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Annular Component Transient
Thermoelastic Analysis Using a
State Space Approach

Annular components are used widely in engineering systems and include bearing bushes
and races, which may be exposed to extreme operating conditions. A method to establish
the localized transient thermoelastic deformation of a homogeneous two-dimensional
annular component is developed. The analysis is based on solving the thermoelasticity
equations using a state space formulation for the Fourier components of the radial and
tangential displacements. Two boundary conditions are considered, namely, rigid and
resiliently mounted outer boundaries, both associated with stress free inner boundary
conditions. The thermoelastic solution is then demonstrated for a transient temperature
distribution induced by inner boundary frictional heating due to rotor contact, which is
derived from a dynamic Hertzian pressure distribution. The application is to a relatively
short auxiliary bearing for which a state of plane stress is appropriate. However; the
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thermoelastic analysis is generalized to cover cases of plane strain and plane stress.
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1 Introduction

There are many types of engineered annular components that
are subjected to dynamic contact loads and frictional heating un-
der operational conditions. A specific example given by Cole et al.
[1] considers the influence of rotor contact on the internal dynam-
ics and the bulk heat dissipation in a rolling element auxiliary
bearing. The most common reason for failure of an auxiliary bear-
ing in a magnetic bearing system is probably due to a combination
of direct mechanical and thermoelastic stresses induced by rapidly
varying localized friction forces in association with high surface
slip velocities. Since the frictional heat input is transient, a general
method for assessing thermoelastic distortion would be of benefit.

Johnson [2] gives a comprehensive overview of a range of con-
tact problems. A more relevant guide for the contact problems
associated with a rolling element bearing system is presented by
Harris [3]. Most contact analyses are based on an elastic half
space solution, i.e., for a small contact dimension compared to the
radius of curvature. If the physical geometry and boundary con-
ditions could be fully accounted for, the analysis would be able to
cover local and global deformation cases of a real component.
Chao and Tan [4] solve the annular thermoelastic problem sub-
jected to a steady state point heat source using complex variable
potentials. The heat source is applied within an annular region,
where outer and inner boundaries are assumed to be isothermal.

The steady state thermoelastic problem for a half space sub-
jected to a unit strength point temperature source was studied by
Sternberg and McDowell [5] using Green’s theorem. A classic half
space study using transient thermoelastic Green’s functions was
published by Barber and Martin-Moran [6]. They utilized the Fla-
mant point force solution together with the hoop stress induced by
a unit impulse line heat source to obtain an equal and opposite
surface pressure from the convolution theorem. The pressure was
then superimposed with the original stress field to give a stress
free surface condition. Difficulties were encountered in determin-
ing the stress field within the elastic half space due to the con-
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straint imposed by the Flamant solution in calculating the offset
pressure. Therefore, only displacements for particular distribu-
tions of transient surface heating were presented. Barber’s later
work with Azarkhin [7] overcame these issues by using the com-
plex variable method. Other literature on frictional heating ther-
moelastic analysis including two-dimensional sliding contact is
given by Yevtushenko and Kovalenko [8] and Yevtushenko and
Kulchytsky-Zhyhailo [9]. A three-dimensional transient half space
thermoelastic transient analysis is covered by Liu and Wang [10].
Most of these results are based on the knowledge of the associated
heat conduction solutions that are presented by Carslaw and Jae-
ger [11].

Recently, Tarn and Wang [12] investigated the problem of lami-
nated composite tubes subjected to various mechanical loading by
means of a state space approach. The following work [13] used a
similar approach to analyze the thermoelastic behavior of a cylin-
drical anisotropy model using a state space formalism. Papers by
Ezzat et al. [14] and El-Maghraby and Yossef [15] also use state
space approaches to investigate thermoelastic problems.

Analytical thermoelastic solutions arising from transient ther-
mal conditions within an annular component have not been re-
ported in the open literature. Since the thermal conditions are
taken to be transient, the solution is not possible using a complex
temperature potential. A state space formulation is therefore pro-
posed in this paper since different mechanical boundary condi-
tions may be incorporated without changing the overall form of
the solution. Two boundary conditions are considered, namely,
rigid and resiliently mounted outer boundaries, both with a stress
free inner boundary condition.

