated by Kaleva [21], Goetschel and Voxman [20],
Nanda [25] and others. In [35], the Henstock in-
tegral of fuzzy-valued functions is defined, while
the fuzzy Riemann integral and its numerical in-
tegration was investigated by Wu in [36]. In [17],
the authors introduced some quadrature rules for
the integral of fuzzy-number-valued mappings.
Kaleva [21] proposed the existence and unique-
ness of the solution of fuzzy differential equations
using the Banach fixed point principle. Mordeson
and Newman [24], started the study of the sub-
ject of fuzzy integral equations (FIE).
Many authors applied the Banach fixed point
principle, as a powerful tool, to show the exis-
tence and uniqueness of the solution of FIE [5, 6,
16, 29, 30, 31]. In [19, 26], sufficient conditions
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for bounded solutions of FIE are given. Recently,
the iterative techniques are applied to solve fuzzy
Fredholm integral equations of the second kind
(FFIE-2) by researchers [7, 15, 28]. Friedman
et al. [16] presented a numerical algorithm to
solve FFIE-2 based on successive approximations
method. Also, Friedman et al. [17] investigated
numerical procedures for solving such equations
by using the embedding method. In [8], the suc-
cessive approximations method is used for solving
nonlinear fuzzy Fredholm integral equations. The
authors of [44] presented iterative method and
quadrature rules for solving nonlinear FFIE-2. In
[9], Bica et al. developed an iterative numerical
method to solve fuzzy Hammerstein-Voltera in-
tegral equations with constant delay. In [10], the
same method has been applied to obtain the solu-
tion that take values in the set of right-sided fuzzy
numbers for a fuzzy Volterra integral equation
with constant delay arising in epidemiology. For
numeric-analytic methods to solve FFIE-2, one
can refer [1, 4, 12, 13, 14, 18, 27, 32, 33, 34, 43].
Since many real-valued problems in engineering
and mechanics can be brought in the form of
two-dimensional fuzzy Fredholm integral equa-
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tions (2DFFIE), it is important that we develop
quadrature rules and numerical methods for solv-
ing such equations. Recently, some researchers
investigated solving such equations. In [?], the
authors applied modified Homotopy perturbation
method to solve 2DFFIE. The authors of [38] pro-
posed quadratur rules for numerical solution of
two-dimensional fuzzy integrals. In this work, the
authors also obtained numerical solution of linear
2DFFIE by using iterative technique. Also, solv-
ing nonlinear 2DFFIE by using quadrature rules
is done in [42].
Recently several researchers have attempted to
develop ”fuzzy wavelets” based models and sys-
tems. Wavelet theory is a relatively new and an
emerging area in mathematical research. Also,
wavelets are the suitable and powerful tool for
approximating functions based on wavelet basis
functions. As we know, most of the methods to
solve integral equations lead us to solve the lin-
ear systems, but the singularity of these systems
may cause some problems. So, by using fuzzy
wavelet like operator with collocation points to
obtain numerical solution of 2FFIE, such linear
systems can be as sparse linear systems and it can
reduce the cost of computation. In this paper, by
using fuzzy wavelet like operator, we propose a
numerical method to approximate the solution of
linear 2FFIE.

f(x, y) = g(x, y)⊕ λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt

(1.1)

where K(x, y, s, t) is an arbitrary kernel function
over the square [a, b]× [c, d], and g(x, y) is a fuzzy
real valued function of x and y. Also, we present
the error estimation for approximating the solu-
tion of equation(1.1).
The rest of the paper is organized as follows: In
Section 2, we review some elementary concepts of
the fuzzy set theory and modulus of continuity. In
Section 5, we present the method for approximate
the solution of (1.1) by using fuzzy wavelet like
operator. The error estimation of this method
is proved in Section 4. Finally in Section 5, we
give two numerical examples for applicability of
the proposed method and compare the numerical
results with the exact solutions.

