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ABSTRACT
To analyze in detail the coalescence mechanisms and vali-

date modeling approaches, deterministic Lagrangian simulations
of droplet trajectories (DPS) coupled with Direct Numerical Sim-
ulations (DNS) of a Homogeneous Isotropic Turbulence (HIT)
are performed. The influence of the colliding particle velocity
correlations induced by the fluid turbulence on the rate of droplet
coalescence is investigated for different particle inertia. The re-
sults are compared to predictions using the Direct Quadrature
Method of Moments (DQMOM) accounting for coalescence.
The particle diameter distribution is written as a summation of
Dirac functions. This allows to derive Eulerian transport equa-
tions for the dispersed phase statistics, which account forco-
alescence and conserve the low-order moments of the particle
size distribution. The collision terms are modeled applying the
molecular chaos assumption in order to account for coalescence.
Particle size distributions and moments obtained from DQMOM
are compared to those of the DNS/DPS simulations in function
of particle inertia.

INTRODUCTION
The study of collisions between particles in turbulent dis-

persed multiphase flows is of interest for many engineering ap-
plications. Examples of flows where droplet coalescence is likely
to play an important role include many topics such as solid-
fuel rocket propulsion, internal combustion engines and electric

∗Address all correspondence to this author.

power generation by liquid fuel turbines. The droplet size gener-
ally has a major influence on the global performance of the sys-
tem and must be accurately taken into account in numerical sim-
ulations. As the carrier flow is often turbulent, droplets located
in the vicinity of the same point may have different velocities,
collide and perhaps coalesce leading to a strong modification of
the droplet size distribution.

The statistical representation of the coalescence rates is
gained based on a Lagrangian tracking of the dispersed phase,
here referred to as Discrete Particle Simulation (DPS), in aphys-
ical study of coalescence in Homogeneous Isotropic Turbulence.
This approach is coupled with Direct Numerical Simulations
(DNS) in order to account for the influence of the turbulent mo-
tion of a fluid on the particle distribution. Coalescence is ac-
counted for using an algorithm allowing to detect collisionin
a broad droplet size distribution. This algorithm was validated
for dry granular test cases [1]. The results are compared to pre-
dictions using the Direct Quadrature Method of Moments (DQ-
MOM) accounting for coalescence. The here applied DQMOM
approach [2] is a recently developed extension of the approach
by Marchisio and Fox [3] based on the formalism of the joint
fluid-particle PDF approach by Simonin [4].

Coalescence phenomena are various and each collision be-
tween two droplets leads to the creation of one to several new
droplets, depending on the relative properties of the colliding
droplets. Several studies concerned with coalescence phenom-
ena have been performed, pointing out the diversity of the colli-
sion outcome [5–7]. In this study, in order to better understand
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the physical mechanisms of turbulence-coalescence interaction,
only the permanent coalescence regime is considered. Each col-
lision leads to permanent coalescence.

The article is structured as follows. First, the DNS/DPS ap-
proach is explained. Second, the DQMOM approach is detailed
by explaining the general formalism, the closure of the collision
operator and then outlining the equations solved in the frame of
this work. Then the fluid flow is described and finally results are
presented for the comparison of DQMOM with DNS/DPS.

DNS/DPS APPROACH
Direct Numerical Simulations (DNS) coupled with a La-

grangian tracking of the particle phase (DPS) are performedhere
and have been extensively used to investigate gas-particleflows
[8–11]. The flow configuration is a Homogeneous Isotropic Tur-
bulence (HIT) forced by a scheme initially proposed by Eswaran
and Pope [12], which assures a statistical steadiness. The parti-
cles are considered as rigid spheres with diameters smallerthan
the Kolmogorov turbulence length scaleηK . The turbulence
modulation by the dispersed phase (two-way coupling) is not
considered, as the particle mass fraction is small. Assuming that
the particle fluid density ratio (ρp ≫ ρ f ) is large, the forces act-
ing on the particle are reduced to the drag force only. Thus, the
governing equations of theNp particle system in interaction with
the surrounding flow field and undergoing particle-particlecolli-
sions are written as

dxp

dt
= vp

mp
dvp

dt
= mp

[vp−u f @p]

τp
+

Np

∑
i=1; j 6=i

Fp,i j (1)

wherexp,up are the position and velocity vectors of the parti-
cle p andmp is the particle mass.u f @p is the undisturbed fluid
velocity at the position of the particle andFp,i j represents the im-
pulsive force resulting from particle-particle collisions. As two-
way coupling is neglected,u f @p is computed with an accurate
interpolation scheme [13]. The particle response timeτp is given
using the relation of Schiller and Naumann [14] by

τp =
4
3

ρp

ρ f

dp

CD

1
∣

∣vp−u f @p
∣

∣

CD =
24
Rep

(

1+0.15Re0.687
p

)