2 Basic Thermoelastic Equations

Suppose that a homogeneous elastic body experiences change
in temperature such that corresponding deformations may be con-
sidered to be quasistatic, i.e., elastic wave excitation is negligible.
By ignoring body forces, the equilibrium equations are given in
terms of polar coordinates (r, 6) as follows [16]:
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where o, and o are radial and hoop stresses, respectively, and 7,
is the shear stress. In terms of radial (u,) and tangential (v,) dis-
placements, the strain-displacement equations are

du,
T oor
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u, ll?l}g
=—+—— 2
o r radb @

1 51/{ (9U9 1)
Yro= (90 ar r
where ¢, and & are principal radial and hoop strains, respectively,
and v, is the shear strain. Under a temperature loading 7, the
two-dimensional stress-strain equations are

o,=NBe, +vey— (1 +v)a,T]
o=\ Bey+ ve,— (1 +v)a,T] (3)
Tr0= G7r9

where G is the shear modulus, v is Poisson’s ratio, and «, is the
coefficient of thermal expansion. Equations (1) and (2) are appli-
cable to any two-dimensional problem, while Egs. (3) determine
whether a state of plane strain or plane stress applies. The coeffi-
cients (\,B) in Egs. (3) should be distinguished as follows:

2G
=12, B=1-v (plane strain case) (4)
2G
A= T B=1 (plane stress case) (5)
-V

Under this generalization, using Egs. (1)-(3), the equilibrium
equations may be expressed in terms of the elastic displacements
according to

Pu, lou, u, G Pu, (WI+G) Pvy (BN+G)dv,
>t -5+ ST + — -
ot rar ARt NBr drdd  \NBr* 96
(1+v) 9T
= ae_
B or
ﬂzvg lavy vy ABPvy (WI+G)Pu, (BA+G)du,
R M e i e il I
ar’ r&r ? G o Gr  drdf Gr a6
A1+ aT
MLy T (6)
Gr a6

For the practical bearing problem envisaged in this paper, a state
of plane stress would be typical. However, the generality of Egs.
(6) is retained since the only detail is in the choice between Egs.
(4) and (5).

3 State Space Modeling

This technique is widely use in dynamic system modeling [17]
but has received little attention for elasticity problems. A state
space model consists of a state equation and an output equation.
The state equation is a system of first order ordinary differential
equations that describes fully the physical system behavior. The
output equation represents user defined parameters of interest. The
following analysis shows how the approach may be used to rep-
resent the distortional behavior of a thermally loaded annular
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component. The temperature 7 is generally time dependent; how-
ever, the quasistatic equations of elasticity are taken.

3.1 State Equation. The displacements are combined in the
vector w=[u,,v,]". Equations (6) may then be consolidated into
the vector form

Pw tow w1 Aw L P w1
ar rar 22 Lo r Carde r2 o0
(7)
where
G/\ 0 0 1/
M1= B M2=(V)\+G) B
0 ABIG 1/G 0
M. = (\3+G) 0 -1/AB
= +
=B G 0
and
I&T A JT
f= (1+V)ar[ ]
B(?r Gr(90

Now express the angular variation through Fourier series repre-
sentations of w and 7=

w= >, we" T= >, T (8)
Equation (7) then yields
> w,
or’

rP—*+mB,— -C,w,=f, 9)

where the matrix coefficients are defined by

B,=1+inM, C,=I1+n’M,-inM, (10)
and the right hand side input vector is
19T, Mn_ |"
£,(r,0)=(1+ V)agrz[——”, i—nTn] (11)
B or  Gr

Equation (9) is a second order ordinary differential equation with
variable coefficients. It can be transformed into an equation with
constant coefficients by setting r=e*:

W, (z,1) = w,(e%,1) (12)
which yields
PW, IW,,
2 + (Bn -1 - ann = Fn (1 3)
9z
where
1 ﬁTn Z,t )\n 7
F,(z,0) =(1 +v)a,e* ( ) (Z,l‘) (14)
0z
and
T(z.0) =T,(¢".1) (15)

Although quasistatic elasticity equations are used, the time vari-
able ¢ is shown for completeness. Equation (13) may now be
reduced to first order form through

W, ,
X,=—L=W,
Jz
(16)
X}; + (Bn - I)Xn - ann = Fn

where ' denotes partial differentiation with respect to z. By de-
fining the system state vector as
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W,(2.0) ]
Z,(z,t) = 17
@) [X,,(z,t) (17
it follows that the state equation is
Z,(z.0) =A,Z,(z,1) +E,(z,1) (18)
where the constant coefficient system matrix is
A 0 ! (19)
" Cn I- Bn _
and the input vector is
E,(z,1)= 20
@) [Fn(z,t) ] 20

3.2 General Solution of the State Equation. Equation (18)
may be solved using an integrating factor to yield

Z,(2,0) =ML, (20) + f MR (p0dp (1)

Z

The “initial” value Z,(z;,7) has yet to be determined. It must be
related to mechanical boundary conditions. To make further
progress, an output equation is defined.