2 Preliminaries

In this Section, we review some necessary back-
grounds and notions of fuzzy sets theory.

Definition 2.1 [3] A fuzzy number is a function
u : R −→ [0, 1] with the following properties:
1. u is normal, that is ∃x0 ∈ R such that
u(x0) = 1,
2. u is fuzzy convex set
(i.e.u(λx + (1 − λ)y) ≥ min{u(x), u(y)} ∀x, y ∈
R, λ ∈ [0, 1]),
3. u is upper semicontinuous on R,

4. The {x ∈ R : u(x) > 0} is compact set.

The set of all fuzzy numbers denoted by RF .

Definition 2.2 [17] Suppose that u ∈ RF . The

r-level set of u is denoted by [u]r = [u
(r)
− , u+(r)]

and is defined by [u]r = {x ∈ R;u(x) ≥ r},where
0 < r ≤ 1. Also,[u]0 is called the support of u
and it is given as [u]0 = {x ∈ R : u(x) > 0}. It
follows that the r-level sets of u are closed and
bounded intervals in R.

It is well-known that the addition and multiplica-
tion operations of real numbers can be extended
to RF . In other words, for u, v ∈ RF and λ ∈ R,
we define uniquely the sum u⊕v and the product
λ⊗ u , by

[u⊕ v]r = [u]r + [v]r, [λ⊗ u]r = λ[u]r, ∀r ∈ [0, 1]

where [u]r + [v]r means the usual addition of two
intervals ( as subset of R ) and λ[u]r means the usual
product between a scalar and a subset of R. We use
the same symbol

∑
both for the sum of real numbers

and for the sum ⊕ ( when the terms are fuzzy numbers
).

Definition 2.3 [17] An arbitrary fuzzy number is
represented, in parametric form, by an ordered pair
of functions (u(r), ū(r)), 0 ≤ r ≤ 1, which satisfy the
following requirements:
1. u(r) is a bounded left continuous nondecreasing
function over [0, 1],
2. ū(r) is a bounded left continuous nonincreasing
function over [0, 1],
3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.
4.The addition and scalar multiplication of fuzzy num-
bers in RF are defined as follows:

u⊕ v = (u(r) + v(r), ū(r) + v̄(r))

λ⊗ u =

{
(λu(r), λū(r)) λ ≥ 0

λū(r), λu(r)) λ < 0.

Definition 2.4 [3] For arbitrary fuzzy numbers u =
(u, ū) and v = (v, v̄) the quantity

D(u, v) = sup
r∈[0,1]

max{|u(r)
− − v

(r)
− |, |u(r)

+ − v
(r)
+ |}
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is called the distance between u and v. It is shown that
(RF , D) is a complete metric space with the following
properties [7]:

1.D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,
2.D(k ⊗ u, k ⊗ v) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R,
3.D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e), ∀u, v, e ∈ RF .

Definition 2.5 [11] Let f, g : [a, b]× [c, d] −→ RF be
fuzzy number valued functions. The uniform distance
between f and g is defined by

D∗(f, g) = sup{(D(f(x, y), g(x, y));x ∈ [a, b],
y ∈ [c, d]}.

Definition 2.6 [40] Letf, g : [a, b] × [c, d] −→ RF

. For each partition p = {x1, x2, · · · , xn}of [a, b]
and q = {y1, y2, · · · , yn} of [c, d] and for arbitrary
ξi : xi−1 ≤ ξi ≤ xi, 2 ≤ i ≤ m and for arbitrary
ηj : yj−1 ≤ ηj ≤ yj , 2 ≤ j ≤ n, let

Rp =

m∑
i=2

n∑
j=2

f(ξi, ηj)⊗ (xi − xi−1)(yj − yj−1).

The function f is called two- dimensional Riemann
integrable to I ∈ RF if for every ϵ > 0,

D(I,Rp) < ϵ

In this case, we have

I = (FR)

∫ d

c

∫ b

a

f(x, y)dxdy.