Rep =

∣

∣vp−u f @p
∣

∣dp

ν f
(2)

with dp the particle diameter andν f the kinematic viscosity of
the fluid. Coalescence is modeled assuming that each collision

leads to permanent coalescence. Other collision outcomes as
identified by several authors [5–7] are not regarded for the sake
distinctness. The mass and momentum conservation equations
of two particles undergoing coalescence are written as

m∗ = mp+mq

m∗v∗ = mpvp+mqvq (3)

with mp and mq the mass of the particles before coalescence
and m∗ after. Analogous for the particle velocitiesvp,vq and
v∗. The corresponding particle diameter is directly deductible
from the mass conservation equations as the particle density is
constant and the particles are modeled as rigid spheres, as men-
tioned above. The position of the new particle that arises from
coalescence is given as

x∗ =
d3

pxp+d3
qxq

d∗3 (4)

with x∗ the position of the new particle anddp, dq andd∗ the par-
ticle diameters. Coalescence is detected using a recently devel-
oped algorithm allowing detecting collisions in a poly-dispersed
particle mixture [1].

DQMOM APPROACH
The here used DQMOM approach is an extension of the ap-

proach proposed by Marchisio and Fox [3] based on the formal-
ism of the joint fluid-particle PDF approach by Simonin [4] re-
cently developed by Belt and Simonin [2].

To account for droplet coalescence (particle aggregation)or
poly-dispersion in the frame of the Euler-Euler modeling ap-
proach is challenging. Marchisio and Fox [3] proposed the DQ-
MOM approach to tackle these difficulties. However, as the ve-
locity distribution for a given diameter is represented by aDirac,
coalescence effects appear only in the mass balance equations.
Consequently, as outlined by Belt and Simonin [2], particlemo-
mentum and particle kinetic stress transport equations cannot be
written accounting for coalescence effects. Instead, in the ap-
proach of Marchisio and Fox [3], an ad-hoc formulation of the
multi-class Eulerian approach without collision modelingis ap-
plied. In the novel approach, these equations can be derivedac-
counting for particle coalescence. This new approach is briefly
summarized in the following. The reader may refer to [2] for a
more complete description of the formalism.

General DQMOM formalism
The dispersed phase statistics can be described in turbulent

two-phase flows in terms of the joint fluid-particle probability
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density function (pdf)f f p(x,t,cf ,µp,cp), which is defined such
that f f p(x,t,cf ,µp,cp)dcf dµpdcpdx is the probable number of
droplets at timet with the center of mass located in the volume
[x,x+dx], a translation velocityup in [cp,cp +dcp] and a mass
mp in [µp,µp + dµp], seeing a locally undisturbed fluid velocity
u f @p in [cf ,cf +dcf ]. The evolution equation can be written as
a Boltzmann-type equation [4]:

∂ f f p

∂t
+

∂
∂x j

(cp, j f f p) +
∂

∂cp, j

(

〈
dup, j

dt
|µp,cp,cf 〉 f f p

)

+
∂

∂cf , j

(

〈
duf @p, j

dt
|µp,cp,cf 〉 f f p

)

+
∂

∂µp

(

〈
dmp

dt
|µp,cp,cf 〉 f f p

)

=

(

∂ f f p

∂t

)

coll
(5)

where〈.〉 represents an ensemble averaging operator andd
dt the

rate of change along the particle path of any particle property.
The notation〈.|µp,cp,cf 〉 is written for the conditional expecta-
tion 〈.|mp = µp,up = cp,u f @p = cf 〉. Exact expressions for the
third to fifth term can be found in [4]. The collision operator
(

∂ f f p
∂t

)

coll
will be detailed below.

Marchisio and Fox [3] wrote the particle pdffp as a summa-
tion of N Dirac functions in mass and velocity space:

fp(x,t,µp,cp) =

N

∑
α=1

ωα(x,t)δ(µp− µ̃p,α(x,t))δ(cp− c̃p,α(x,t)) (6)

whereµp,α(x,t) andcp,α(x,t) are the mass and velocity of class
α, respectively. As seen in (6), one single mean velocity is asso-
ciated with each mass and as a consequence transport equations
for the particle agitation cannot be derived. Belt and Simonin [2]
define for each class one mass associated with a velocity distri-
bution, which is written as:

f f p(x,t,µp,cp,cf ) = np(x,t)h∗f p(x,t,cp,cf |µp)g
∗(x,t,µp) (7)

with np(x,t) the number of particles per unit volume atx and
t. h∗f p(x,t,cp,cf |µp) is the joint fluid-particle velocity probabil-
ity density function at timet, conditioned by the massmp equal
to µp, with the center of mass located in the volume[x,x + dx]
and a translation velocityup in [cp,cp + dcp], seeing a locally
undisturbed fluid velocityu f @p in [cf ,cf + dcf ]. g∗(x,t,µp) is
the mass probability density function at timet with the cen-
ter of mass located in the volume[x,x + dx] and a massmp in

