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Abstract.  An efficient integration algorithm for continuum damage based elastoplastic constitutive equations is 
implemented in LS-DYNA. The isotropic damage parameter is defined as the ratio of the damaged surface area over the 
total cross section area of the representative volume element. This parameter is incorporated into the integration 
algorithm as an internal variable. The developed damage model is then implemented in the FEM code LS-DYNA as user 
material subroutine (UMAT). Pure stretch experiments of a hemispherical punch are carried out for copper sheets and 
the results are compared against the predictions of the implemented damage model. Evaluation of damage parameters is 
carried out and the optimized values that correctly predicted the failure in the sheet are reported. Prediction of failure in 
the numerical analysis is performed through element deletion using the critical damage value. The set of failure 
parameters which accurately predict the failure behavior in copper sheets compared to experimental data is reported as 
well. 

 

INTRODUCTION 

Application of fracture mechanics to characterize 
ductile fracture has led to the introduction of different 
ductile fracture criteria, which notably include J-
integral. These criteria offer a tool for predicting the 
crack propagation at the macroscale but they fail to 
take into account the continuous deterioration of 
material properties as the effect of microcrack 
nucleation and accumulation. Moreover, fracture 
mechanics deals with the analysis of existing cracks 
which might not be present or exactly located. 
Forming limit diagrams, on the other hand, have 
proved to be reliable for predicating the initiations of 
material discontinuities, however, FLD’s also neglect 
the material softening behavior resulting from 
continuous material deterioration. Hence, the concept 
of continuum damage mechanics has gained credit for 
taking into account the continuous deterioration of 
material and predicting failure.  

The idea was introduced when in 1958 L. M. 
Kachanov [1] published a simple model of material 
damage for creep analysis. Ever since, the concept has 
been expanded through excellent work of researchers 

such as D. Krajcinovic et al [2, 3], F. A. Leckie et al 
[4], J. L. Chaboche et al [5], S. Murakami et al [6], C. 
L. Chow et al [7-11], J. Lemaitre et al [12-17] and 
other fine researchers to the point of application to 
real-life problems. 

Damage Parameter, Effective Stress, and 
the Equivalence Principle 

Damage may be in the form of creation of 
discontinuous surfaces, breaking of atomic bonds, or 
growth of microcavities. Following the work of L. M. 
Kachanov [1], at the mesoscale, damage may be 
approximated in any plane by the area of the 
intersections of all the flaws with that plane. In order 
to work with a dimensionless quantity, this area is 
scaled by the size of the representative volume 
element (RVE). For a RVE oriented along the 
direction n , we can define Sδ as the area of the 
section of the RVE and DSδ as the area of the 
intersections of all microcracks or microcavities which 
lie in Sδ  as seen in Figure 1. 
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FIGURE 1.  Isotropic definition of damage parameter [1]. 

The value of the damage at point M in the 
direction  is defined as: n
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The scalar (isotropic) damage paramet r at point e
M  is the maximum value of ( , )D M n  for all 
possible orientations of . It follows from this 
definition that the value of the scalar variable  is 
bounded by 0 and 1 as follows: 
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In fact, the failure occurs for D<1 through a 
process of instability. Since no force is carried by the 
broken area represented by SD, an effective stress, σ , 
can be introduced which is based on the surface that 
effectively resists the load, namely (S-SD): 
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In compression, some defects close and the surface 
that effectively resists the load becomes larger than  
(S-SD). In particular, if all the defects close, the 
effective stress in compression is equal to the usual 
stress. Moreover, the damage evolution is almost zero 
and the damage parameter remains constant. This 
effect is called the “crack closure effect” and is taken 
into account, in this work, by introducing a factor in 
the numerical implementation of damage evolution 
equation. When the material is in compression, 
negative hydrostatic pressure, the factor is set equal to 
zero and is set equal to one for positive values of 
hydrostatic stress. However, since the damage 
evolution in compression may not be negligible for 
some materials and temperatures, one can introduce a 

material parameter ranging from zero to one which 
could be determined experimentally.  

To include the damage parameter into the 
constitutive equations, different criteria have been 
postulated [10]. In this work, the Strain Equivalence 
Principle introduced by Lemaitre [13] has been 
utilized. This principle states that any strain 
constitutive equation for a damaged material may be 
derived in the same way as for a virgin material except 
that the usual stress is replaced by the effective stress: 
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Damage Evolution Equation and the 
Computational Algorithm 

Assuming an isotropic power law hardening rule, 
Lemaitre postulated the damage evolution equation to 
be [12]: 
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Where PDε  is the plastic strain below which the 

damage evolution is negligible. PRε  is the plastic 

strain at rupture.  is the damage parameter at 

rupture called the critical value of damage. 
cD

Hσ  is the 

hydrostatic stress. eqσ  is the von Mises equivalent 

stress. yσ is the yield stress. 0ε  is the strain value  at 

yield. K and  are isotropic hardening coefficients.  
is the equivalent plastic strain which is written as:  

n
p

 2 :
3
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Applying the strain equivalence principle, yielding 
occurs when:  
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Thus, the von Mises yield function may be written 
in the following form: 

 ( ) 2 23 : (1 )
2

σ σ σ σ= − −D D D
yf D 0≤  (9) 

Where Dσ  is the deviatoric stress tensor. The 
radius of yield function and the normal unit vector are: 
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Assuming that the total strain rate is the summation 
of the elastic and plastic parts, e pε ε ε= + , and 
applying the flow rule to the plastic part, p Nε γ= , 
the equivalent plastic strain rate can be written as: 

 2 :
3 3
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Other equations used in the implementation of the 
computational algorithm are as follows: 

Stress rate: 

 ( ) ( )(1 trace 2σ λ ε µε= − +eD I e  (13) 

Equivalent von Mises stress:  

 3 :
2
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Isotropic hardening law:  

  (15) ( ) 1
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The computational algorithm aims at calculating 
the stress, strain, and damage parameters at the end of 
a small time (strain) increment given their values at the 
beginning of the increment and the components of 
total strain tensor applied over the increment. 

