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ABSTRACT

To analyze in detail the coalescence mechanisms and vali-

date modeling approaches, deterministic Lagrangian sitiouls

of droplet trajectories (DPS) coupled with Direct Numekigian-
ulations (DNS) of a Homogeneous Isotropic Turbulence (HIT)
are performed. The influence of the colliding particle véipc
correlations induced by the fluid turbulence on the rate ophit
coalescence is investigated for different particle imerfihe re-
sults are compared to predictions using the Direct Quadkatu
Method of Moments (DQMOM) accounting for coalescence.
The particle diameter distribution is written as a sumnratid
Dirac functions. This allows to derive Eulerian transpagtia-
tions for the dispersed phase statistics, which accountder
alescence and conserve the low-order moments of the jgarticl
size distribution. The collision terms are modeled apmytne
molecular chaos assumption in order to account for coatesce
Particle size distributions and moments obtained from DQMO
are compared to those of the DNS/DPS simulations in function
of particle inertia.

INTRODUCTION

The study of collisions between particles in turbulent dis-
persed multiphase flows is of interest for many engineerjrg a
plications. Examples of flows where droplet coalescendketyl
to play an important role include many topics such as solid-
fuel rocket propulsion, internal combustion engines aedtek

*Address all correspondence to this author.

power generation by liquid fuel turbines. The droplet sizagy-
ally has a major influence on the global performance of the sys
tem and must be accurately taken into account in numerical si
ulations. As the carrier flow is often turbulent, dropletsdted

in the vicinity of the same point may have different velcesti
collide and perhaps coalesce leading to a strong modifitafio
the droplet size distribution.

The statistical representation of the coalescence rates
gained based on a Lagrangian tracking of the dispersed phas
here referred to as Discrete Particle Simulation (DPS) pghyes-
ical study of coalescence in Homogeneous Isotropic Turmgle
This approach is coupled with Direct Numerical Simulations
(DNS) in order to account for the influence of the turbulent mo
tion of a fluid on the particle distribution. Coalescenceds a
counted for using an algorithm allowing to detect collision
a broad droplet size distribution. This algorithm was vaiéd
for dry granular test cases [1]. The results are comparedeto p
dictions using the Direct Quadrature Method of Moments (DQ-
MOM) accounting for coalescence. The here applied DQMOM
approach [2] is a recently developed extension of the agbroa
by Marchisio and Fox [3] based on the formalism of the joint
fluid-particle PDF approach by Simonin [4].

Coalescence phenomena are various and each collision b
tween two droplets leads to the creation of one to several ne
droplets, depending on the relative properties of the diolj
droplets. Several studies concerned with coalescenceophien
ena have been performed, pointing out the diversity of thie co
sion outcome [5-7]. In this study, in order to better underdt
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the physical mechanisms of turbulence-coalescence attena
only the permanent coalescence regime is considered. B&ch ¢
lision leads to permanent coalescence.

The article is structured as follows. First, the DNS/DPS ap-

proach is explained. Second, the DQMOM approach is detailed

by explaining the general formalism, the closure of theisiolh
operator and then outlining the equations solved in the érafm
this work. Then the fluid flow is described and finally resutes a
presented for the comparison of DQMOM with DNS/DPS.

DNS/DPS APPROACH

Direct Numerical Simulations (DNS) coupled with a La-
grangian tracking of the particle phase (DPS) are perforinesel
and have been extensively used to investigate gas-pditols
[8-11]. The flow configuration is a Homogeneous Isotropic Tur
bulence (HIT) forced by a scheme initially proposed by Esmar
and Pope [12], which assures a statistical steadiness. ditie p
cles are considered as rigid spheres with diameters sntlatiar
the Kolmogorov turbulence length scafg. The turbulence
modulation by the dispersed phase (two-way coupling) is not
considered, as the particle mass fraction is small. Assgthiat
the particle fluid density ratiopl, > p¢) is large, the forces act-
ing on the particle are reduced to the drag force only. Thss, t
governing equations of thé, particle system in interaction with
the surrounding flow field and undergoing particle-partaci#i-
sions are written as

dxp
—r —v
dt P
dvp [Vp— Ut @p] »
Mgy =M (T Fpij (1)
P i=T;]#i

wherexp,up are the position and velocity vectors of the parti-
cle p andmy is the particle massutgp is the undisturbed fluid
velocity at the position of the particle afg; represents the im-
pulsive force resulting from particle-particle collismnAs two-
way coupling is neglected)sgp is computed with an accurate
interpolation scheme [13]. The particle response tigis given
using the relation of Schiller and Naumann [14] by