Definition 2.7 [42] A function f : [a, b] × [c, d] →
RF is said to be continuous in x0 ∈ [a, b], y0 ∈
[c, d] if for each ϵ > 0 there exist δ > 0 such that
D(f(x, y), f(x0, y0)) < ϵ, whenever x ∈ [a, b], y ∈ [c, d]
and

√
(x− x0)2 + (y − y0)2 < δ.We say that f is fuzzy

continuous on [a, b] × [c, d] if f is continuous at each
(x0, y0) ∈ [a, b]× [c, d].

The space of all such functions is denoted by
CF ([a, b]× [c, d]) .

Lemma 2.1 [40] If f, g : [a, b]×[c, d] → RF are fuzzy
continuous functions, then the function F : [a, b] ×
[c, d] → R+ defined by

F (xJy) = D(f(x, y), g(x1y))

is continuous on [a, b], and [c, d] −→ R+

defined by F (x, y) = D(f(x, y), g(x, y)) is continuous
on [a, b],
and

D((FR)
∫ d

c

∫ b

a
f(x, y)dxdy, (FR)

∫ d

c

∫ b

a
g(x, y)dxdy)

≤
∫ d

c

∫ b

a

D(f(x, y), g(x, y))dxdy.

Definition 2.8 . Let f : [a, b] × [c, d] → RF . One
call f a uniformly continuous fuzzy real number valued
function, if and only if for any ϵ > 0 there exists δ > 0
whenever

√
(x− s)2 + (y − t)2 ≤ δ;x, s ∈ [a, b], y, t ∈

[c, d],implies that D(f(x, y)f(s, t)) ≤ ϵ. one denotes
it as f ∈ CU

F ([a, b]) .

Definition 2.9 [39] A function f : [a, b] × [c, d] →
RF is said to be bounded if there exist M such that
∥f(x, y)∥F≤ M for any (x, y) ∈ [a, b] × [c, d], where
||f(x, y)||F= D(f(x, y), 0) .

Corollary 2.1 [39] If f ∈ CF ([a, b] × [c, d]) , its
definite integral exists [42], furthemore

1. (FR)
∫ d

c

∫ b

a
f(x, y, r)dxdy =

∫ d

c

∫ b

a
f(x, y, r)dxdy,

2. (FR)
∫ d

c

∫ b

a
f(x, y, r) dxdy =

∫ d

c

∫ b

a
f(x, y, r) dxdy

Remark 2.1 Consider two-dimensional fuzzy
Fredholm integral equation of the second kind

f(x, y, r) = g(x, y, r) + λ

∫ d

c

∫ b

a

K(x, y, s, t)f(s, t, r)dsdt

In order to design numerical scheme for solving
above equation, we first replace it by the system

f(x, y, r) = g(x, y, r) + λ

∫ d

c

∫ b

a

K(x, y, s, t)f(s, t, r)dsdt

f(x, y, r) = g(x, y, r) + λ

∫ d

c

∫ b

a

K(x, y, s, t)f(s, t, r) dsdt

where

K(x, y, s, t)f(s, t, r) =

{
K(x, y, s, t)f(s, t, r) K(x, y, s, t) ≥ 0

K(x, y, s, t)f(s, t, r) K(x, y, s, t) < 0
.

K(x, y, s, t)f(s, t, r) =

{
K(x, y, s, t)f(s, t, r) K(x, y, s, t) ≥ 0

K(x, y, s, t)f(s, t, r) K(x, y, s, t) < 0
.

Corollary 2.2 [40] If f, g ∈ RF are Henstock integrale
mappings on [a, b] × [c, d] and if D(f(x, y), g(x, y)) is
Lebesgue integrable, then

D((FH)

∫ d

c

∫ b

a

f(x, y)dxdy, (FH)

∫ d

c

∫ b

a

g(x, y)dxdy)

≤ (L)

∫ d

c

∫ b

a

D(f(x, y), g(x, y))dxdy.