3.3 Output Equation. The output equation defines the pa-
rameters that are of interest in terms of the state and input vectors:

Y,(z,0) = G,(2)Z,(z,1) + H,()E,(z.1) (22)

For polar coordinates associated with the annular problem, it is
appropriate to define

y(r.6.0)= X y,(r.ne"’ (23)

where y=[u,,v4,0,,04,7,9)". Setting r=e¢® implies that
Yn(ryt) = Yn(z,t) = [Urn(z,t)yVﬂn(z’[)7Arn(zvt)aAHn(Z,t)7Ar&n(ZJ)]T
(24)

where

Urn(ZJ) = um(ezvt)
(25)
V@n(z’t) = Uﬁn(ez’t)

and the radial derivatives implicit in Egs. (3) imply that

A, (z,0) =N [ BU,,(2,0) + vU,,(z,1) + invV y,(z,1)]

N1+ v)a,T,(z.1)

Ay, (z.0) = Ne™[vU,,(z,1) + BU,,(z.0) + inBV ,(z,1)]

N1+ v)a,T,(z.1) (26)

Arﬁn(zvt) = GE_Z[V;M(Z,[‘) + inUrn(Zsl) - V@n(z’t)]

It is now possible to deduce that the matrices in the output equa-
tion (Eq. (22)) must have the forms
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1 0 0 0
0 1 0 0
G,(z)=| Ave™™ in\ve™™ ABe™™ O
NBe™ in\Be™* Ave™* 0
inGe™ —Ge™* 0 Ge*
(27)
0000
~loooo
H)="00 01
0001
0000

4 State Space Model With Physical Boundary Condi-
tions

The state space representation of Egs. (18) and (22) for the
thermoelastic annular problem must be solved with appropriate
mechanical boundary conditions. Two distinct boundary condition
combinations are considered, namely,

e (B1) rigid outer boundary (r=r,) with stress free inner
boundary (r=r;)

e (B2) resiliently mounted outer boundary (r=r,) with stress
free inner boundary (r=r;)

At this stage, the analysis is applicable to any dynamic two-
dimensional temperature distribution 7(r, ,7). Thermal boundary
and initial conditions will of course determine the temperature,
but they do not need to be specified at this point. The following
subsections demonstrate the procedure for determining the un-
known state vector Z,(z;,t), which is associated with the inner
boundary.

4.1 Rigid Outer Boundary (B1). Consider the two-
dimensional annulus with a fixed outer boundary, as shown in Fig.
1(a). The inner and outer radii are r; and r,, respectively, and after
transformation, z;=Inr; and z,=Inr,. If the inner boundary is
stress free, the boundary conditions are

O-r(ri,t) = rﬂ(ri’t) =0
(28)
Mr(rmt) = Uﬁ(ro’t) =0

To determine Z,,(z,-,t):cfjg(t), the state vector at the outer bound-
ary is expressed from Eq. (21) as

Z,(z0,1) = MG HelE(r) + f A PE, (p,0dp  (29)

Zi
4

The inner and outer boundary conditions in Eq. (28) imply that the
output vector may be expressed at z=z;,z, according to
Yn(zist) = [Urn(zist)v Vﬁn(zivt)vO’AGn(zivt)’O]Tz Gn(zi)c;ig(t)
+ Hn(zi)En(zist)

Yn(zmt) = [OsoﬁAm(Z()st)’Aﬁn(Zmt)’Aan(th)]Tz Gn(Z())Zn(th)
+H,(2,)E,(2,,1) (30)
The hoop stress components are not specifically required to satisfy

the boundary conditions. Therefore, by deleting the fourth rows in
Egs. (30), the following 2 X2 subblock forms may be derived:
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Fig. 1 Mounting configurations for annular component: (a)
rigid outer boundary and (b) resiliently mounted outer

boundary
M T o2
0 16z Gunlz) (1) 0 H,»(z)
x[ 0 ] (31)
F,(z;1)
and

Mot el
Az ] [Gai(z) Gunlz,) JLAn A ()
{ 1 0 HCI),,I(z)] [0 0 ]
’ G,21(z,) Goaz,) JLP,(0) * 0 H,(z,)

x[ 0 ] (32)
F,(z,.1)
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Here,

U,z = [U’"(Z”) ] Aed)= [ Anlzt) ] iy = [ i) ]

Vﬁn(z’l) Arﬁn(z’l) ”é(t)
| Ay inkv AB O
Gp(x)=e— inG -G G,(2) = 0 G
iGe™*|0 1
H,,(2) = % [0 0 ]

|:An” Anl2 :| = €A”(z“7zi) |:‘I)”I (t) :| = f“ﬁ (,’An(zrfp)En(py t)dp
Api A ®D,,(1) 5

Setting
|:Jnll Jn12:| _|: I 0 :||:Anll A)112:| (33)
Joot Iz Gi(z0) Guna(z,) [LA A
the second block row of Eq. (31) and the first block row of Eq.

