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Abstract. Anchor points play an important role in DEA theory and application. They define the transition from

the efficient frontier to the “free-disposability” portion of the boundary. Our objective is to use the geometrical

properties of anchor points to design and test an algorithm for their identification. We focus on the variable returns

to scale production possibility set; our results do not depend on any particular DEA LP formulation, primal/dual

form or orientation. Tests on real and synthetic data lead to unexpected insights into their role in the geometry of

the DEA production possibility set.
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1. Introduction

An anchor point in DEA is an extreme-efficient DMU for which some inputs can be increased

and/or outputs decreased without penetrating the interior of the production possibility set. An

anchor point is, therefore, an extreme element of the production possibility set that lies on the

transition between the efficient frontier and the free-disposability part of the boundary.

Anchor points play an important role in DEA theory and applications. Anchor points were

first named and identified by Thanassoulis and Allen (1998). They were used in the generation

of unobserved DMUs created to extend the DEA efficient frontier. Anchor points also play an

important role in the work of Rouse (2004) in identifying prices for healthcare services. Bougnol

(2001) notes that anchor points are the only DMUs that are efficient for more than one constituency.
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Finally, anchor points confound DEA analysis. In the common two-stage DEA approach where

the formulation forgoes non-Archimedean constants, anchor points may be confused with weak

efficient DMUs.

Identifying anchor points conclusively and in general can be complicated. There exist sufficient

conditions for their identification in optimal solutions of some DEA multiplier LP formulations.

These conditions, may or may not be manifested, making it necessary to inspect alternate optima

until either the sufficient conditions can be verified or, after exhaustive search, they never occur.

Exhaustive search of alternate optima is impractical.

A specialized procedure for identifying anchor points appears in Allen and Thanassoulis (2004).

The scheme applies specifically to DEA models with one input and multiple outputs under constant

returns to scale and requires assumptions about the geometry of the efficient frontiers that may

not always be verified. Because of this, the procedure is not guaranteed to always identify all the

anchor points. We compare aspects of this procedure to ours in Appendix A.

The objective of this research is to explore the role of anchor points in the geometry of the

DEA production possibility set and present and test a new algorithm for their identification. Our

results suggest that anchor points play a major role in defining the shape of the DEA production

possibility set.

In the next section, we introduce our notation, present a glossary of useful terms, and discuss

the DMU classification scheme we will use. In Section 3, we study the geometry of anchor points

and present our working definitions and the results that will make our procedure effective. In

Section 4, we formalize the procedure, AnchorProj, for the efficient identification of anchor points.

Computational results based on real and synthetic data are presented in Section 5. All proofs have

been relegated to an appendix.
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2. Notation and Presentation of the Model

The data consist of the set A = {a1, . . . , an} of n points, one for each DMU in the model. A

DMU’s data point is composed of two parts, the input components 0 ≤ Xj ∈ �m1 and the output

components 0 ≤ Yj ∈ �m2 as follows:

aj =

[
−Xj

Yj

]
∈ �m; j = 1, . . . , n.

We assume that Xj �= 0 and Yj �= 0 and that there is no duplication. We will focus our work on

the variable returns (“VR”) production possibility set, PVR, also called the VR hull of the data,

defined next:

PVR =
{

z ∈ �m

∣∣∣∣z ≤
∑

j
ajλj ; s.t.

∑
j
λj = 1, λj ≥ 0; ∀j

}
.

The set PVR is a finitely generated unbounded polyhedron that recedes at every point in the m

unit directions −e1, . . . ,−em1 ,−em1+1, . . . ,−em. The directions of recession make up a full basis

for �m meaning the recession cone has dimension m and, therefore, PVR has full dimension.

The VR production possibility set, PVR, has bounded and unbounded faces. The efficient fron-

tier of this particular production possibility set is the union of the bounded faces. The unbounded

faces make up the free-disposability part of the frontier. These faces recede in a positive combi-

nation of some subset of the negative unit directions. Points on the unbounded faces not in the

intersection with the efficient frontier are said to be weak efficient. The geometry of the production

possibility sets of the other three standard returns to scale assumptions (constant returns (“CR”),

increasing returns (“IR”), and decreasing returns (“DR”) ) differ in important ways, e.g., all faces

of the CR production possibility set are unbounded, but the general notions about anchor points

presented here have equivalences. We will not, however, dwell on these cases.