L _dppdy 1
" 3piCo Vp— Ur@p|
_ ﬁ .687
G = e (1+o.15Reg )
Vp—Uu d
Re, — Vo fo@p! p )

with dp the particle diameter ang; the kinematic viscosity of
the fluid. Coalescence is modeled assuming that each oallisi

2

leads to permanent coalescence. Other collision outcomes
identified by several authors [5—7] are not regarded for thke s
distinctness. The mass and momentum conservation egsatio
of two particles undergoing coalescence are written as

ko
m = Mmp+my
Ky ok
nM'Vv" = MpVp+ MyVq

3)

with m, and mq the mass of the particles before coalescence
andm* after. Analogous for the particle velocitieg,vq and

v*. The corresponding particle diameter is directly deddetib
from the mass conservation equations as the particle gansit
constant and the particles are modeled as rigid spheresgias m
tioned above. The position of the new particle that arisemfr
coalescence is given as

d3xp+ d3xq
d+*

(4)

with x* the position of the new particle anil}, d; andd* the par-
ticle diameters. Coalescence is detected using a recesl-d
oped algorithm allowing detecting collisions in a polyjukssed
particle mixture [1].

DQMOM APPROACH

The here used DQMOM approach is an extension of the ap
proach proposed by Marchisio and Fox [3] based on the formal
ism of the joint fluid-particle PDF approach by Simonin [4} re
cently developed by Belt and Simonin [2].

To account for droplet coalescence (particle aggregation)
poly-dispersion in the frame of the Euler-Euler modeling ap
proach is challenging. Marchisio and Fox [3] proposed the DQ
MOM approach to tackle these difficulties. However, as the ve
locity distribution for a given diameter is represented Wyiiac,
coalescence effects appear only in the mass balance emgiatio
Consequently, as outlined by Belt and Simonin [2], partiotz
mentum and particle kinetic stress transport equationsatdie
written accounting for coalescence effects. Instead, énap-
proach of Marchisio and Fox [3], an ad-hoc formulation of the
multi-class Eulerian approach without collision modeliagp-
plied. In the novel approach, these equations can be deaived
counting for particle coalescence. This new approach &flri
summarized in the following. The reader may refer to [2] for a
more complete description of the formalism.

General DQMOM formalism
The dispersed phase statistics can be described in tutbule
two-phase flows in terms of the joint fluid-particle prob#bil
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density function (pdf)f¢p(X,t,Ct, Up,Cp), Which is defined such
that f¢p(X,t,Ct, Hp, Cp)dcsdppdcpdx is the probable number of
droplets at time with the center of mass located in the volume
[x,x+dx], a translation velocityl, in [cp,Cp+ dcp] and a mass
mp in [Mp, Hp + dig], Seeing a locally undisturbed fluid velocity
Ut@p in [ct,cf +dct]. The evolution equation can be written as
a Boltzmann-type equation [4]:

of¢ 0 0 dup,j
Tp‘f'a_xj (cp,jfep) + ac—pj (<%|Hpacpacf>ffp>
0 dus N
ij << d(?pj |Upan,Cf>ffp)
0 dm
+ a—up (<Fp|Upan,Cf>ffp)

_ (%)
ot coll

where(.) represents an ensemble averaging operatorggrﬂde
rate of change along the particle path of any particle ptyper
The notatiory.|lp, Cp, Ct) iS written for the conditional expecta-
tion (.|mp = Hp,Up = Cp,Us@p = Ct). Exact expressions for the
third to fifth term can be found in [4]. The collision operator
(%), will be detailed below,

co

Marchisio and Fox [3] wrote the particle pdif as a summa-
tion of N Dirac functions in mass and velocity space:

()

fp(X,t, 'JP7CP) =
N
Z Wq (X, 1)0(Mp — Flp,a(X,1))d(Cp — Cpa(X,t))

a=1

(6)

wherepp o (X,t) andcp o (X,t) are the mass and velocity of class
a, respectively. As seen in (6), one single mean velocityseas
ciated with each mass and as a consequence transport eguatio
for the particle agitation cannot be derived. Belt and Sim@2]
define for each class one mass associated with a velocity dist
bution, which is written as:

ffP(XaLUpanaCf) = np(X,t)h?p(X,t,Cp,Cf |Up)g* (tha P—p) (7)

with np(x,t) the number of particles per unit volumeatand
t. hip(X,t,Cp, Ct[Hp) is the joint fluid-particle velocity probabil-
ity density function at time;, conditioned by the mass, equal
to pp, with the center of mass located in the volufrex + dx]
and a translation velocityp in [cp,Cp +dcp], seeing a locally
undisturbed fluid velocitytgp in [ct,Ct +dct]. g*(X,t,Hp) iS
the mass probability density function at timewith the cen-
ter of mass located in the volunpe,x + dx] and a massn, in

[bp, Hp +dpp]. The pdfsni ; andg* verify:

(8)
9)

/h?p(xvtacpachD)dCDdCf =1 VUP

[ty = 1

Belt and Simonin [2] write the pd§*, similar to [3], as a sum-
mation of Dirac functions with the sum of the weighbg over
all classes equal to one (10).

N

g* (thv “D) = Zloofx(xvt)6(“p - ilp,u (th)) (10)

This presumed pdf* is equivalent to make the Gauss quadrature
approximation for the moments gf:

N
[ Mg )y = 3 Ba(xDan(xt) (@)
a=1

The weightswy and the abscissgs,q in (10) are unknown,
thus 2N unknowns must be determined. With the help of the
Gauss quadrature approximation, the momentg ctn be com-
puted. Following the DQMOM approactNZransport equations
on the low-order mass-moments are derived by integratidimeof
Boltzmann-type equation (5) multiplied Wi[ll;. After some ma-
nipulation the following system is obtained witranging from
Oto2N—1:

of¢
k p
/l—lp < 5 >CO” dedCf le.p

= (na) +

s (Soilan)]

s (So1)anfina) ~na)e

(12)

For the sake of clarity, the quantity dependencies withaesio

x andt are not written out in (12). The mean number of particles
per unit volumeng with massiip o is defined asy = wqn. The
physical meaning of the weighi, appears in this approach, as
the ratio of number of droplets per clagso the total number
of droplets atx andt. System (12) gives the values for the N
abscissagl, ¢ and N weights, from which the droplet diame-
ter distribution is reconstructed. This reconstructedridbigtion
should show the correct moments up to the ordér21l. The
operator(@)q represents the conditional average on a nmgss
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equal topipa: (@a = [ @ht,(X,t,Cp, Ct[fipa)dcpdcs. The term
na ()« represents the evaporation rate of droplets, which is zero
throughout this work.

For N = 1 the equation (12) is identical to the number
(k=0) and masgk = 1) transport equations for monodisperse
droplets derived by Simonin [4]. Also, (12) is equivalenthe
system obtained by Marchisio and Fox [3] if written in ternfis o
diameter. However, system (12) is not closed since it coathie
velocity (cp)q conditioned by the mass of clags Following a
similar way as Simonin [4] to derive transport equationsfar
mentum, particle kinetic stress and fluid-particle covare the
velocity (Cp)q can be obtained in the framework of the DQMOM
approach. Those equations are in agreement with Simodih’s |
transport equations for a monodisperse droplet cloud. FEoem
details, the reader may refer to [2] and [4], readers intetkm
the resolution of the equation system to [2] and [3].