(32) yield
G 01 (2)€)5(1) + Gooa(2)eps (1) + Hoo(2)F ,(2,,1) = 0

(34)
Jnllcnl(t)-"Jancl(t)+q)nl(t) 0
Therefore, the required vector is
i Gn i Gn i - Hn iFn i’t
c;‘g(t)z—[ 21(z)) 22(2)} [ 2(2)F,(z )] (35)
Ja Jui2 D, (1)

4.2 Resiliently Mounted Outer Boundary (B2). Consider
now a resiliently mounted annulus, where outer boundary move-
ment is permissible (Fig. 1(b)). The annulus is subjected to ther-
mal loading, and deformation at the outer boundary is equilibrated
by resilient constraints. If the constraints are considered to be
linear mechanical elements, the outer boundary conditions may be
expressed as

O-r(ro,l) + krur(ro,t) =0
(36)
Uﬂ(rmt) + kgvg(l’(,,f) =0

where k, and kg are stiffnesses per unit width opposing radial and
tangential displacements, respectively. In Egs. (36), the tangential
constraint is considered to induce hoop stress in the outer bound-
ary. In some applications, it may be more appropriate to replace
the hoop stress by the shear stress. In either case, Z,(z;,1)

=¢;*(r) must be established. The output vector at the outer bound-
ary can be written as

Y)I(Z(Nt) = |:_ k:lAr)l(Z(Ht)’
= K5 A (20D A (200 1) A (200, A (200 1) 1T
= GII(Z())Z}'!(Z()’t) + HH(Z())EH(ZU? t) (37)

where Z,,(z(,,t):eA"(zﬂ‘zi)cffs(tH I i?eA"(Zﬂ‘l’)En(p,t)dp. Removing
the shear stress term from the last row of the output vector in Eq.
(37), the residual four-dimensional vector may be partitioned into
a pair of two-dimensional vectors. This yields the reduced form to
represent the boundary conditions of Eq. (36):

|:— K_IKH(Z(Ht) ] _ |:jn11 j,zlg :| |: ’rlels(t) :| . |:Rn](t)]
/~\,,(z(,,t) jnZ] J22 {0 R,»(1)
(38)

where

_ kr 0 X _ A,~,,(Z,t) res _ :zerls(t)
K - |:0 k0:| A”(Z’t) - |:A0n(zvt) :| cﬂ (t) - |: reg(t) :|
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TR =[ I 0 ][Anu An12:|
jnZl jnzz GnZl(Zo) GnZZ(Z()) Ar121 Ar122

0 H%(ﬁ}m e
61121(20) énZZ(Z(,) (I)nz(t) 1n22\Zp) X 2,5

& e ﬂ[hv inxv] & e %[xﬁ 0}
21(2) =e \B in\B m(z)=e v 0

~ iGe™®|0 1
HnZQ(Z) = T|: :|

m@=[

01
Manipulation of the subblock rows of Eq. (38) gives
(an]] +jl12|)c:lels(t) + (an]2 + jnll)c:ze;(t) + KRn] (t) + RnZ(t) =0
(39)

To determine ¢, (1), a second relation, similar to Eq. (31) for the
inner boundary, is

{U,xz,«,r)]_[ Lo ]{c;ef(t)}+[0 ’ }
0 - Gi(z) Gum(z) L@ 0 H,y(z)

|:I Zis :|
X
n( il)

(40)
Taking the second block row of Eq. (40) gives
anZl(Zi)c;eig(t) + 6»122(Zi)c,rle;(t) + i:In22(Zi)Fn(Zi7t) =0 (41)

Equations (39) and (41) now yield

- _ ar

G1(z) G,x(2) |: H,,,(z)F,(z;1) :|

K, + 30 Kl +J,: KR, (1) + R,(1)
(42)

() = -

5 Thermoelastic Line Source Green’s Function

5.1 Transient Temperature Distribution. Consider the an-
nular component to be subjected to inner boundary heating. The
temperature distribution in the component can be evaluated using
a convolution of a Green’s function solution and the surface heat
source distribution. The form of the Green’s function solution for
an instantaneous unit line source at #=¢=0 under adiabatic bound-
ary conditions may be stated in Fourier series form [11]

To(r,6,1) = >, Tg,(r,0e"

n=—ow

(43)

The harmonic coefficients in the 6 coordinate are time dependent;
hence, they may be expressed in terms of an inverse Laplace
transform

1 c+io _
TGn(r’t) = %J TGn(r’s)eStdS (44)

with
_ Kn(’yr)l;;(’yr()) - In(yr)K;;(yr(})
27Ky yr [ K (yr L (yre) = L(yr) Ky (yr,)]

where I, and K, are modified Bessel functions, y=1\s/ky, K, is
the thermal conductivity, and «, is the thermal diffusivity.

There are well known techniques that may be used to evaluate
Eq. (44) numerically, including completion of the contour of in-
tegration in the left half of the complex plane. However, there are
issues relating to poor series convergence with the use of Eq. (43)
for localized heat input problems. An improved representation is

]_"Gn(r,s) =

822 / Vol. 129, OCTOBER 2007

annular
component

2 half space
—

RN
/

Fig. 2 Coordinate systems for superimposed annular and half
space regions. The line source location is the axial line through
0.

derived in Ref. [18] by comparison with the local half space
Green’s function Tgy. The complete solution has the form

t
To(r,0.t) = Tgy(r, 6,1) — f g(DTgy(r,0,t— 1)dr

27TKb 0

%

+ E TGRn(r’t)ei”H

n=-ow

(45)

where

—pPl4 Kpt

Tey(r,0,t) =
onlr, 0,1) o

— '
i 1 \VKp 2 —

gp(1) = —2| = = —=2e" "7 exfe(\kyt/2r;)
2ri | Nwt 2r;

with p= \s"r2+riz—2rr,~ cos 6. The residual series in Eq. (45) is, in
fact, convergent for all 7=0 and all 6.