Definition 2.10 [3] Let f, g : [a, b]× [c, d] → RF

be a bounded function, then function
ω[a,b]×[c,d](f, 0) : R

+ ∪ {0} → R+,
ω[a,b]×[c,d] = sup{D(f(x, y), f(s, t))| x, s ∈
[a, b]; y, t ∈ [c, d],

√
(x− s)2 + (y − t)2 ≤ δ}
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where R+ is the set of positive real numbers, is
called the modulus of continuity of f on [a, b] ×
[c, d].

Some properties of the modulus of continuity
are presented below: [7]

1. D(f(x, y), f(s, t)) ≤

ω[a,b]×[c,d](f,
√

(x− s)2 + (y − t)2)

,
for any x, s ∈ [a, b] and y, t ∈ [c, d];

2. ω[a,b]×[c,d](f, δ) is increasing function of δ,

3. ω[a,b]×[c,d](f, 0) = 0,

4. ω[a,b]×[c,d](f, δ1 + δ2) ≤ ω[a,b]×[c,d](f, δ1) +
ω[a,b]×[c,d](f, δ2) for any δ1, δ2 ≥ 0 and
f : [a, b]× [c, d] −→ RF ,

5. ω[a,b]×[c,d](f, nδ) ≤ nω[a,b]×[c,d](f, δ) for any
δ ≥ 0, n ∈ N ,and f : [a, b]× [c, d] → RF .

6. ω[a,b]×[c,d](f, λδ) ≤ ([λ]+1)ω[a,b]×[c,d](f, δ) for
any δ, λ ≥ 0, and any f : [a, b]× [c, d] → RF ,
where [.] is the ceiling of the number.

In [2], the following theorem is proved.

Corollary 2.3 [2] Let fϵCF ([a, b] × [c, d]) and
the scaling function φ(x, y) a real-valued bounded
function with it supp
φ(x, y) ⊆ [−α, α]×[−β, β], 0 < α < +∞, 0 < β <
+∞, φ(x, y) ≥ 0 such that

+∞∑
j=−∞

+∞∑
i=−∞

φ(x− i)φ(y − j) = 1

on [a, b]× [c, d]. For k ∈ Z+, x, y ∈ [a, b]× [c, d] ,
put

(Bkf)(x, y) =
+∞∑

j=−∞

+∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗

φ(2kx− i)φ(2ky − j) (2.2)

which is a fuzzy-wavelet-like operator. Then

D((Bkf)(x, y), f(x, y)) ≤ ω[a, b]× [c, d](f,
α

2k
,
β

2k
)

D∗((Bkf), f) ≤ ω[a,b]×[c,d](f,
α

2k
,
β

2k
)

for all x, y ∈ R and k ∈ Z+. If f ∈
CU
F ([a, b] × [c, d]) , then as k → +∞ one gets

ω[a,b]×[c,d](f,
α
2k
, β
2k
) → 0 and limk→+∞Bkf = f ,

point wise and uniformly with rates.

3 Solving 2FFIE of the second
kind

Here, we use fuzzy wavelet like operator defined
by (2.2) due to approximate solution of equation
(1.1). To do this, we approximate the solution of
(1.1) by (2.2). So, by substituting (2.2) in (1.1)
we conclude that

∞∑
j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗ φ(2kx− i).φ(2ky − j)

∼= g(x, y) + λ

∫ d

c

∫ b

a
K(x, y, s, t)⊗

∞∑
j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗(φ(2ks−i)φ(2kt−j)dsdt (∗)

By using 2ks− i = u and 2kt− j = v, we get

(∗) ∼= g(x, y)+

λ

22k

∞∑
j=−∞

∞∑
i=−∞

f(
i

2k
j

2k
)⊗

∫ 2kd−j

2kc−j

∫ 2kb−i

2ka−i
K(x, y,

u+ i

2k
,
v + j

2k
)φ(u)φ(v)dudv

(3.3)
Now, by using the following scaling function [38]