In a Homogeneous Isotropic Turbulence, as in this study, all
variations with respect tilj are zero and thus equation (12) sim-

plifies significantly. In particular the momentum balanceaq
tion does not need to be solved, since the mean velocity ialequ
to zero. As detailed below, the particle kinetic energy ¢guieed

for the closure of the collision term. In a first step, withimst
work, the corresponding values g are directly obtained from
the performed DNS/DPS simulations. In a second step, the par
ticle kinetic stress tensor equation is solved in the DQMQM a
proach. In order to account for the interaction of the phatic
phase with the fluid turbulent motion, the mean particle cesp
time Tfp (Tp)a and the fluid-particle symmetrical velocity co-

variance tensoR;, g = ((uf@pyc’p pla+ (CoyUr@ppla ) are

then needed. The value fcllEp is taken from the DNS/DPS
simulations. A transport equation f&sp, can be derived in
the DQMOM framework (14). The equilibrium state from the
theory of Tchen and Hinze [15] is used to determine the fluid-
particle covariance which is given using the relation ohdic

F
[15] gfp = 1+St where the Stokes number is definedsis- T ,

when the particle kinetic stress equation is solved onlg par-
ticle kinetic stress tensor equation is given in (13).

0ffp
/ pyCopH p< )m”dcpdcfdup-l-E
1 k Zupq|: ( pprB> )
9 9
+ O_XJ ( <C/ py p[3> <Cp,j>a) + a_XJ (na<c/p,vdp,ﬁc/p,j>a)
9 9
+ na<C/p,vCIp.,j>a 6_XJ <Cp.,[3>a + no‘<clp,[3clp,j>a 6_XJ (Cpy)a

= 4
_na<c/p!BEy>a - na<dp’yﬁﬁ>a]

52 [ 2 (e )

a ~ / /
(”G Fip.a (CpyCpp)a (Cp.j >a) + ax (”a Fip.a (CpyCppCp >G)

N
i
0

. ;o 0 . 0

FNaflp.a (CpyCp j)a % (Cpp)a + Naflp.a(CpaCh j)a ax; {Cpy)a

/
—Naflp.a(C] F—\;> — Naflp.a(C] E)
aHp,a PB /O aHp,a PY

Na(TChyCh pa (13)

The only term of equation (13) that remains in the equatiomfo
Homogeneous Isotropic Turbulence are detailed below.

Finally, the fluid-particle covariance equation (14) isveal.
rfp is taken again from the DNS/DPS simulations and the fluid

enerquf is also known. The fluid-particle covariance equation
writes as:

c (c}‘yﬁc/p’yu‘g) +E =

N N
1=K S Motk o (14)
a=1 a=1

whereey andfy are the source terms of the following equations:

% (na <C/]‘,BC/;3,y>G) + a;ij (na <C/]‘,[3dp,y>0 <CP~,J>G)
)a)
(CpyPp)a

g(nqupqwf Cpyla) + aaj (Rafipa(€; gCpylaCpiba)

0
o (na(h ChyCh
R
—Ng{C g—=)a—N (15)
o f’Bmp a o

€a

0
+axJ (naupa<cf 6Cp. c/p’j)a)
/
—”aﬁp,a<c/f,ﬁ—y>a
" Mp

—Na(FCt gCpy)a

—Naflp.a {CpyAs)a
fa

(16)

The remaining terms in the equation are explained below whe
detailed for Homogeneous Isotropic Turbulence. The readgr
note that the terrt andE’ on the left hand side of equations (13)
and (14) is equal to zero in a Homogeneous Isotropic Turloglen
For its definition as well as an exhaustive explanation ofeh@s

in (13) and (14) the reader may refer to [2].
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Closure of collision operator

The coalescence operatofy) is the integral of the change
in a quantityy (for a distinct collision) multiplied with its prob-
able collision frequency over all binary collisions. yf is the
quantity after collision anay before collision, the change i

can be written aAy = y* — Y and thus the coalescence operator

¢ (P) for two particlesP andQ as:

W) =58 [ (Wpa— W) K]