5.2 Displacement and Stress Issues. The transient tempera-
ture harmonics from Eq. (43) may be used directly in the input
vector of Eq. (11) to derive the displacements and stresses appro-
priate for either of the boundary conditions (B1) or (B2). Corre-
sponding to T, let the thermoelastic displacement and stress vec-
tor of Eq. (23) be denoted in the form

0

E an(r’[)eino‘l
=" (46)

2 oG, (r,1)e™’

n=-

w(r,0,1) ]

og(r,6,1)

YG(r’ 0’t) = |:

where wg=[ug, vgel” and og=[0g,,0Ge 7Gre)"- The harmonics
may be determined using the methodology described in Sec. 4.
Since the singular nature of the thermal Green’s function will
affect displacements and stresses at #=r=0, the resulting Fourier
series in Eq. (46) will also be poorly convergent at short time
scales. Hence, it is appropriate to improve matters by introducing
half space displacement solutions to represent the singular behav-
ior in more detail, in particular, close to the line source. Figure 2
shows a half space that has been superimposed onto a cross sec-
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Table 1

Data used for thermoelastic case study

Auxiliary bearing

Operating parameters

Inner radius r;=20.0 mm

Outer radius 7,=22.0 mm

Width /,=6.0 mm

Density p,=7850 kg/m?

Specific heat ¢,=500 J/kg K

Conductivity K,=50 W/m K

Diffusivity «,=1.27 X 107> m?/s

Thermal expansion coefficient e, =11X 107%/K
Shear modulus G=80 X 10° N/m?

Poisson ratio »=0.3

Radial stiffness/length k,=3.45X 103 N/m?3
Tangential stiffness/length k,=5X 10'" N/m?3
Contact angle 6,=195 rad

Heat flux/length ¢,=1.36 X 10° W/m?
Contact duration frequency w,.=159 rad/s

tion of the annular component. The half space surface and the
component inner surface coincide along the axial line r=r;, =0
through the point O’, which is also the location of the line source.
Referring to the Cartesian coordinates shown in Fig. 2, Barber and
Martin-Moran [6] derived half space surface displacements that
satisfy stress free boundary conditions:

a, (1+v)

—
prCbVKb[ (B+ V)

Fy(Y)

ug(Y,1) =

(47)

a, (1+V)<l—e"y2)
ﬂpbcb\*'r;,lf (B+7) Y

where Y=y/ 2\«’7;,[, pp 1s the density, ¢, is the specific heat, and

uGHy(Ys 1=

2 7 (7
FI(Y)=?67 f eSds (48)

VT 0

Although the displacement forms of Eq. (47) are valid on the half
space surface only, they are useful for the annular component
problem. The surface displacements of Eq. (47) are “continued”
away from the surface by replacing the surface coordinate ¥ with
a radial coordinate R=p/2\e‘“‘ kpt. The singular behavior in the con-
tinued radial and tangential displacements is then contained in the
forms

©

U, 0,1) = ug,(R,t)cos 6= E Hgym(rte™?

n=—0

(49)

0

MGH},(R,Z)COS 0= 2 leHgn(r,l)eine

n=—0

r;tan 6

Ugyg(r, 0,t) =

where terms involving sin # have not been included since they are
bounded at #=0. The multiplying factor (r; tan 6/R) has been in-
troduced for analytical convenience, as apparent in the Appendix,
but it does not change the nature of the singular behavior. Expres-
sions for the harmonic terms in Eq. (49) are provided in the Ap-
pendix. It is now evident that the displacement terms in Eq. (46)
may be rewritten in the form

we(r, 0,1) = Wey(r, 0.1) + E Wern(r.t)e™?

n=—0©

(50)

where Wey=[itgy Ugrel” and Woga=We,=LiGHmsUcnoml’- The
benefits of using Eq. (50) will be demonstrated in Sec. 6. It is
noted that the introduction of Wy does not change the solution so
that the correct boundary conditions are still satisfied. The purpose
of Wgy is to increase the rate of convergence of the residual Fou-
rier series in Eq. (50).

It remains to comment on whether the same technique may be
applied to obtain a more efficient representation for the stresses in
Eq. (46). Although the nominal forms of Eq. (49) are deduced
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from stress free half space surface displacements, they are not true
elastic displacement solutions. Furthermore, when Y is replaced
by R=p/2\kt in Eq. (47), the stress free half space surface con-
dition is no longer satisfied according to Hooke’s law. Therefore,
the stress forms of Eq. (46) will be unchanged for the present
paper.