[µp,µp+dµp]. The pdfsh∗f p andg∗ verify:

Z

h∗f p(x,t,cp,cf |µp)dcpdcf = 1 ∀ µp (8)
Z

g∗(x,t,µp)dµp = 1 (9)

Belt and Simonin [2] write the pdfg∗, similar to [3], as a sum-
mation of Dirac functions with the sum of the weightsωα over
all classes equal to one (10).

g∗(x,t,µp) =
N

∑
α=1

ωα(x,t)δ(µp− µ̃p,α(x,t)) (10)

This presumed pdfg∗ is equivalent to make the Gauss quadrature
approximation for the moments ofg∗:

Z

µk
pg∗(x,t,µp)dµp =

N

∑
α=1

µ̃k
p,α(x,t)ωα(x,t) (11)

The weightsωα and the abscissas ˜µp,α in (10) are unknown,
thus 2N unknowns must be determined. With the help of the
Gauss quadrature approximation, the moments ofg∗ can be com-
puted. Following the DQMOM approach 2N transport equations
on the low-order mass-moments are derived by integration ofthe
Boltzmann-type equation (5) multiplied withµk

p. After some ma-
nipulation the following system is obtained withk ranging from
0 to 2N−1:

Z

µk
p

(

∂ f f p

∂t

)

coll
dcpdcf dµp

= (1−k)
N

∑
α=1

µ̃k
p,α

[

∂
∂t

(nα)+
∂

∂x j
(〈cp, j〉αnα)

]

+k
N

∑
α=1

µ̃k−1
p,α

[

∂
∂t

(nαµ̃p,α)+
∂

∂x j
(〈cp, j〉αnαµ̃p,α)−nα〈Γ〉α

]

(12)

For the sake of clarity, the quantity dependencies with respect to
x andt are not written out in (12). The mean number of particles
per unit volumenα with massµ̃p,α is defined asnα = ωαn. The
physical meaning of the weightωα appears in this approach, as
the ratio of number of droplets per classα to the total number
of droplets atx and t. System (12) gives the values for the N
abscissas ˜µp,α and N weightsnα, from which the droplet diame-
ter distribution is reconstructed. This reconstructed distribution
should show the correct moments up to the order 2N− 1. The
operator〈φ〉α represents the conditional average on a massmp
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equal toµ̃p,α: 〈φ〉α =
R

φh∗f p(x,t,cp,cf |µ̃p,α)dcpdcf . The term
nα〈Γ〉α represents the evaporation rate of droplets, which is zero
throughout this work.

For N = 1 the equation (12) is identical to the number
(k = 0) and mass(k = 1) transport equations for monodisperse
droplets derived by Simonin [4]. Also, (12) is equivalent tothe
system obtained by Marchisio and Fox [3] if written in terms of
diameter. However, system (12) is not closed since it contains the
velocity 〈cp〉α conditioned by the mass of classα. Following a
similar way as Simonin [4] to derive transport equations formo-
mentum, particle kinetic stress and fluid-particle covariance, the
velocity〈cp〉α can be obtained in the framework of the DQMOM
approach. Those equations are in agreement with Simonin’s [4]
transport equations for a monodisperse droplet cloud. For more
details, the reader may refer to [2] and [4], readers interested in
the resolution of the equation system to [2] and [3].

In a Homogeneous Isotropic Turbulence, as in this study, all
variations with respect to∂

∂xj
are zero and thus equation (12) sim-

plifies significantly. In particular the momentum balance equa-
tion does not need to be solved, since the mean velocity is equal
to zero. As detailed below, the particle kinetic energy is required
for the closure of the collision term. In a first step, within this
work, the corresponding values ofq2

p are directly obtained from
the performed DNS/DPS simulations. In a second step, the par-
ticle kinetic stress tensor equation is solved in the DQMOM ap-
proach. In order to account for the interaction of the particle
phase with the fluid turbulent motion, the mean particle response
time τF

f p = 〈τp〉α and the fluid-particle symmetrical velocity co-

variance tensorRf p,γβ = 1
2

(

〈u′f @p,γc
′
p,β〉α + 〈c′p,γu

′
f @p,β〉α

)

are

then needed. The value forτF
f p is taken from the DNS/DPS

simulations. A transport equation forRf p can be derived in
the DQMOM framework (14). The equilibrium state from the
theory of Tchen and Hinze [15] is used to determine the fluid-
particle covariance, which is given using the relation of Tchen

[15] qf p =
2qf
1+St where the Stokes number is defined asSt=

τF
f p

TL
,

when the particle kinetic stress equation is solved only. The par-
ticle kinetic stress tensor equation is given in (13).