2
ff(p) (Cf@pa 'J'pv Cpa X, Cf@Q7 ufb CQ7 X+ dquvt)
dkdppdpgdcs @pdcpdct @gdcy (17)

wheredpq = (dp+ dg)/2 is the collision diametewy = cq — Cp
is the relative velocity between the two colliding dropletsis
the unit center connecting vector pointing from partieléo Q.
2 . .. . .
ff(l; (cf@p_, Hp; Cp, Xp, Cf@q; Ca; pq,xq,t_) is the joint fI_U|d-_part|cI_e-
fluid-particle pair distribution function. The particleipdistri-

bution functionf,()z) is per definition obtained by integration over
the particle velocities as given in equation (18).

2
fF() )(vaquvachvx'i'dquvt)
2
://ff(p>(cf@p7“pvcpvxvcf@Q7lJQ7CCI7X+dquat)
dCf@pdCf@q (18)
According to the “molecular chaos” assumption the parfieé

distribution functionf,gz) can be written as a product of to single
one-particle distribution functions:

2
fF(J )(Cpa “p7X7 Uq,Cq,X—i— dqu,t)

~ fp(CpaP-pvxvt) fp(quUan‘i‘dquvt)a (19)

It needs to be mentioned that according to [9] the “molecular

chaos” assumption is valid only, if the particle responseetis
much larger than the fluid Lagrangian time scale.

Lagrangian time scale, the particle velocities becomeetated
through the interaction with the fluid. This can be accouribed

by a specific closure off proposed by [9]. Nevertheless, the

If the parti
cle response time is of the same order or smaller than the fluid

/LP q B(Mps Hg

g ( ) 7“P) ( ) qu)dudeq (21)
W) = /Lpp B(Hp, Cp, Ky, Cq)
9" (X,t,Mp)g" (X, 1, M) dupdig (22)

) the radial relative velocity. It can be written as:

161 1/2
p— i, (5l b))

DQMOM in Homogeneous Isotropic Turbulence (HIT)

The DQMOM approach is here compared with a homoge:-
neous isotropic turbulence coupled with a dispersed phése ¢
spherical particles undergoing coalescence. As mentiabede,
all variations with respect tg‘;—j are zero and equation (12) and

(13) simplify significantly. Five different cases are redgd here.

In the first case i) only the number and mass balance equatic
are solved. The particle kinetic energy is extracted from th
DNS/DPS simulations. Second, the particle kinetic stregme
tion is in case ii) solved making use of from DNS/DPS values fo
the mean particle response time, while the fluid particleadev
ance is modeled following the theory of Tchen and Hinze [15].
In case iii) additionally the fluid particle covariance etjoa is
solved, with the fluid energy from the DNS/DPS simulatioms. |
case iv) a collision term in the particle kinetic stress diquma

is added. And last in case v) dry granular simulations are per
formed in order to evaluate the influence of the collisiomtén

the particle kinetic stress equation. The equations toesate
the following. For the number and mass balance equation (12
the source terms can be written per class

with B, H

(23)

i) Number and mass balance equation HIT

0

x (Na) = &g (24)
0 ~

2t (Naflp.a) = ba (25)

Then, the system to solve becomes (12), wdttanging from 0

“molecular chaos” assumpnon is the simplest approach and i to 2N —1:

used here.

The coalescence operator is here written, similar to [3] as

outlined in [2], as a function of the “birth” rate and “death”
rates for a quantityy = pi;:

(20)

N
Z qacx +k Zl albq = C(IJ-p)

(26)

Wherec(u'g) represents the collision term as defined in (20).
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i) Particle kinetic stress equation (HIT) The parti-
cle kinetic stress equation can be written as seen in (2&ganit

also be obtained from (27). As the particle number and mass ar

known from (26), (27) contains the same information as (28) a
it is only weighted by a different factor. The source terms ar
related anaty can be expressed in termsaf, by anddy.