6 Case Study Example

6.1 Validation of the Solution Method. The analysis of Sec.
4 was introduced to enable efficient evaluation of transient ther-
moelastic distortion. This was developed in Secs. 5.1 and 5.2 to
define thermoelastic Green’s functions that are useful for short
time scales and localized problems. There is some complexity in
the methodology, which raises the question of validation. At
present, experimental results in the open literature for transient
thermoelastic distortion are very limited. In fact, no meaningful
comparison with the analysis could be made. It was therefore
decided upon to compare analytical results with those predicted
by already validated finite element software [19].

A key stage in the validation process is to ensure that for a
given temperature distribution, the thermoelastic displacements
are correctly predicted. The geometric and material data for the
auxiliary bearing specified in Table 1 were selected. A transient
temperature distribution was evaluated as part of the finite ele-
ment solution by applying a constant heat flux on the inner surface
of the bearing over an arclength of 0.155 rad. After 20 s, the tem-
perature distribution was saved and the discrete data interpolated
as denoted by 7(r, ). This was the common input for the evalu-
ation of specific thermoelastic solutions:

(i) u,(r,6) for either boundary condition (B1) or (B2) using
the methodology of Sec. 4 with 50 retained harmonics
under a state of plane stress

(ii) u®(r, ) for either boundary condition (B1) or (B2) using
the finite element method [19] under a state of plane
stress. To achieve (B2), a second composite ring was con-
sidered to be bonded to the annular component.

In producing the results from (ii), the annular component was
discretized into a (r, 6) grid of dimension 7 X 361, large enough to
produce grid independent finite element elastic solutions for the
particular temperature distribution 7(r, 6). A comparison of nor-
malized results from (i) and (ii) is shown in Fig. 3. For the fixed
outer boundary condition (B1), the maximum relative error is be-
low 0.5%. For the resilient outer boundary condition (B2), the
maximum relative error is just above 1%. Similar errors were
predicted for the other output variables. These small differences
are attributable to interpolation errors in the evaluation of the
temperature harmonics and their derivatives in Egs. (14) and (15).
These errors arise from the finite element representation of 7(r, 6)
in this validation process, but would not be present in the general

OCTOBER 2007, Vol. 129 / 823

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1 0.5
(a) Left hand side axis 104

——————— Right hand sidc axis :50 3 =

ke FH A S

055 H IS

o Ho2 3

I ) L™ 2

5 [lde Lo [0 I
S o— : . Ty 0 <5
3 0 T 2n =
a 9 (rad) &
S

. . =

= (b} Left hand side axis =
------- Right hand side axis %

0.5); i

P . L)

e o ! X
CON A

00 n 21{2

8 (rad)

Fig. 3 Normalized solutions and relative errors between finite
element and analytical solutions: (a) rigid outer boundary and
(b) resilient outer boundary

application of the analytical method based on thermal Green’s
functions. It is therefore concluded that the analytical results are
consistent with those produced by validated finite element
software.

Further comment is also included to emphasize the fact that
finer grids would be required to obtain sufficiently accurate finite
element solutions corresponding to more localized temperature
distributions. If the solutions are also highly transient, either a
time dependent grid could be used, otherwise a conservatively fine
grid with implications for long execution times.

6.2 Further Practical Results. An example of a spinning ro-
tor making dynamic contact with an auxiliary bearing bushing is
considered. Typically, an auxiliary bearing is a relatively short
component so that a state of plane stress is appropriate. The ther-
mal problem alone has been covered in Ref. [18] so an outline
only of this aspect is presented. For a single contact event starting
at §=1=0, the heat flux per unit length into the bearing arises from
surface slip within a Hertzian contact zone. It is expressible as

GNP R-F - P10y = 0= ¢(1)6,

6,1) =
9(6.0) 0 otherwise

(51)
where 26, is the maximum angular extent of the contact zone. It is
taken that the contact arises between the rotor and auxiliary bear-
ing in the presence of radial clearance, hence in a nonconformal
manner. The form of ¢(#)=0 defines the dynamic nature of the
contact event. If it involves a finite duration bounce type rotor
motion, then ¢(¢)=sin w.t is a useful approximation when 0<¢
</ w,, with ¢(t)=0 otherwise. The outer and side faces of the
auxiliary bearing are adiabatic and the initial condition is one of
zero temperature.
The contact induced temperature is given by

©

TAr,0,0) =1, >, T.(r.0)e™

n=-o

(52)

where [, is the bearing length and
e™"%q(@, 1)d¢Tg,(r.t = 1)dT
‘P=-¢(T) 90

t &)
T, (r,t)= f
=0
mOyp(7)

=40f TL(”@@(T))TG"(M— ndr  (53)
=0

whenever n#0; otherwise, T.o(r,0)=qof"_o3 (D> Tgo(r,t
—7)d7. The alternative form of T in Eq. (46) may be used to
modify Eq. (53) to the form
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Fig. 4 Time variation of inner surface temperature at contact
point #=0 together with the associated heat flux. The data in
Table 1 apply.

t

1
T.(r,0,0) =T y(r,0,0) ——— | gp(DT.y(r,0,t—1)dT
27TK$ 0

+ 2 Togn(r,)e™

n=—0

(54)

with a remainder series that has an improved rate of convergence.
Details are given in Ref. [18].