Z

c′p,γc
′
p,βµk

p

(

∂ f f p

∂t

)

coll
dcpdcf dµp+E

= (1−k)
N

∑
α=1

µ̃k
p,α

[

∂
∂t

(

nα〈c
′
p,γc

′
p,β〉α

)

+
∂

∂x j

(

nα〈c
′
p,γc

′
p,β〉α〈cp, j〉α

)

+
∂

∂x j

(

nα〈c
′
p,γc

′
p,βc′p, j〉α

)

+ nα〈c
′
p,γc

′
p, j〉α

∂
∂x j

〈cp,β〉α +nα〈c
′
p,βc′p, j〉α

∂
∂x j

〈cp,γ〉α

−nα〈c
′
p,β

F ′
γ

m
〉α −nα〈c

′
p,γ

F ′
β

m
〉α

]

+k
N

∑
α=1

µ̃k−1
p,α

[

∂
∂t

(

nαµ̃p,α〈c
′
p,γc

′
p,β〉α

)

+
∂

∂x j

(

nαµ̃p,α〈c
′
p,γc

′
p,β〉α〈cp, j〉α

)

+
∂

∂x j

(

nαµ̃p,α〈c
′
p,γc

′
p,βc′p, j〉α

)

+nαµ̃p,α〈c
′
p,γc

′
p, j〉α

∂
∂x j

〈cp,β〉α +nαµ̃p,α〈c
′
p,βc′p, j〉α

∂
∂x j

〈cp,γ〉α

−nαµ̃p,α〈c
′
p,β

F ′
γ

m
〉α −nαµ̃p,α〈c

′
p,γ

F ′
β

m
〉α

−nα〈Γc′p,γc
′
p,β〉α

]

(13)

The only term of equation (13) that remains in the equation for a
Homogeneous Isotropic Turbulence are detailed below.

Finally, the fluid-particle covariance equation (14) is solved.
τF

f p is taken again from the DNS/DPS simulations and the fluid

energyq2
f is also known. The fluid-particle covariance equation

writes as:

C (c′f ,βc′p,γµ
k
p)+E′ =

(1−k)
N

∑
α=1

µ̃k
p,αeα +k

N

∑
α=1

µ̃k−1
p,α fα (14)

whereeα and fα are the source terms of the following equations:

∂
∂t

(

nα〈c
′
f ,βc′p,γ〉α

)

+
∂

∂x j

(

nα〈c
′
f ,βc′p,γ〉α〈cp, j〉α

)

+
∂

∂x j

(

nα〈c
′
f ,βc′p,γc

′
p, j〉α

)

−nα〈c
′
f ,β

F ′
γ

mp
〉α −nα〈c

′
p,γAβ〉α = eα (15)

∂
∂t

(

nαµ̃p,α〈c
′
f ,βc′p,γ〉α

)

+
∂

∂x j

(

nαµ̃p,α〈c
′
f ,βc′p,γ〉α〈cp, j〉α

)

+
∂

∂x j

(

nαµ̃p,α〈c
′
f ,βc′p,γc

′
p, j〉α

)

−nαµ̃p,α〈c
′
f ,β

F ′
γ

mp
〉α −nαµ̃p,α〈c

′
p,γAβ〉α

−nα〈Γc′f ,βc′p,γ〉α = fα (16)

The remaining terms in the equation are explained below when
detailed for Homogeneous Isotropic Turbulence. The readermay
note that the termE andE′ on the left hand side of equations (13)
and (14) is equal to zero in a Homogeneous Isotropic Turbulence.
For its definition as well as an exhaustive explanation of theterms
in (13) and (14) the reader may refer to [2].
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Closure of collision operator
The coalescence operatorC (ψ) is the integral of the change

in a quantityψ (for a distinct collision) multiplied with its prob-
able collision frequency over all binary collisions. Ifψ∗ is the
quantity after collision andψ before collision, the change inψ
can be written as∆ψ = ψ∗−ψ and thus the coalescence operator
C (ψ) for two particlesP andQ as:

C (Ψ) =
1
2

d2
pq

Z

w·k<0
(Ψ∗

pq−Ψpq) [w ·k]

f (2)
f p (cf @p,µp,cp,x,cf @q,µq,cq,x+dpqk,t)

dkdµpdµqdcf @pdcpdcf @qdcq (17)

wheredpq = (dp + dq)/2 is the collision diameter,w = cq− cp

is the relative velocity between the two colliding droplets, k is
the unit center connecting vector pointing from particleP to Q.

f (2)
f p (cf @p,µp,cp,xp,cf @q,cq,µq,xq,t) is the joint fluid-particle-

fluid-particle pair distribution function. The particle pair distri-

bution functionf (2)
p is per definition obtained by integration over

the particle velocities as given in equation (18).

f (2)
p (cp,µp,x,µq,cq,x+dpqk,t)

=

Z Z

f (2)
f p (cf @p,µp,cp,x,cf @q,µq,cq,x+dpqk,t)

dcf @pdcf @q (18)