% (nﬂ <C/p,vdp.,[3>°‘)
Fy Fo

M (€pp—)a = Na(Chy L = Ca 27)
0
ot (nafoa(Coychp)a)
) K 3 B
—nG l_lp’q <C/p[3ﬁ>q —_ nu l.lp’q <C/pyﬁ>u = du (28)

(13) can be written as shown in (29), if the influence of coales
cence is not accounted for in the particle kinetic stresaggu.

In the casei) the system to solve consists thus of (26) and (29).

This assumption is valid only, if the effect of collisions par-
ticle kinetic stress is less important than the interactidth the
fluid. In this case the source termg= 0 anddy = 0 equal zero.

N N
(1=K Y WaCatk S Hdda = (ppcp 5, ) 0 (29)
a=1 a=1

The interaction with the fluid turbulent motion is expressgd
the force termd=’ in (28). They are written following [4] as
follows:

F/ Fo
~ Y i
Nafpa(Cpp)a —Nafpa(Chyp o
2
~ Nablpam— [<C/p,vdp-,ﬁ>°‘ —Ry pvyﬁ} (30)
fp,a

Where the fluid-particle covariance ten&yy, g is modeled us-

2 . . .
ing grp = 175 The mean particle response tinfg, , is ex-

tracted from the DNS/DPS simulations.

iii) Fluid particle covariance equation (HIT) The
fluid particle covariance equation is given in the case of a Ho
mogeneous Isotropic Turbulence by (31).

0 o
2t (na HP,G<CIf,BC/p,y>G)

!

=
—naﬁp,a <df’[3m—\:)>a (31)

— naﬂp,a <dp,yA{3>a = fa

The force terms can be written as:

/
el (€4 gim)a — Nolloa Sy g
2 /
~ —aflpay— (¢4 yShpla — (¢ g)a]
fp,a

1
—Naflp, T <Cf pr Bla (32)

iv) Collision term in particle kinetic stress equa-

tion In general it is difficult to write the collision term
fqppp (agp) |Idcpdcfdppin (13). Inthe here presented case, a
co

Homogeneous Isotropic Turbulence, the particle mean itglisc
zero, as already mentioned. This allows to write the coalese

. . 3 k
.term.maklng use of (3)_and ap_p!ymg (20) gnd \_N@h: uqu,,
if fyis assumed Gaussian, as it is justified in this isotropic flow
configuration. In a first attempt we can then write with= 1:

1
upqp =N E; z BO( K (33)
1 1
3 [ Hpa(595a) + Mo (505)°
2 Mp,a + Hpk
D (UClp) = Z Z Bax upq qpq (34)
The equations to solve are then (26) and (35):
A S k1 K 42
(1_ k) Z ﬁp,aca +k Z rlpjo( do =C (upqp) (35)
a=1 a=1

The termE in (13) equals zero in a Homogeneous Isotropic Tur-
bulence, as mentioned above. For further information,ehder
may refer to [2].

v) Influence of Collision terms in dry granular flows
In this last case the influence of the collision term in thetiplar
kinetic stress equation is evaluated. Dry granular sinaratare
therefore compared with DQMOM predictions for three didfietr
dry granular cases. In the first one, the number and massdealan
equation only are solved and the particle kinetic energypis u
dated using results from DNS/DPS simulations. In the secon
dry granular case, the particle kinetic stress equatiooliged,
while the collision term is neglected and finally this cadis
term is taken into consideration in the last dry granulaecase
collision term is shown under iv).
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Figure 1. Simulated cases in comparison with the theory of Tchen &

Hinze [15], [16] as well as its extension by Deutsch [17], [18]

Table 1. Characteristics of fluid turbulence for turbulent Reynolds num-
berRg =612
Cube length Lp 0.128
Grid points N 128
Turbulent energy o? | 6.661610°3
Integral longitudinal length scale Lt /Ly 0.1056
Integral transversal length scale Lg/L¢ 0.4673
Reynolds number Re 612
Kolmogorov length scale Nk/Lb 0.0506
Kmax 2.00

Description of fluid-particle flow field
The fluid flow field is a homogeneous isotropic turbulence.