Thermoelastic results are now evaluated for the data given in
Table 1. The length/diameter ratio for the auxiliary bearing is
1,/2r;=0.15, which justifies the use of a plane stress condition.
The angular extent of the contact zone was determined from a
contact force of 10 kN applied from a 19.5 mm radius steel rotor
having a radial clearance of 0.5 mm. Figures 4 and 5 show the
transient nature of the contact induced temperature, which was
evaluated from Eq. (54) with the remainder series truncated at 50
harmonics. If the direct form of Eq. (52) were used, the short time
scale representations would be poor. The temperature rises rapidly
during the contact period and just after the contact event has fin-
ished (1 ms), the localized behavior is clear. This is followed by a
transient decrease to lower and more diffuse temperatures.

The thermoelastic displacements and stresses follow directly
from the convolution integrals:

w.(r,0,t) =1, 2 w,,(r,0e"? o (r0.1)=1, E o, (r,r)e"’
(55)
where
t @(7) 6,
We,(r.1) = J e "¢q(@, Ddewe,(r,t — Ndr
=0 7 p=—¢(7) 6,
56
t P(7) 6, ( )
o,(r.1) =J e"%q(@, Ndog,(r,t — Ndr
=0 7 o=—¢(7) 6,

Figure 6 shows the variation of the thermoelastic Green’s function
W on the inner bearing surface at a particular value of time. The
radial and tangential components were evaluated using series trun-
cated at 50 harmonics, either directly from Eq. (46) or from the
modified form of Eq. (50). The truncated form of Eq. (46) does
not efficiently represent the localized nature of ug, which is evi-
dent from the oscillatory variations on the inner surface. For this
reason, the improved form of Eq. (50) was used to evaluate the
contact induced thermoelastic displacement:
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Fig. 5 Contact induced temperature distributions at (a) t
=1 ms, (b) t=10 ms, and (¢) =100 ms

0

(H(r 0[)+ E chn(r [)e”m

n=-x

w,(r,0,1) = (57)

where

V_V(TH(r7 0’t) = f f q(‘Pv T)V_VGH(ra 60— (P’t - T)dQDdT
=0 —p(7) 6,

58
oo (58)
chn(rvt)zj f

=0 —p(7) 6,

The contact induced thermoelastic displacements were evalu-
ated for the rigid (B1) and resiliently (B2) mounted cases by using
Egs. (36) and (43), respectively. Figure 7 shows the time variation
of the radial displacements on the inner and outer surfaces at 6

zmpq((p, T)d(PwGRn(rvt_ T)dT
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Fig. 6 Comparison of inner surface radial and tangential ther-
moelastic displacements of Green’s function evaluated at t
=10 ms. The dashed line corresponds to a truncated series of
50 harmonics from Eq. (46), while the solid line corresponds to
a truncated series of 50 harmonics from Eq. (50).

=0. The corresponding nature of the displacement distributions is
shown in Figs. 8 and 9. The transient distortion of the outer sur-
face in the resiliently mounted case would certainly be of interest
for specifications associated with the auxiliary bearing mounting
arrangement. For example, a preload could be applied to prevent
debonding with elastomeric mounting material. The displacement
of the inner surface also has implications for loss of clearance
with the rotor, particularly if the rotor dynamics cause repeated
contacts to occur.

The evaluation of stresses from the direct summation in Eq.
(56) with 50 harmonics was limited in accuracy at short time
scales by the localized nature of the problem. Therefore, the re-
sults obtained for =1 ms are not presented. The longer time re-
sults, covering both mounting cases, are shown in Figs. 10-13.
Radial tensile stresses are predicted on the outer boundary at ¢
=10 ms, which then become compressive at the later time of ¢
=1 s. The level of preload to prevent overall tensile stresses could
be assessed from such predictions. The von Mises stresses are

12 - : :
—Resiliently mounted problem ( » = )
| - - -Resiliently mounted problem ( » = r )
—— Rigidly mounted problem ( » = 7 )

| u_ (.0, ) (um)

t (ms)

Fig. 7 Time variation of thermoelastic radial displacements at
6=0. The data in Table 1 apply.
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Fig. 8 Thermoelastic surface distortion of the rigidly mounted bearing at (a)

t=1 ms, (b) t=10 ms, and (¢) t=100 ms

below yield values at the considered time points. However, re-
peated contacts could result in a dynamic accumulation of stress
levels. This is the subject of further work.