We will employ a DMU classification scheme reminiscent of Charnes et al. (1991) based on the

categories: i) inefficient, ii) efficient non-extreme, and iii) extreme-efficient. The three categories

define three subsets of A: ‘F,’ ‘E,’ and ‘E∗’ respective of the order above. These three subsets are

a partition of A.

The set E∗ is also called the frame of A. It is a minimal subset of A such that its VR hull is

itself PVR. It is easy to see that the elements of the frame correspond to extreme points of PVR
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(Dulá and Thrall, 2001). Frames are important because they contain all the necessary information

to perform a full DEA study on the data; this can be significant when the frame is a small subset

of the data points.

Before closing this section we present a short glossary of useful terms.

• The hyperplane, H(π, β) ∈ �m, is the set {y ∈ �m| 〈π, y〉 = β}. We refer to π as the

orthogonal vector of the hyperplane and β as its level value.

• A face of a polyhedral set is the support set of a supporting hyperplane.

• A facet of an m-dimensional polyhedral set is an m − 1 dimensional face.

A DMU’s classification can be conclusively resolved by solving a linear program. A DEA LP

and its dual make up a “multiplier”/“envelopment” pair. The results in this paper do not depend

on any particular DEA LP formulation, primal/dual form or orientation. We assume, however,

that the optimal solution to the multiplier LP provides a vector, π∗ ∈ �m, and a value, β∗ ∈ �,

which constitute the orthogonal vector and level value of a hyperplane, H(π∗, β∗), that supports

PVR.

We explore the geometrical properties of anchor points in the next section.

3. Geometry of Anchor Points

We are interested in a particular category of elements of the frame known as anchor points

formally defined next.

Definition 1. The point aĵ ∈ E∗ ⊂ A is an anchor point if it belongs to an unbounded face of

PVR.

This definition generalizes the concept of anchor points originally introduced by Allen and

Thanassoulis (2004). They worked with the specific case of one input and several outputs under

constant returns to scale. Since each point can be scaled by its input value, this structure permits

an analysis and visualization that is equivalent to a VR model with only outputs. As in Definition
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1 above, their anchor points are a subset of E∗. In their definition, an anchor point is one the

outputs of which can be contracted while remaining on the free-disposability part of the boundary

of the production possibility set. Our definition generalizes this concept. Anchor points, according

to Definition 1, are those extreme points the inputs and outputs of which can be expanded or

contracted, respectively, while remaining on the free-disposability boundary of the VR produc-

tion possibility set. Refer to Appendix A for more details on the correspondence between both

definitions.

Both Allen and Thanassoulis (2004) and we restrict anchor points to a subset of extreme-efficient

DMUs. This restriction may be relaxed to allow all efficient DMUs to be their superset. The impact

on the subsequent concepts and procedures is minor requiring a few obvious adjustments.

The concept of an anchor point presented here, along with the various results which follow,

does not require that there be any specific assignment of attributes to inputs or outputs. The

polyhedral set defined by nonnegative DEA data such that the inputs are negated always has the

same recession cone; namely, all negative unit directions. The definition of an anchor point as

an extreme point such that a translation in some negative unit direction produces a new point

on a free-disposability face of the hull applies to both inputs and outputs. If the translation

corresponds to an input component, the resultant point has a value for that particular input that

is more negative. In terms of the actual input data, this means we are considering an effective

increase in the specific input value for that point. This is the exact symmetric equivalent to a

decrease in value for an output component. The relevant geometric property is that the point is

at the intersection of an efficient and an unbounded face of the production possibility set.

Several interesting results and properties about anchor points are a consequence of Definition 1.

We assume that the frame, E∗, of the data has been extracted and all other points are momentarily

discarded.

Result 1. The point aĵ ∈ E∗ is an anchor point if and only if it belongs to the support set of a

supporting hyperplane H(π̂, β̂) ∈ �m such that the orthogonal vector, π̂, contains at least one zero.

Proof. See Appendix B.
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Corollary 1 establishes a correspondence with our definition of anchor points and the one used

by Thanassoulis and Allen (2004).

Corollary 1. If DMU ĵ is an anchor point then increasing an input or decreasing an output

generates a new point on the free-disposability portion of the production possibility set.