According to the “molecular chaos” assumption the particlepair

distribution functionf (2)
p can be written as a product of to single

one-particle distribution functions:

f (2)
p (cp,µp,x,µq,cq,x+dpqk,t)

≈ fp(cp,µp,x,t) fp(cq,µq,x+dpqk,t), (19)

It needs to be mentioned that according to [9] the “molecular
chaos” assumption is valid only, if the particle response time is
much larger than the fluid Lagrangian time scale. If the parti-
cle response time is of the same order or smaller than the fluid
Lagrangian time scale, the particle velocities become correlated
through the interaction with the fluid. This can be accountedfor

by a specific closure off (2)
f p proposed by [9]. Nevertheless, the

“molecular chaos” assumption is the simplest approach and is
used here.

The coalescence operator is here written, similar to [3] as
outlined in [2], as a function of the “birth” rateB and “death”
rateD for a quantityψ = µk

p:

C (Ψ) = B (Ψ)−D (Ψ) (20)

B (Ψ) =
1
2

Z

Ψ∗
pq β(µp,µq)

g∗(x,t,µp)g
∗(x,t,µq)dµpdµq (21)

D (Ψ) =
Z

Ψp β(µp,cp,µq,cq)

g∗(x,t,µp)g
∗(x,t,µq)dµpdµq (22)

with β(µp,µq) the radial relative velocity. It can be written as:

β = πn2
pd2

pq

(

16
π

1
3
(q2

p+q2
q)

)1/2

(23)

DQMOM in Homogeneous Isotropic Turbulence (HIT)
The DQMOM approach is here compared with a homoge-

neous isotropic turbulence coupled with a dispersed phase of
spherical particles undergoing coalescence. As mentionedabove,
all variations with respect to∂

∂xj
are zero and equation (12) and

(13) simplify significantly. Five different cases are regarded here.
In the first case i) only the number and mass balance equation
are solved. The particle kinetic energy is extracted from the
DNS/DPS simulations. Second, the particle kinetic stress equa-
tion is in case ii) solved making use of from DNS/DPS values for
the mean particle response time, while the fluid particle covari-
ance is modeled following the theory of Tchen and Hinze [15].
In case iii) additionally the fluid particle covariance equation is
solved, with the fluid energy from the DNS/DPS simulations. In
case iv) a collision term in the particle kinetic stress equation
is added. And last in case v) dry granular simulations are per-
formed in order to evaluate the influence of the collision term in
the particle kinetic stress equation. The equations to solve are
the following. For the number and mass balance equation (12)
the source terms can be written per classα:

i) Number and mass balance equation HIT

∂
∂t

(nα) = aα (24)

∂
∂t

(nαµ̃p,α) = bα (25)

Then, the system to solve becomes (12), withk ranging from 0
to 2N−1:

(1−k)
N

∑
α=1

µ̃k
p,αaα +k

N

∑
α=1

µ̃k−1
p,α bα = C (µk

p) (26)

whereC (µk
p) represents the collision term as defined in (20).
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ii) Particle kinetic stress equation (HIT) The parti-
cle kinetic stress equation can be written as seen in (28). Itcan
also be obtained from (27). As the particle number and mass are
known from (26), (27) contains the same information as (28) as
it is only weighted by a different factor. The source terms are
related andcα can be expressed in terms ofaα, bα anddα.

∂
∂t

(

nα〈c
′
p,γc

′
p,β〉α

)

−nα〈c
′
p,β

F ′
γ

m
〉α −nα〈c

′
p,γ

F ′
β

m
〉α = cα (27)

∂
∂t

(

nαµ̃p,α〈c
′
p,γc

′
p,β〉α

)

−nαµ̃p,α〈c
′
p,β

F ′
γ

m
〉α −nαµ̃p,α〈c

′
p,γ

F ′
β

m
〉α = dα (28)

(13) can be written as shown in (29), if the influence of coales-
cence is not accounted for in the particle kinetic stress equation.
In the caseii) the system to solve consists thus of (26) and (29).
This assumption is valid only, if the effect of collisions onpar-
ticle kinetic stress is less important than the interactionwith the
fluid. In this case the source termscα = 0 anddα = 0 equal zero.

(1−k)
N

∑
α=1

µ̃k
p,αcα +k

N

∑
α=1

µ̃k−1
p,α dα = C

(

µk
pc′p,βc′p,γ

)

= 0 (29)

The interaction with the fluid turbulent motion is expressedby
the force termsF ′ in (28). They are written following [4] as
follows:

nαµ̃p,α〈c
′
p,β

F ′
γ

m
〉α −nαµ̃p,α〈c

′
p,γ

F ′
β

m
〉α

≈−nαµ̃p,α
2

τF
f p,α

[

〈c′p,γc
′
p,β〉α −Rf p,γβ

]

(30)

Where the fluid-particle covariance tensorRf p,γβ is modeled us-

ing qf p =
2qf

1+St. The mean particle response timeτF
f p,α is ex-

tracted from the DNS/DPS simulations.

iii) Fluid particle covariance equation (HIT) The
fluid particle covariance equation is given in the case of a Ho-
mogeneous Isotropic Turbulence by (31).