7 Conclusions

A study of the localized and transient thermoelastic problem for
an annular component has been presented. The transient behavior
prevents the application of standard potential function thermoelas-
tic methods. A finite element approach to the problem would also

involve the complexity of a time varying grid with fine spacing to
encapsulate the localized parameter variations. A method was
therefore developed to solve for the pseudostatic harmonic dis-
placement components from a state space formulation. This al-
lows for convenient implementation of different mechanical
boundary conditions, as demonstrated for rigid and resiliently
mounted cases. The general forms of the thermoelastic Green’s
functions were presented.

The application to problems involving highly localized tran-

y (mm)

(a) * (mm) (b)

x (mm) (c)

25
x (mm)

Fig. 9 Thermoelastic surface distortions of the resiliently mounted bearing at
(a) t=1 ms, (b) t=10 ms, and (c¢) =100 ms
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Fig. 11
bearing at (a) t=10 ms and (b) t=1s

sient heating, as is appropriate to contact based problems, will
lead to poor rates of convergence in the direct series representa-
tions. However, the localized thermoelastic behavior may be ex-
tracted by introducing half space solutions, for which the residual
Fourier series have an improved rate of convergence. The success
of this method relies on the availability of Fourier components
from the half space forms in order that the residual series may be
formed. For the displacements, this was realizable by continuation
of the half space surface displacements of Barber and Martin-
Moran into the annular region. The same technique could not be
applied to the half space surface stress components, which are
always zero. Until half space stresses can be expanded in conve-

il
4%‘/»’5/\7% Gy

AR,
il
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105 SRS

Thermoelastic von Mises stress distributions for the rigidly mounted

nient Fourier series forms in the enveloped annular region, a lo-
calized stress solution will have a slow convergence rate at short
time scales.

Results were obtained for a typical problem involving contact
between a spinning rotor and an auxiliary bearing bushing. The
localized deformation of the inner surface was determined suc-
cessfully over a complete range of time scales. However, the ther-
moelastic stress solution accuracy at very short time scales was
limited by the level of Fourier series truncation. Nonetheless, the
method allows many useful stress predictions to be made, particu-
larly at the outer surface boundary where tensile stresses will be
important for the life prediction of auxiliary bearings.
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Fig. 12 Thermoelastic radial stress distributions for the resiliently mounted
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Fig. 13 Thermoelastic von Mises stress distributions for the resiliently
mounted bearing at (a) £=10 ms and (b) t=1 s

Journal of Tribology

OCTOBER 2007, Vol. 129 / 827

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Acknowledgment

The authors acknowledge the receipt of funding from an Over-
seas Research Student award, a Postgraduate Studentship from the
University of Bath, together with support from EPSRC Platform
Grant No. GR/S64448/01.

Appendix: Fourier Decomposition of Half Space Forms
Firstly, it is noted [11] that
e*p2/4kbt

5 = E a,(r,ne"? (A1)

n=—o0

R
where p=1 r2+riz—2rr,» cos 6 and

a,(r,t) = K—f f Jn(x)J,,(xr/ri)xe"(bxz’/’izdx (A2)
riJo
Hence,
P! = > cu(re? (A3)

n=—0

where c¢,(r,t)=2ta,(r,t). It is now noted that if R=p/2\e“’f<—bt, then

1-e® Jl
—-=
R 0

where, after some manipulation involving a change of integration
variable, v=1/u, which introduces the first order exponential in-
tegral Ey,

%0

e Ry = > b(rne?

n=—0©

(A4)

I o]
2kt
i) = f elrthdu == f D erlr)xEy il
0 ri Jo

(A5)
It is also possible to express
_R2 (R 1
FI(R) = ,i_e_ eSZdS - = e_pz(l_“2)/4“b’du
vr R J, Nty
= 2 d,(r.t)e"? (A6)

n=—0

Again, a change of integration variable, v=1/(1-u?), yields

) 1
d,(r,1) = —rf ealr,tl(1 = u?))du
0

N

2Kht
=7,

NI

f J,,(x)Jn(xr/rl-)xeKl*"zt/z’r‘zKo(Kbxzt/Zriz)dx
0

(A7)
It now follows from Egs. (47) that

L(l-'—y)gd( 1n0

UGH (R,t)
! mppepNpt (B+ V) 2,
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@,

(1 +v) 2 b,(r,t)e"R

— (A8)
TPRCHN K},l‘ (,3 +v) P

Ugry(R.1) =
The expansion of the radial displacement term in Eq. (49) is then
achieved with the coefficients
(I+v
27 ppep\ Kpt (ﬁ

@,

ﬁGHrn(ryt) == [dn l(r t) + dn+l(r [)]

(A9)

The complication of the multiplier R in Eq. (A8) may be over-
come by noting that the singularity in the Green’s function only
occurs on r=r;, in which case R~ r; tan 6 as §— 0. Therefore, the
coefficients of the tangential component in Eq. (49) are given by

a, (1+v)

47TPbebe (B+ )[b,, (D) = b, (r,0)]

(A10)

5GH(?n(r’ t) =-
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