Proof. See Appendix B.

A property of anchor points derives from their relation with simple lower dimensional projections

of the production possibility set. Here is what is meant by a simple projection:

Definition 2. The ith simple projection of PVR, PVR
i , is the VR production possibility set of the

n data points where the ith component has been omitted.

Projected data points along with vectors and geometrical objects such as hyperplanes in the

projected space will be identified by a prime “′”. The next result establishes a strong relation

between points on a simple projection and anchor points.

Result 2. Consider the frame of the data set, E∗, exclusively. The data point aĵ ∈ E∗ is an anchor

point if and only if it belongs to the boundary of at least one simple projection.

Proof. See Appendix B.

Result 2 would be weaker if it applied to the entire data set and not just the frame, E∗. If the

entire data set is used it is still necessary that an anchor point projects to the boundary of at least

one simple projection. A sufficient condition, however, is not available since a boundary point on

a projection can correspond to a weak efficient DMU in the full production possibility set. Result

2 will the basis for a procedure, AnchorProj, for identifying the anchor points in a DEA data set

presented in the next section.

Two three-dimensional VR examples will illustrate several of the properties discussed above. In

the first example, the data in Table 1 are used treating all three attributes as outputs. The frame

has eight elements (extreme-efficient DMUs): a1, a2, a3, a4, a5, a9, a10, a13. The three simple (2-D)

projections appear in Fig. 1. Fig. 1a corresponds to simple projection i = 1, i.e., it depicts PVR
1
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Table 1

Data for two DEA 3-D examples

DMUs

Attribute 1

Attribute 2

Attribute 3

1

4

12

3

2

10

10

4

3

13

6

3

4

14

1

5

5

5

9

5.5

6

10

6

4

7

3

7

6

8

6

4

5

9

3

3

8

10

9

2

7

11

12

1

2

12

7

10.5

3.5

13

9.114286

6.757143

5.578571

where only values for Attributes 2 and 3 are plotted. We can see that the projected points a1, a5,

and a9 are frame elements of this projected VR hull and therefore on the boundary. By Result 2,

these points correspond to anchor points in the original three dimensional problem. Similarly, from

Fig. 1b and 1c, we know that a1, a2, a3, a4, a9 and a10 are anchor points. Table 2a summarizes

these results. The letter “F” in Table 2 means that a DMU is a frame element of the VR hull

and/or a projection while the letter “B” means that a DMU is a boundary point. Notice in Table

2a that DMU 13 is extreme but is not an anchor point since it does not appear on the boundary

of any of the three projections.
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Fig. 1. Simple projections: Table 1 data treating all attributes as outputs.

A different example results from the same data in Table 1 by changing the first two attributes’

roles to inputs and keeping the third as an output. The data now generate a three-dimensional

VR hull with four frame elements: a4, a9, a10, a11. The three simple (2-D) projections (without

negating the inputs) are displayed in Fig. 2. All four frame elements project on the boundary

of the first projected VR hull, PVR
1 , implying all are anchor points. Fig. 2b and 2c confirm the

classification for a9 and a11. Table 2b summarizes these results. An interesting situation occurs

with DMU 9 since it projects into an extreme point in all three simple projections. This is not

uncommon and is verified repeatedly in our experiments with more substantial data sets. The
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situation is, however, counterintuitive since in two dimensions it can only occur if there is a unique

efficient DMU. Finally, it turns out that 100% of the frame elements of the full 3-D production

possibility set in this example are anchor points. As we will see later, a relatively large proportion

of anchor points in higher dimensions seems to be the norm.
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Fig. 2. Simple projections: Table 1 treating attributes 1 and 2 as inputs and attribute 3 as an output.

Table 2a

Simple projections report: 0 input, 3 outputs

DMU Frame Proj. 1 Proj. 2 Proj. 3

1

2

3

4

5

9

10

13

F

F

F

F

F

F

F

F

F

0

0

0

F

F

0

0

0

0

0

F

0

F

F

0

F

F

F

F

0

0

0

0

Table 2b

Simple projections report: 2 inputs, 1 output

DMU Frame Proj. 1 Proj. 2 Proj. 3

4

9

10

11

F

F

F

F

F

F

F

B

0

F

0

0

B

F

0

F

A note about face dimensionality and anchor points

The issue of face dimensionality arises in different aspects of DEA. It is an issue in the paper

by Allen and Thanassoulis (2004). Efficient faces in DEA are bounded and they can range in

dimension from m − 1 (facets – possibly none) to zero (extreme points – at least one). Only

points in the relative interior of efficient facets have a unique supporting hyperplane that provide

what Olesen and Petersen (1996) refer to as “well-defined rate of substitution”. Efficient facets

contain lower dimensional faces that are to be distinguished from lower dimensional faces that do

not belong to any efficient facet (e.g., examples in Figures 1B, 2A, and 2B in Olesen and Petersen