∂
∂t

(

nαµ̃p,α〈c
′
f ,βc′p,γ〉α

)

−nαµ̃p,α〈c
′
f ,β

F ′
γ

mp
〉α −nαµ̃p,α〈c

′
p,γAβ〉α = fα (31)

The force terms can be written as:

nαµ̃p,α〈c
′
f ,β

F ′
γ

mp
〉α −nαµ̃p,α〈c

′
p,γAβ〉α

≈−nαµ̃p,α
2

τF
f p,α

[

〈c′f ,γc
′
p,β〉α −〈c′f ,γc

′
f ,β〉α

]

−nαµ̃p,α
1
TL

〈c′f ,γc
′
p,β〉α (32)

iv) Collision term in particle kinetic stress equa-
tion In general it is difficult to write the collision term
R

q2
pµk

p

(

∂ f f p
∂t

)

coll
dcpdcf dµp in (13). In the here presented case, a

Homogeneous Isotropic Turbulence, the particle mean velocity is
zero, as already mentioned. This allows to write the coalescence
term making use of (3) and applying (20) and withψ = µk

pq2
p,

if fp is assumed Gaussian, as it is justified in this isotropic flow
configuration. In a first attempt we can then write withΛ = 1:

B (µk
pq2

p) = Λ
1
2 ∑

α
∑
κ

βα,κ µk,∗
p (33)

3
2





µp,α
(

2
3q2

p,α
)

1
2 +µp,κ

(

2
3q2

p,κ
)

1
2

µp,α +µp,κ





2

D (µk
pq2

p) = Λ ∑
α

∑
κ

βα,κ µk
p,α

2
3

q2
p,α (34)

The equations to solve are then (26) and (35):

(1−k)
N

∑
α=1

µ̃k
p,αcα +k

N

∑
α=1

µ̃k−1
p,α dα = C

(

µk
pq2

p

)

(35)

The termE in (13) equals zero in a Homogeneous Isotropic Tur-
bulence, as mentioned above. For further information, the reader
may refer to [2].

v) Influence of Collision terms in dry granular flows
In this last case the influence of the collision term in the particle
kinetic stress equation is evaluated. Dry granular simulations are
therefore compared with DQMOM predictions for three different
dry granular cases. In the first one, the number and mass balance
equation only are solved and the particle kinetic energy is up-
dated using results from DNS/DPS simulations. In the second
dry granular case, the particle kinetic stress equation is solved,
while the collision term is neglected and finally this collision
term is taken into consideration in the last dry granular case. The
collision term is shown under iv).
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Figure 1. Simulated cases in comparison with the theory of Tchen &

Hinze [15], [16] as well as its extension by Deutsch [17], [18]

Table 1. Characteristics of fluid turbulence for turbulent Reynolds num-

ber ReL = 61.2

Cube length Lb 0.128

Grid points N 1283

Turbulent energy q2
f 6.6616 10−3

Integral longitudinal length scale L f /Lb 0.1056

Integral transversal length scaleLg/L f 0.4673

Reynolds number ReL 61.2

Kolmogorov length scale ηk/Lb 0.0506

kmaxη 2.00

Description of fluid-particle flow field
The fluid flow field is a homogeneous isotropic turbulence.

Once the fluid flow field reaches a steady state the particulate
phase is initiated and converges around an equilibrium withthe
fluid turbulence, as seen in figure 1. The particle Stokes numbers
are chosen to be identical for different Reynolds numbers. The
initial particle diameterdp is the same in all simulations, only the
particle densityρp is modified for different particle inertia. Table
1 summarizes the fluid field values for the turbulent Reynolds
numberReL = 61.

RESULTS
The results obtained from DNS/DPS simulations are com-

pared with the DQMOM simulations described above under i) to

Diameter

N
p

0.00015 0.0002 0.00025 0.0003 0.00035

0

10000

20000

30000

40000

50000

DNS/DPS
DQMOM

St = 2.4

Figure 2. Particle number - diameter pdf for St= 2.4 at ReL = 61

Table 2. DNS/DPS to DQMOM ratio of 0th to 5th order moment for

particle inertia of St = 0.1, St= 0.95 and St = 2.4 at ReL = 61 for

simulation case i
moment (order) St= 0.1 St= 0.95 St= 2.4

Np (0) 2.004 1.238 1.102

mp (1) 0.9994 1.0000 0.9995

dp (1
3) 1.669 1.168 1.073

d2
p (2

3) 1.323 1.087 1.039

(2) 0.353 0.750 0.877

(3) 0.138 0.620 0.920

(4) 0.113 0.789 2.191

(5) 0.212 1.857 11.114

v) in this section.