φ(x, y) =

{
1 − 1

2 ≤ x, y ≤ 1
2

0 otherwise
(3.4)

in (3.3), we conclude that

2kd−1∑
j=2kc

2kb−1∑
i=2ka

f(
i

2k
,
j

2k
)⊗ φ(2kx− i)φ(2ky − j) ∼=

g(x, y) +
λ

22k∑2kd−1
j=2kc

∑2kb−1
i=2ka f(

i
2k
, j
2k
)⊗∫ 1

2

− 1
2

∫ 1
2

1
2

K(x, y,
u+ i

2k
,
v + j

2k
)φ(u)φ(v)dudv

(3.5)
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For fixed k, suppose that

Ai,j,k(x, y) =
λ

22k

∫ 1
2

− 1
2

∫ 1
2

− 1
2

K(x, y,
u+ i

2k
,
v + j

2k
)

φ(u)φ(v)dudv,

i = 2ka, 2ka+ 1, · · · , 2kb− 1,

j = 2kc, 2kc+ 1, · · · , 2kd− 1

Clearly, we can write (3.5) in the following form

2kd−1∑
j=2kc

2kb−1∑
i=2ka

f(
i

2k
,
j

2k
)⊗ φ(2kxp − i)φ(2kyq − j)

∼= g(xp, yq)⊕
2kd−1∑
j=2kc

2kb−1∑
i=2ka

f(
i

2k
,
j

2k
)⊗Ai,j,k(xp, yq)

(3.6)

Now, we use collocation points, xp =
p

2k
, yq =

q

2k
, p = 2ka, 2ka+1, . . . , 2kb− 1, q = 2kc, 2kc+

1 · · · 2kd− 1 in (3.6). We have:

2kd−1∑
j=2kc

2kb−1∑
i=2ka

f(
i

2k
,
j

2k
)⊗ φ(2kxp − i)φ(2kyq − j)

= g(xp, yq)⊕
2kd−1∑
j=2kc

2kb−1∑
i=2ka

f(
i

2k
,
j

2k
)⊗Ai,j,k(xp, yq)

p = 2ka, 2ka+ 1, . . . , 2kb− 1

q = 2kc, 2kc+ 1, . . . , 2kd− 1

Thus, we obtain the following 2n×2n, n = 2k(b−
a) , fuzzy linear system of equations:

C ⊗X = Y ⊕B ⊗X,

where

X = (f(a, c), f(a+
1

2k
, c+

1

2k
), · · · , f(b− 1

2k
, d− 1

2k
))t

Y = (g(a, c), g(a+
1

2k
, c+

1

2k
), · · · , g(b− 1

2k
, d− 1

2k
))t,

B = (Bi,j)2n×2n, Bij = Ai,j,k(xp, yq),

C = (ci,j)2n×2n, cij = φ(2kxp − i)φ(2kyq − j)

Here, we suppose that b − a ∈ N, d − c ∈ N ,
where N is set of natural numbers. Clearly, the
above system is a dual fuzzy linear system. For
solving this system, one can refer to [37]. Finally,
by solving this system and using Eq (2.2), we can
present the approximate solution of (1.1).