(1996)). We will refer to these faces as degenerate. Face dimensionality does not affect our notion



“Anchor Points in DEA.” Page 9

of anchor points or any of the results and procedures to identify them. It is interesting to note that

any point on a degenerate face is on the boundary of some unbounded (i.e., free-disposability) face.

To see this recall that PVR has full dimension. Therefore, any face of dimension less than m − 1

must be part of some higher dimensional face(s). If it is not part of a higher dimensional bounded

face then it must be part of a higher dimensional unbounded face. Such a face necessarily recedes

in at least one negative unit direction and is, therefore, a free disposability face. This implies that

any extreme point on a degenerate face is an anchor point.

We are now ready for a formal procedure for conclusively identifying anchor points.

4. Procedures for Anchor Points

The results from the previous section provide conditions that are used in procedure AnchorProj

to identify the anchor points of a production possibility set. This procedure is presented next.

Procedure AnchorProj

[DATA:] The set A = {a1, . . . , an}.

Phase 1. Find the VR frame, E∗, of A.

Phase 2.

Step 1. For i = 1, . . . , m, find E∗′
i ; where E∗′

i is the subset of the frame elements that

project to extreme points in simple projection i.

Step 2. Find E∗′ = ∪m
i E∗′

i .

Step 3. First Classification:

For all aj ∈ E∗ classify aj as an anchor point if aj ∈ E∗′ .

Step 4. “Mop up”:

For all aj ∈ E∗ \ E∗′, test if they are on the boundary of any of the m projections. If so,

classify as an anchor point; otherwise, classify as non anchor point.

END PROCEDURE AnchorProj.
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Observations and Implementation Notes about Procedure AnchorProj:

1. Phase 1 requires finding the frame of the data; i.e., the extreme-efficient DMUs. This is necessary

for the tests in Phase 2 to be sufficient for conclusive identification of anchor points. Recall that

the frame contains all the information about PVR (Dulá and Thrall, 2001).

2. There are several ways to find the frame of a DEA data set. New efficient output sensitive

algorithms for finding frame of polyhedron hulls can be found in Dulá and López (2005).

3. Frames are used in the second phase of Procedure AnchorProj. This is not a theoretical exigency

as it is for Phase 1. In fact, the same results are obtained applying conventional DEA analysis

to the m simple projections to detect boundary (efficient and weakly efficient) and interior data

points in the m projected problems. The use of frames, however, has definite advantages. First,

it turns out, the vast majority of extreme-efficient DMUs project into extreme points in the

simple projections. Procedures specialized on finding frames extract these points efficiently. If,

and when, further testing is needed to conclusively identify points that did not project into

extreme points (Step 4), having the frame in hand expedites the process.

4. In our implementation, synthetic data were used to test the effect of the frame density on the

performance. Non-extreme boundary points do not occur in these types of data (in general

they are rare in large data sets) therefore the mop-up step (Step 4) in the procedure was not

implemented with these particular data sets.

5. A “naive” approach for identifying anchor points is to perform conventional DEA analysis on

the data and check for the conditions from Result 1; namely, that the DMU being scored is

extreme-efficient and, if so, that at least one optimal multiplier is zero at optimality. A problem

with this is that the presence of a zero multiplier in an optimal solution for an extreme-efficient

DMU is sufficient for it to be an anchor point but it is not necessary. This is because extreme-

efficient DMUs have multiple multiplier optimal solutions some of which may not have any

zeroes even if the point is an anchor point. Looking at (possibly) all alternate optima in an LP

is a notoriously difficult problem which makes a procedure relying on such searches impractical.