First, the increment is assumed to be totally elastic 
and the elastic predictor is calculated as the trial stress 
for the new increment: 

 (1 )( ( ) )σ σ λ ε= + − ∆ + ∆Trial
new old oldD trace I eµ ε (16) 

 

If the elastic predictor, , is within the current 
yield surface, the elastic predictor is the actual value of 
stress for the current increment: 

trial
newσ

  (17) σ σ= trial
new new

If not, a plastic correction should be made as 
following: 
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We seek to find γ∆ . Since the increment is no 
longer totally elastic, the value of total equivalent 
plastic strain, p , needs to be updated: 

 2
3

γ= + ∆new oldp p  (19) 

And the new yield stress considering the plastic 
hardening is calculated as: 
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If pDp ε≥ , the damage parameter has to be 
updated using the Lemaitre’s equation: 

 ( )

( ) ( )

2
0

2

2
3

2         1 3 1 2
3

new old

nc

PR PD

H

eq

D D D

D
D pε γ

ε ε

σ
ν ν

σ

= + ∆

⎛ ⎞
∆ = × +⎜ ⎟−⎝ ⎠

∆

⎡ ⎤⎛ ⎞
⎢ ⎥+ + − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (21) 

Then, γ∆  is determined considering constant D 
during one step which is justified in the explicit 
calculation because of very small increments. At the 
end of increment: 
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Hemispherical-Punch Stamping 
Experiment 

The experiments were performed using a 1.6 mm 
thick copper 99.9% sheet cut into a 179 mm square 
blank. The blank was then clamped between the die 
and the holder; the punch then moves upward and 
deforms the sheet into a hemispherical-shape cup. 
Figure 2 shows a schematic illustration of the setup. 
For material characterization, several uniaxial tensile 
tests were performed based on ASTM E8M standard 
and the results were averaged to obtain the mechanical 
properties of the material as reported in table 1. 

TABLE 1. Material properties 
Property Magnitude 

Young’s modulus 98.99 GPa 
Poison’s ratio 0.34 
Yield stress 90.0 MPa 
K (Hardening coefficient) 491.3 MPa 
n (Hardening exponent) 0.2459 

 

 

Figure 2. Beginning and the end of the stamping process 

Numerical Results 

The computational algorithm is implemented into 
the nonlinear finite element code, LS-DYNA through 
the user material subroutine option, UMAT. The 
material model is then used in the simulation of a 
hemispherical-punch stamping process. The numerical 
model used in the simulation is shown in Figure 3. 

 

Figure 3. Numerical model used in FEM simulation. 
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The punch, die, and blank holder were meshed with 
rigid elements. 76300 hexagonal quadratic solid 
elements were used to mesh the sheet part. Two cases 
were studied which differed in the material damage 
parameters. In case 1, these parameters were taken 
from the literature [14]; and in case 2, they were 
optimized and suggested by the authors after a series 
of sensitivity analysis. The values are listed in table 2. 

TABLE 2. Material damage parameters 
Parameter Case 1 Case 2 

PDε
 

0.35 0.33 

PRε  1.07 0.48 

cD  0.85 0.68 

Monitoring the punch force variations is a good 
way to see the softening behavior of material as the 
damage grows. Figure 4 shows a comparison of punch 
force vs. punch displacement between both cases of 
study compared against experimental results. 
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Figure 4. Comparison of punch force vs. its displacement 
between numerical and experimental findings 

In the analysis, failure was predicted using the 
critical value of damage and demonstrated by element 
deletion method which was implemented into the 
UMAT.  

Figure 5 shows a picture of the experimental result 
of forming of the copper sheet. Figure 6 shows a 
picture of the numerical analysis using the optimized 
damage values as reported in Table 2.   

As seen from Figure 4, the damage parameters 
reported in literature [14] for the pure copper used in 
this experiment were unable to predict the behavior 
seen experimentally. The optimized values of damage, 
on the other hand, were capable of predicting both 
failure locations (Figure 5 and Figure 6) and the punch 
force (Figure 4). 

 

Figure 5. Experimental result of forming of 99.9% copper 
sheet. 

 

 

Figure 6. Comparison of failure between numerical and 
experimental findings 

Conclusions 

The softening behavior of material and its effect on 
the punch force was satisfactorily captured by using a 
continuum damage based material model with 
optimized damage parameters. The material model 
proved to be particularly functional in predicting 
failure location compared to experimental results. 
Nevertheless, mesh dependency and the assumption of 
zero damage growth in compression are two 
limitations which should be carefully dealt with when 
the material model is to be used for the simulation of 
other forming processes with different loading 
conditions.   
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