4 Error Estimation

Corollary 4.1 Consider linear 2FFIE of the
second kind as follows:

f(x, y) = (g(x, y)⊕ λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt,

where K(x, y, s, t) is an arbitrary continues
kernel function having same sign in the square
a ≤ x, s ≤ b, c ≤ y, t ≤ d, and g(x, y) ̸= 0 is a con-
tinuous fuzzy function over a ≤ x ≤ b, c ≤ y ≤ d.
Under hypothesis of Theorem(2.3) , we have:

D(f(x, y), (Bkf)(x, y)) ≤ M |λ|(b− a)(d− c)

ω[a,b]×[c,d](f,
α

2k
,
β

2k
)

where M = max|K(x, y, s, t)|, a ≤ x, s ≤ b and
c ≤ y, t ≤ d, and

(Bkf)(x, y) =
∞∑

j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗

(φ(2kx− i)φ(2ky − j)

is the approximate solution of equation (1.1).
Proof. We would like to estimate

D(f(x, y), (Bkf)(x, y)) = D(g(x, y)⊕

λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt,

g(x, y)⊕ λ
∫ d

c

∫ b

a
K(x, y, s, t)⊗ (Bkf)(s, t)dsdt) =

D(λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt ,

λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ (Bkf)(s, t)dsdt)

≤ |λ|
∫ d

c

∫ b

a

|K(x, y, s, t)|.D(f(s, t), (Bkf)(s, t))dsdt

≤ |λ|
∫ d

c

∫ b

a

M.D∗(f, Bkf)dsdt ≤

M |λ|(b− a)(d− c)ω[a,b]×[c,d](f,
α

2k
,
β

2k
)■

It is obvious that

(Bkf)(x, y) =

∞∑
j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗

φ(2kx− i)φ(2ky − j)

(Bkf)(x, y) =
∞∑

j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗

φ(2kx− i)φ(2ky − j) .
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Now, we consider two cases as follows:

(a) K(x, y, s, t) ≥ 0,

(b) K(x, y, s, t) < 0.

In case (a) , we have:

e = f(x, y)−Bkf)(x, y) = [g(x, y)+

λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt ]−

[g(x, y) + λ

∫ d

c

∫ b

a

K(x, y, s, t)(Bkf)(s, t)dsdt ]

= λ

∫ d

c

∫ b

a

K(x, y, s, t)⊗ f(s, t)dsdt−

λ

∫ d

c

∫ b

a

K(x, y, s, t)(Bkf)(s, t)dsdt

= λ

∫ d

c

∫ b

a

K(x, y, s, t)[f(s, t)− (Bkf)(s, t)dsdt

similary we have:

e = f(s, t)− (Bkf)(s, t)

g(x, y) + λ

∫ d

c

∫ b

a

K(x, y, s, t)f(s, t)dsdt]

−[g(x, y) + λ

∫ d

c

∫ b

a

K(x, y, s, t)(Bkf)(s, t)dsdt].

= λ

∫ d

c

∫ b

a

K(x, y, s, t)f(s, t)dsdt

−λ

∫ d

c

∫ b

a

K(x, y, s, t)(Bkf)(s, t)dsdt

.

= λ

∫ d

c

∫ b

a

K(x, y, s, t)[f(s, t)−Bkf)(s, t)]dsdt

Hence

e = e− e = λ

∫ d

c

∫ b

a

K(x, y, s, t)[f(s, t)− (Bkf)(s, t)dsdt

λ

∫ d

c

∫ b

a

K(x, y, s, t)[f(s, t)− (Bkf(s, t)]dsdt

= λ

∫ d

c

∫ b

a

K(x, y, s, t)([f(s, t)− (Bkf)(s, t)])

+[f(s, t)− (Bkf)(s, t)])dsdt,

and

∥e∥= ∥e+e∥≤ |λ|
∫ d

c

∫ b

a

∥K(x, y, s, t)||[∥f(s, t)−(Bkf)(s, t)∥]

+∥f(s, t)− (Bkf)(s, t)∥]dsdt.]