Procedure AnchorProj is deterministic and conclusive. Its computational requirements are

known in advance. No more than one frame identification problem for the full data set and m
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additional DEA analyses for each projection need to be solved in the worse case. The approach

using frames for the m subproblems proposed in Procedure AnchorProj does less work than

that since it is opportunistic and only requires a full DEA analysis to resolve the status on

non-extreme points in projected spaces. The DEA LPs used are smaller since the data are the

points that correspond to the full frame in one less dimension.

6. There is a correspondence between procedure AnchorProj and the procedure presented by Allen

and Thanassoulis (2004). This is discussed in detail in Appendix A.

Procedure AnchorProj was coded and tested. The results of this are reported in Section 5.

5. Computational testing of AnchorProj

Procedure AnchorProj was coded using Visual Basic for Applications and Excel. Testing was

performed on an Intel Pentium M running at 1.3 GHz. The LP Solver was CPLEX8.1. Two

types of tests were performed; one to assess general effectiveness of the procedure and the second

specifically targeted to measure the impact of frame density; i.e., the proportion of the data points

that are extreme. The first test used only real data. The second test used synthetic data generated

to display different density properties. The four problems analyzed for the first test were:

1. “Education08by70”. From Rousseau and Semple (1995).

2. “Mortgage07by1177”. Real data from the mortgage industry; the source of this data is pro-

tected. The inputs refer to individual residence characteristics and the outputs refer to appraisal

and sale values.

3. “UFLUnivData10by628”. Real data from University of Florida TheCenter (Lombardi et al.,

2004) used in the study by Bougnol and Dulá (2005).

4. “Banking11by19939”. Real data from the banking industry obtained from the Federal Financial

Institutions Examination Council.

Table 3 reports outcomes and results for four different data sets considered to be typical of our

experience. As expected, we see that times for Phase 1 grow with the cardinality of the data set.
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Table 3

Experiment Results with Real Data

Percent VR Phase 1 Phase 2 Percent
Data File n m Efficient Time (secs.) Time (secs.) Anchor Points

Education08by70 70 8 (5 inputs) 38.57 1 0 100%

Mortgage07by1177 1177 7 (5 inputs) 2.04 4 1 100%

UFLUnivData10by628 628 10 (10 outputs) 1.43 5 1 100%

Banking11by19939 19939 11 (6 inputs) 6.18 1189 447 100%

An unexpected result is the predominance of anchor points. In all real data sets, all extreme-

efficient points were anchor points. The only time we witnessed a less than perfect correspondence

was with the synthetic data but this did not represent an exception to this finding. In the note at

the end of this section, we discuss this phenomenon in more detail.

Not so clear from this problem suite is the impact of the frame density. The frame algorithms

used for these calculations are output sensitive in the sense that their performance depends on the

frame density. An interesting question is how sensitive is AnchorProj to frame density. Fig. 3

answers this question. Recall that in Phase 1, the frame of the full data set is calculated; Phase 2

does the same work for each of the m projections. We used three different synthetic data sets, each

with dimension m =10 and cardinality n = 10000. The data sets represent three levels of frame

densities: “Low” for frame densities between 1 and 5%, “Medium” for frame densities between 10

and 15% and “High” for frame densities above 20%. If we follow the time requirements for Phase 1

(black bars), we observe the expected growth in computation times that corresponds to increased

frame density from “Low” to “Medium” to “High”. The dramatic increase for Phase 2 computations

(gray bars) is a consequence of the multiplicative effect of having to solve 10 subproblems for each

data set. Anchor point preponderance (100%, 99.88%, and 99.85%, respectively) was verified with

these problems too. It is clear that low frame densities can be processed quite efficiently even for

large data sets.
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Fig. 3. Impact of Frame Density on AnchorProj; n=10k, m=10

A note about the prevalence of anchor points

One of the surprising results of this study is the realization that anchor points play a major

role in the geometry of the production possibility set. In a large and varied problem suite which

includes both real and synthetic data, it was verified, without exception, that the vast majority

of all efficient DMUs are anchor points. This characteristic can also be witnessed in Allen and

Thanassoulis (2004) in their application using 662 bank branches where at least 12 of the 13

efficient branches turned out to be anchors. Having used real data from various sources as well as

synthetic data excludes the possibility that this phenomenon is related to the data sets.