Case i)
DQMOM simulations are conducted for five different parti-

cle classes, as they are presented in figure 1. However, results are
here only presented for the lowest, highest and the intermediate
Stokes number. They are characterized by different particle in-
ertia. As the DQMOM approach assumes ’molecular chaos’ and
thus independence of the coalescing particle velocities, it is sup-
posed to perform best for high inertia particles, as this case is the
closest to the ’molecular chaos’ assumption. The DNS/DPS sim-
ulations are initialized with a monodisperse particle phase (all
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particles have the same initial diameter), thus the particle size
pdf is represented by one single Dirac function. As three Dirac
functions are used in DQMOM to represent the particle diame-
ter distribution, numerical problems could be caused by theini-
tial monodisperse distribution. In order to avoid these problems,
the DQMOM simulations are initialized with DNS/DPS data, in
which three different particle sizes have occurred since the start
of the coalescence simulation. As the DQMOM approach is writ-
ten to conserve the first 2N−1 moments of the particle diameter
distribution, these moments are calculated for results obtained
with the DNS/DPS as well as for results of the DQMOM (11).
The ratio of the same moments of the corresponding distribu-
tions is used to evaluate the accuracy of the DQMOM in the here
used configuration. Results are shown in table 2. Figure 2 com-
pares distributions of inertial particles. The empty bars represent
the Dirac distribution obtained from DNS/DPS simulations.As
the initial distribution is monodisperse, all emerging droplet di-
ameters are determined by the initial diameter. The black bars
represent the Diracs from DQMOM.

Throughout this work, three Diracs are used in the DQMOM
approach for two reasons. First, it appears the most feasible
choice for comparison with the DNS/DPS data and second, the
low-order moments give the same results for three or four Diracs
as seen in table 3. Only the 4th-order and higher moments exhibit
a significant change in magnitude. The choice of three Diracs
seems to be justified. Naturally, if higher than 5th-order mo-
ments are of interest, an adequate number of Diracs needs to be
chosen.

Under the impression of an increasing accuracy of the mo-
ments ratio DNS/DPS to DQMOM with increasing particle iner-
tia, a dry granular test case was performed. Dry granular flows
are performed for example in [1]. No fluid phase exists. The col-
lision operator in DQMOM is based, as mentioned above, on the
molecular chaos assumption. In dry granular flows this assump-
tion leads to correct collisions frequencies, if the particles size
distribution is correctly represented. If only binary collisions are
treated and if the particle agitation per particle class is known
and if one class exists for every different particle mass as well as
for every emerging new particle mass, this approach should lead
to correct collision frequencies for dry granular flows. In DQ-
MOM, however, the number of particle classes (Diracs) is given
and limited and thus compromises the results. Table 3 shows the
moment ratios for this dry granular test case. In comparisonwith
results for simulations with particle inertia ofSt= 2.4, the mo-
ment ratios of the dry granular test case exhibit an improvement
of up to 50% error. Under the in case i) given conditions, the
dry granular case can be considered as the most accurate result
possible.

Table 3. DNS/DPS to DQMOM ratio of 0th to 5th order moment for

particle inertia of St= 2.4 at ReL = 61with 3 respectively 4 Diracs and

for the dry granular test case

moment (order) dry granular St= 2.4 St= 2.4

q2
p DNS 3 Diracs 4 Diracs

Np (0) 1.050 1.102 1.101

mp (1) 1.0004 0.9995 0.9994

dp (1
3) 1.035 1.073 1.072

d2
p (2

3) 1.019 1.039 1.038

(2) 0.947 0.877 0.878

(3) 0.972 0.920 0.917

(4) 1.475 2.191 2.101

(5) 4.320 11.114 9.515

Table 4. DNS/DPS to DQMOM ratio of 0th to 5th order moment for

particle inertia of St = 0.1, St= 0.95 and St = 2.4 at ReL = 61 for

simulation case ii
moment (order) St= 0.1 St= 0.95 St= 2.4

Np (0) 1.876 1.220 1.121

mp (1) 0.9994 1.0004 0.9995

dp (1
3) 1.589 1.155 1.086

d2
p (2

3) 1.289 1.081 1.045

(2) 0.388 0.770 0.862

(3) 0.166 0.655 0.897

(4) 0.147 0.857 2.136

(5) 0.297 2.071 10.868

Case ii)
Results from additionally solving the particle kinetic stress

equation using the theory of Tchen and Hinze [15] for the fluid
particle covariance are presented in table 4. Results are similar
for all particle inertia to those obtained under conditionsgiven in
i). Resolving the set of equations in ii) is applicable to less aca-
demic simulations as the here presented, in contrast to conditions
under i).