Since K(x, y, s, t) is an arbitrary continues ker-
nel function over the square a ≤ x, s ≤ b, c ≤
y, t ≤ d ,there exist M > 0 such that M =
max|K(x, y, s, t)|. So, we can write

∥e∥≤ |λ|M
∫ d

c

∫ b

a
[∥f(s, t)− (Bkf)(s, t)∥

+ ∥f(s, t)− (Bkf)(s, t)∥]dsdt. (4.7)

On the other hand, we have:

f(s, t)−Bkf(s, t) = f(s, t)

∞∑
j=−∞

∞∑
i=−∞

φ(2kx−i)φ(2ky−j)−

∞∑
j=−∞

∞∑
i=−∞

f(
i

2k
,
j

2k
)⊗ φ(2kx− i)φ(2ky − j)

=
∞∑

j=−∞

∞∑
i=−∞

[f(s, t)− f(
i

2k
,
j

2k
)]φ(2kx− i)(p(2ky − j),

Therefore

∥f(s, t)− (Bkf)(s, t)∥=
∞∑

j=−∞

∞∑
i=−∞

[f(s, t)− f(
i

2k
,
j

2k
)]

φ(2kx− i)(φ(2ky − j)∥

≤
∞∑

j=−∞

∞∑
i=−∞

∥f(s, t)− f(
i

2k
,
j

2k
)]∥φ(2kx− i)(φ(2ky − j)

≤
∞∑

j=−∞

∞∑
i=−∞

ω[f∥x− i

2k
, y − j

2k
∥]

φ(2kx− i)(φ(2ky − j), (∗∗)

Notice that, under hypotheses of Theorem
(2.3), we conclude that

−α ≤ 2kx− i ≤ α ⇒ − α

2k
≤ x− i

2k
≤ α

2k

⇒ |x− i

2k
|≤ α

2k
,

−β ≤ 2kx− i ≤ β ⇒ − β

2k
≤ x− i

2k
≤ β

2k

⇒ |x− i

2k
|≤ β

2k
.

Hence

(∗∗) ≤
∞∑

j=−∞

∞∑
i=−∞

φ(2kx− i)φ(2ky − j)

ω[a,b]×[c,d](f̄ ,
α

2k
,
β

2k
) = ω[a,b]×[c,d](f̄ ,

α

2k
,
β

2k
)

Therefore, as k → +∞ we get

∥f(s, t)− (Bkf)(s, t)∥→ 0

Similarly, we conclude

∥f(s, t)− (Bkf)(s, t)∥→ 0, as k → +∞.



N. Hassasi et al, /IJIM Vol. 7, No. 4 (2015) 375-385 381

So we obtain that

∥e||= ∥e+ e∥→ 0,

as k → +∞.

In case (b) we have K(x, y, s, t) < 0. So

e = [g(x, y) + λ

∫ d

c

∫ b

a
K(x, y, s, t)f(s, t)dsdt

−[g(x, y) + λ

∫ d

c

∫ b

a
K(x, y, s, t)(Bkf)(s, t)dsdt]

= +λ

∫ d

c

∫ b

a
K(x, y, s, t)(f(s, t)−Bkf)(s, t)dsdt

and similarly way, we have:

e = λ

∫ d

c

∫ b

a
K(x, y, s, t)[f(s, t)−(Bkf)(s, t)]dsdt

Hence

∥e∥= ∥e+ e∥

≤ |λ|M
∫ d

c

∫ b

a
∥K(x, y, s, t)∥[∥f(s, t)−(Bkf)(s, t)∥+

∥f(s, t)− (Bkf)(s, t)∥]dsdt

≤ |λ|M(b− a)(d− c)[ω[a,b]×[c,d](f,
α

2k
,
β

bk
)

+ω[a,b]×[c,d](f,
α

2k
,
β

2k
)

Clearly, we have:

∥e∥= ∥e+ e∥→ 0, as k → +∞.