The reasons for this anchor point prevalence are not obvious. The geometric properties of the

VR polyhedral hull must play a role. A VR polyhedral hull for a DEA problem with m attributes

has full dimension. There are a total of 2m−2 =
(m

1

)
+

(m
2

)
+ · · ·+

( m
m−1

)
receding faces ranging from

edges (dimension 1) to facets (dimension m− 1). The boundary of these faces, save the edges, can

have any finite number of extreme-efficient DMUs, each of which is an anchor point. This means

that 2m −m−2 faces can have unlimited anchor points. Therefore, the potential for anchor points

is high. For instance, in a DEA problem with ten inputs plus outputs, there are 1,022 receding

faces, of which 1,012 of them can have any finite number of extreme points, i.e., anchor points.

There is plenty of “room” for anchor points in a DEA VR polyhedral hull.
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The paucity of non-anchor extreme-efficient DMUs illustrates how two-dimensional visualization

can result in faulty intuition. In two dimensions, there are at most two anchor points and most

of the 2-D examples we visualize have many more extreme-efficient DMUs. In three dimensions

or more the situation suddenly inverts and anchor points become the rule in what appears to be

an assault on the senses. The scarcity of non-anchor extreme-efficient DMUs suggests that the

geometrical circumstances for such points to emerge are special and rare. All this serves to make

the point that we are still learning and understanding the shape and nature of the DEA production

possibility set.

8. Concluding remarks

Anchor points are a new category in the general classification of DMUs in DEA. They are a

subset of the extreme-efficient DMUs; specifically those that are at the transition from the efficient

frontier to the free-disposability part of the boundary of the production possibility set. This is the

first general and comprehensive study of the role anchor points play in DEA. Their identification

is a subproblem in several interesting DEA applications such as the construction of “unobserved”

DMUs to capture prior value judgments in DEA, to set prices in the healthcare industry, and

to identify DMUs that are efficient for multiple constituencies. The procedure, AnchorProj was

developed for their identification based on geometric properties. This procedure was coded and

applied to several large data sets. Our results show that anchor points can be efficiently identified

with the use of output sensitive frame algorithms. Large data sets with 10,000 DMUs can be

processed in a matter of seconds. A result from this work is the observation of an apparent

preponderance of anchor points in DEA. It appears that the special properties of the VR hull

make it highly likely that an efficient DMU will also be an anchor point. This realization has

consequences for DEA applications that require special treatments of anchor points.
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Appendix A: Correspondence with the Allen-Thanassoulis Anchor Detection Pro-

cedure

Allen and Thanassoulis (2004) propose an LP formulation for detecting anchor points based

on the solution of LPs for the case of the constant returns to scale with one input and multiple

outputs. The procedure is adapted here for detecting anchor points in the general VR case without

the use of non-Archimedean constants.

Recall that aj is a data point composed of input Xj ≥ 0 and output Y j ≥ 0 components such that

aj =

[
−Xj

Y j

]
. The solution to the following LP provides a sufficient condition for the identification

of an anchor point, where E∗ is the frame of the data set i.e., the set of extreme-efficient DMUs,

and S is the vector of slacks and surpluses.

min
φ,λ≥0,S≥0

φ

s.t. ∑
{j|aj∈E∗},j �=j∗

ajλj − ImS = aj∗

∑
{j|aj∈E∗},j �=j∗

λj = φ

(M2′)

LP (M2′) is based on LP (M2) in Allen and Thanassoulis with the following differences:

1. The LP (M2′) is a relaxation of a non-Archimedean form.

2. The coefficient matrix involves the data for the extreme-efficient DMUs.

3. The formulation applies to the VR model.

These differences do not affect the main point of this discussion which is to show that the procedure

by Allen and Thanassoulis identifies points that satisfy our definition for anchor points. We will

show that any DMU j∗ that generates a solution to (M2′) such that φ∗ > 1 and at least one slack

is strictly positive satisfies the conditions of Result 1 for an anchor point.
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By complimentary slackness, an optimal solution to (M2′) with at least one positive slack implies

that the optimal solution, (π∗, β∗), to the dual:




max
π≥0,β

〈π, aj∗〉
〈π, aj〉 + β ≤ 0; ∀j s.t. aj ∈ E∗, j �= j∗

− β = 1;

is such that at least one component of π∗ is zero. Dual feasibility means that the hyperplane

H(π∗, β∗) supports the VR hull of the extreme-efficient DMUs (without aj∗
) and strong duality

states that this hyperplane strongly separates this hull from aj∗
. This is easier to see if we rewrite

the dual as: (recall β∗ = −1){
max
π≥0

〈π, aj∗〉
〈π, aj〉 ≤ 1; ∀j s.t. aj ∈ E∗, j �= j∗.