Case iii)
Solving the fluid particle covariance equation in addition

leads to results, presented in table 5, which show slightly worse
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Table 5. DNS/DPS to DQMOM ratio of 0th to 5th order moment for

particle inertia of St= 0.1, St = 0.95 and St= 2.4 at ReL = 61 for

simulation case iii
moment (order) St= 0.1 St= 0.95 St= 2.4

Np (0) 2.150 1.294 1.136

mp (1) 0.9994 1.0004 0.9995

dp (1
3) 1.683 1.186 1.089

d2
p (2

3) 1.300 1.086 1.043

(2) 0.489 0.862 0.927

(3) 0.345 0.965 1.162

(4) 0.552 1.760 3.595

(5) 1.990 5.925 24.306

Table 6. DNS/DPS to DQMOM ratio of 0th to 5th order moment for

particle inertia of St= 0.1, St = 0.95 and St= 2.4 at ReL = 61 for

simulation case iv
moment (order) St= 0.1 St= 0.95 St= 2.4

Np (0) 2.173 1.310 1.148

mp (1) 0.9994 1.0004 0.9995

dp (1
3) 1.700 1.202 1.103

d2
p (2

3) 1.308 1.098 1.054

(2) 0.471 0.794 0.843

(3) 0.312 0.763 0.855

(4) 0.462 1.151 1.974

(5) 1.534 3.184 9.668

results as in the previous cases. Especially for the most interest-
ing lowest order moments.

Case iv)
In this case, the collision term in the particle kinetic stress

equation is added to the source terms. Results are shown in table
6. Comparison of results from case iii) and iv) shows a very
similar performance. Only for the highest order moments results
are better applying the collision term in the particle kinetic stress
equation.

Case v)
Finally, in order to evaluate the influence of the collision

term in the particle kinetic stress equation, simulations are done

Table 7. DNS/DPS to DQMOM ratio of 0th to 5th order moment for dry

granular flows comparing results with different collision terms case v

moment (order) C (µk
p,α) C (µk

p,α) C (µk
p,α)

q2
p DNS C (cp,βcp,γµk

p,α)

Np (0) 1.050 1.063 1.009

mp (1) 1.0004 1.005 1.005

dp (1
3) 1.035 1.043 1.014

d2
p (2

3) 1.019 1.023 1.013

(2) 0.947 0.981 0.915

(3) 0.972 1.086 0.816

(4) 1.475 1.866 1.058

(5) 4.320 6.605 2.825

with and without this collision term in dry granular flows. The
advantage of dry granular flows is the independence of the fluid
properties and thus allows to evaluate the influence of this colli-
sion term in an isolated manner. It is the only remaining source
term in the particle kinetic stress equation. Table 7 compares
dry granular simulation results for three different simulations.
First, resolving only the number and mass balance equation,
while obtaining the particle kinetic energy in regular intervals
from DNS/DPS simulations. Second, for two simulations solv-
ing the particle kinetic stress equation with and without collision
term, respectively. In the first case, where the particle kinetic en-
ergy is obtained from the DNS/DPS data, an error of 5% remains
for example for the particle number. This flow configuration is
entirely controlled by the coalescence rate and thus the collision
frequency, which requires a correct value for the particle kinetic
energy per Dirac. As the update is done at fixed intervals, the
collision frequency is calculated with not exact values forthe
particle kinetic energy.

Introducing the particle kinetic stress equation providesan
up-to-date value of the particle kinetic energy at each timeincre-
ment. As can be seen in table 7 in the second column, results,
however, did not improve. They exhibit even a slightly worse
performance. Considering finally, as seen in the third column of
table 7, a collision term in the particle kinetic stress equation,
leads to a significant improvement of the results. For example,
the particle number deviates less than 1% from the value obtained
in dry DPS simulations. All other moments are in a good agree-
ment either.
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CONCLUSION
A recently developed extension of the DQMOM approach

[2] based on the formalism of the joint fluid-particle PDF ap-
proach by Simonin [4] is evaluated. The great advantage of this
extension is the possibility to write the particle momentumand
particle kinetic stress transport equation accounting forcoales-
cence effects. In particular a collision term in the particle kinetic
stress transport equation can be written for the here presented
case of Homogeneous Isotropic Turbulence. Several different
cases, considering different sets of transports equationsand col-
lision terms (assuming molecular chaos) are compared to results
obtained from DNS/DPS simulations. Their influence is evalu-
ated and the overall performance of DQMOM is estimated. In
dry granular flows an accuracy of less than 1% error in the par-
ticle number is obtained for DQMOM taking into account the
collision term in the particle kinetic stress transport equation. As
a correct prediction of the particle kinetic energy seems tobe
crucial to a good performance, other collision models will be
tested in the future that take into account the fluid-particle in-
teraction. In the here presented results the collision frequency
in DQMOM is overestimated, thus the introduction of collision
models that diminish the collision frequency like the correlated
collision model in [9] could lead to an improved performance.
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