50000 |~

g 0 DNS/DPS
40000 |- 1 DQMOM

St=24
30000 -

20000 |-
10000 |-

.I] 0 o B _____ _
0.0002 0.00025 0.0003 0.00035
Diameter

o T ..
0.00015

Figure 2. Particle number - diameter pdf for St= 2.4 at Rg = 61

Table 2. DNS/DPS to DQMOM ratio of Oth to 5th order moment for
particle inertia of St= 0.1, St=0.95and St= 2.4 at Rg = 61 for
simulation case i

moment (order) St=0.1 St=0.95 St=24
Np (0) 2.004 1.238 1.102
mp (1) 0.9994 1.0000 0.9995
dp (3) 1.669 1.168 1.073
d3 (%) 1.323 1.087 1.039
(2) 0.353 0.750 0.877
(3) 0.138 0.620 0.920
(4) 0.113 0.789 2.191
(5) 0.212 1.857 11114

Once the fluid flow field reaches a steady state the particulate v) in this section.

phase is initiated and converges around an equilibrium thigh
fluid turbulence, as seen in figure 1. The particle Stokes musnb
are chosen to be identical for different Reynolds numbete T
initial particle diametedp, is the same in all simulations, only the
particle density, is modified for different particle inertia. Table

1 summarizes the fluid field values for the turbulent Reynolds
numberRg = 61.

RESULTS
The results obtained from DNS/DPS simulations are com-
pared with the DQMOM simulations described above under i) to

7

Case i)

DQMOM simulations are conducted for five different parti-
cle classes, as they are presented in figure 1. Howeverigesal
here only presented for the lowest, highest and the inteiateed
Stokes number. They are characterized by different particl
ertia. As the DQMOM approach assumes 'molecular chaos’ an
thus independence of the coalescing particle velocitiés sup-
posed to perform best for high inertia particles, as thie taithe
closest to the 'molecular chaos’ assumption. The DNS/DRS si
ulations are initialized with a monodisperse particle ghésl

Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



particles have the same initial diameter), thus the parscte

pdf is represented by one single Dirac function. As threa®ir
functions are used in DQMOM to represent the particle diame-
ter distribution, numerical problems could be caused byirthe

tial monodisperse distribution. In order to avoid thesebprms,

the DQMOM simulations are initialized with DNS/DPS data, in
which three different particle sizes have occurred sineestart

of the coalescence simulation. As the DQMOM approach iswrit
ten to conserve the firsth\e— 1 moments of the particle diameter
distribution, these moments are calculated for resultainbtl
with the DNS/DPS as well as for results of the DQMOM (11).
The ratio of the same moments of the corresponding distribu-
tions is used to evaluate the accuracy of the DQMOM in the here
used configuration. Results are shown in table 2. Figure 2 com
pares distributions of inertial particles. The empty bargresent
the Dirac distribution obtained from DNS/DPS simulatioAs

the initial distribution is monodisperse, all emerging pled di-
ameters are determined by the initial diameter. The black ba
represent the Diracs from DQMOM.

Throughoutthis work, three Diracs are used in the DQMOM
approach for two reasons. First, it appears the most feasibl
choice for comparison with the DNS/DPS data and second, the
low-order moments give the same results for three or found3ir
as seenin table 3. Only the 4th-order and higher momentbigxhi
a significant change in magnitude. The choice of three Diracs
seems to be justified. Naturally, if higher than 5th-order mo
ments are of interest, an adequate number of Diracs needs to b
chosen.

Under the impression of an increasing accuracy of the mo-
ments ratio DNS/DPS to DQMOM with increasing particle iner-
tia, a dry granular test case was performed. Dry granularsflow
are performed for example in [1]. No fluid phase exists. THe co
lision operator in DQMOM is based, as mentioned above, on the
molecular chaos assumption. In dry granular flows this apsum
tion leads to correct collisions frequencies, if the péeticsize
distribution is correctly represented. If only binary ésithns are
treated and if the particle agitation per particle classrisvin
and if one class exists for every different particle mass elsas
for every emerging new particle mass, this approach sheald |
to correct collision frequencies for dry granular flows. QD
MOM, however, the number of particle classes (Diracs) iegiv
and limited and thus compromises the results. Table 3 shuavs t
moment ratios for this dry granular test case. In comparigtn
results for simulations with particle inertia 8t = 2.4, the mo-
ment ratios of the dry granular test case exhibit an impramem
of up to 50% error. Under the in case i) given conditions, the

dry granular case can be considered as the most accurale resu

possible.