Now the supporting and separating hyperplane is H(π∗,−1). The translated hyperplane H(π∗, φ∗)

supports the full VR hull at, and only at, aj∗
. By Result 1, this makes the point aj∗

an anchor

point since the orthogonal vector contains at least one zero.

The result in this appendix establishes that the points that Allen and Thanassoulis defined as

anchor points also fall into this category under our definition.
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Appendix B: Proofs to Theorems

Result 1. The point aĵ ∈ E∗ is an anchor point if and only if it belongs to the support set of a

supporting hyperplane H(π̂, β̂) ∈ �m such that the orthogonal vector, π̂, contains at least one zero.

Proof. aĵ an anchor point means it is an extreme point of PVR and on an unbounded face. The

face is the support set of some supporting hyperplane H(π̂, β̂). Such a face recedes in at least one

negative unit direction. Suppose w.l.o.g., a direction of recession of this face is −em. Therefore,

all points, a(α) ∈ �m parameterized by the scalar 0 ≤ α ∈ � as follows

a(α) = aĵ − emα

belong to the support set and hence to the supporting hyperplane; that is, for any α > 0:

〈π̂, aĵ − emα〉 = −β̂;

〈π̂, aĵ〉︸ ︷︷ ︸
−β̂

−α〈π̂, em〉 = −β̂;

−α〈π̂, em〉 = 0;

and since em = (0, · · · , 0, 1)

π̂m = 0.

Since an extreme point of a polyhedral set is an extreme point of any of its facets (and vice versa)

this concludes the first part of the proof.

The converse backtracks the arguments above. Consider an extreme point of a support set of

a supporting hyperplane H(π̂, β̂) ∈ �m such that the vector π̂ has at least one zero component.

Suppose w.l.o.g. that it is π̂m = 0. Immediately, the point must necessarily be an extreme point

of the entire polyhedral set PVR. Construct the parameterized half line:

a(α) = aĵ − emα, α ≥ 0.

It follows from aĵ ∈ PVR that a(α) ∈ PVR (any feasible point extended in a recession direction

remains feasible). To see that the half line is on an unbounded face, let us explore its relation to
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the supporting hyperplane H(π̂, β̂):

〈π̂, aĵ − emα〉 = 〈π̂, aĵ〉︸ ︷︷ ︸
−β̂

−α 〈π̂, em〉︸ ︷︷ ︸
=0

= −β̂.

This places the entire half line a(α) in the support set of H(π̂, β̂), assuring that the face is un-

bounded.

Corollary 1. If DMU ĵ is an anchor point then it is possible to increase an input or decrease an

output and generate a new point on the free-disposability portion of the production possibility set.

Proof. A consequence of the existence of a halfline defined by a negative unit vector that remains

on an unbounded facet of PVR.

Result 2. Consider the frame of the data set, E∗. The data point aĵ ∈ E∗ is an anchor point if

and only if it belongs to the boundary of at least one simple projection.

Proof. By Result 1, if the data point aĵ is an anchor point then there exists a supporting

hyperplane, H(π̂, β̂), with orthogonal vector, π̂ such that at least one component is zero. Sup-

pose, w.l.o.g., it is π̂m = 0. The truncated vector π̂′ = (π̂1, . . . , π̂m−1) defines a hyperplane,

H(π̂′, β̂), in �m−1. Notice that if aj ′ is the projected vector aj without its last component then

〈aj ′, π̂′〉 ≤ β̂,∀j and 〈aĵ , π̂〉 = β̂. Therefore the projection of aĵ on PVR
m is on its boundary. The

converse is immediate given we are working only with frame elements. The presence of a pro-

jected extreme point, aj ′, on the boundary of, say, simple projection PVR
m , means it belongs to

the support set of a hyperplane with orthogonal vector π̂′. A new orthogonal vector with one

more dimension constructed using the same components and an extra zero for the mth component

defines a supporting hyperplane in �m at aj . π̂m = 0 makes aj an anchor point.