5 Numerical examples

To illustrate the efficiency of the presented
method in Section , we give two examples. Also,
we compare the numerical solutions obtained by
using the proposed method with the exact solu-
tions. Trough this section, we suppose that

φ(x, y) =

{
1 − 1

2 ≤ x, y ≤ 1
2

0 otherwise

Example 5.1 Consider the following linear
2FFIE of the second kind

g(x, y, r) = (x.sin
y

2
)(r2 + r)

g(x, y) = (x.sin
y

2
)(4− r3 − r)

K(x, y, s, t) = x2ys; 0 ≤ x, y, s, t ≤ 1

Also, let a = o, b = 1. The exact solution of this
example is given by

f(x, y, r) = [(x.sin
y

2
)− 16

21
(cos

1

2
−1).x2y](r2+ r)

f(x, y, r) = [(x.sin
y

2
)−16

21
(cos

1

2
−1).x2y](4−r3−r)

By using the proposed method in Section 5, we
can present the approximate solution for this ex-
ample. To compare the numerical results with
the exact solution for different values of x, y and
k, see Tables 1-3.

Example 5.2 Consider the following linear
2FFIE ofthe second kind

g(x, y, r) = r(
1

3
r +

8

3
)(1 + x+ y − 7

12
xy)

g(x, y) = (2r2 − 4r + 5)(1 + x+ y − 7

12
xy)

K(x, y, s, t) = xyst; 0 ≤ x, y, s, t ≤ 1

Also, let a = 0, b = 1. The exact solution of this
example is given by

f(x, y, r) = r(
1

3
r +

8

3
)(x+ y + 1)

f(x, y, r) = (2r2 − 4r + 5)(x+ y + 1)

By using the proposed method in Section 5, we
can present the approximate solution for this ex-
ample. To compare the numerical results with
the exact solution for different values of x, y and
k, see Tables 4-5.

6 Conclusion

To approximate the solution of 2FFIE of the sec-
ond kind, a new approach based on fuzzy wavelet
like operator via a real-valued scaling function
and collocation method is proposed. Convergence
analysis of the proposed method is investigated
by using the modulus of continuity in one theo-
rem. To illustrate the efficiency of the presented
method, two examples are given. Comparing
the numerical solutions with the exact solution
show that the proposed method can be a suitable
method for solving 2FFIE ofthe second numeri-
cally .
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Table 1: Numerical results for Example 5.1 for k = 2, x =
1

4
, y =

1

2

r |f(x, y)− (Bkf)(x, y)| |f(x, y)−Bkf(x, y)|

0.1 0.000869398 0.0308162
0.2 0.00189687 0.0299705
0.3 0.00189687 0.02903
0.4 0.00442603 0.0279472
0.5 0.00592771 0.0266747
0.6 0.00758747 0.0251651
0.7 0.00940531 0.023371
0.8 0.0113812 0.0212449
0.9 0.0135152 0.0187395
1.0 0.0158072 0.0158072

Table 2: Numerical result for Example 5.1 with k = 3, x =
1

8
, y =

2

8

r |f(x, y)− (Bkf)(x, y)| |f(x, y)−Bkf(x, y)|

0.1 0.0000430158 0.00152471
0.2 0.0000938526 0.00148287
0.3 0.000152511 0.00143634
0.4 0.00021899 0.00138276
0.5 0.00029329 0.0013198
0.6 0.000375411 0.00124511
0.7 0.000465353 0.00115634
0.8 0.000563116 0.00103115
0.9 0.0006687 0.000927186
1.0 0.000782105 0.000782105

Table 3: Numerical results for Example 5.1 for k = 4, x =
1

16
, y =

1

8

r |f(x, y)− (Bkf)(x, y)| |f(x, y)−Bkf(x, y)|

0.1 5.0409210−6 0.00152471
0.2 0.0000109984 0.00148287
0.3 0.0000178724 0.00143634
0.4 0.0000256629 0.00138276
0.5 0.0000343699 0.0013198
0.6 0.0000439935 0.00124511
0.7 0.0000545336 0.00115634
0.8 0.0000783634 0.00103115
0.9 0.0006687 0.000927186
1.0 0.0000916531 0.000782105
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