Table 3. DNS/DPS to DQMOM ratio of Oth to 5th order moment for
particle inertia of St= 2.4 at Rg = 61 with 3 respectively 4 Diracs and
for the dry granular test case

moment (order), dry granular| St=2.4 St=24
q5 DNS 3 Diracs | 4 Diracs

N (0) 1.050 1102 1101

mp (1) 1.0004 0.9995 0.9994

dp (3) 1.035 1.073 1.072

d2 (%) 1.019 1.039 1.038

(2) 0.947 0.877 0.878

(3) 0.972 0.920 0.917

(4) 1475 2.191 2.101

(5) 4.320 11114 9.515

Table 4. DNS/DPS to DQMOM ratio of Oth to 5th order moment for
particle inertia of St= 0.1, St=0.95and St= 2.4 at Rg = 61 for
simulation case ii

moment (order), St=0.1 St=0.95 St=24
Np (0) 1.876 1.220 1.121
mp (1) 0.9994 1.0004 0.9995
dp (3) 1.589 1.155 1.086
d3 (%) 1.289 1.081 1.045
(2) 0.388 0.770 0.862
(3) 0.166 0.655 0.897
(4) 0.147 0.857 2.136
(5) 0.297 2.071 10.868
Caseii)

Results from additionally solving the particle kineticests
equation using the theory of Tchen and Hinze [15] for the fluid
particle covariance are presented in table 4. Results eni&asi
for all particle inertia to those obtained under conditigiven in
i). Resolving the set of equations in ii) is applicable teslesa-
demic simulations as the here presented, in contrast tatomms
under i).

Case i)
Solving the fluid particle covariance equation in addition
leads to results, presented in table 5, which show slightiyses
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Table 5. DNS/DPS to DQMOM ratio of Oth to 5th order moment for
particle inertia of St= 0.1, St=0.95and St= 2.4 at Rg = 61 for
simulation case iii

moment (order)] St=0.1 St=0.95 St=24
Np (0) 2.150 1.294 1.136
mp (1) 0.9994 1.0004 0.9995
dp (3) 1.683 1.186 1.089
d3 (%) 1.300 1.086 1.043
(2) 0.489 0.862 0.927
(3) 0.345 0.965 1.162
(4) 0.552 1.760 3.595
(5) 1.990 5.925 24.306

Table 6. DNS/DPS to DQMOM ratio of Oth to 5th order moment for
particle inertia of St= 0.1, St=0.95and St= 2.4 at Rg = 61 for
simulation case iv

moment (order)] St=0.1 St=0.95 St=24
Np (0) 2.173 1.310 1.148
mp (1) 0.9994 1.0004 0.9995
dp (3) 1.700 1.202 1.103
d3 (%) 1.308 1.098 1.054
(2) 0.471 0.794 0.843
(3) 0.312 0.763 0.855
(4) 0.462 1.151 1.974
(5) 1.534 3.184 9.668

results as in the previous cases. Especially for the mcestast-
ing lowest order moments.

Case iv)

In this case, the collision term in the particle kinetic stre
equation is added to the source terms. Results are showllén ta
6. Comparison of results from case iii) and iv) shows a very
similar performance. Only for the highest order momentaltes
are better applying the collision term in the particle kiostress
equation.

Case v)
Finally, in order to evaluate the influence of the collision
term in the particle kinetic stress equation, simulatioresdone

Table 7. DNS/DPS to DQMOM ratio of Oth to 5th order moment for dry
granular flows comparing results with different collision terms case Vv

moment (order) ¢ (k) c(Hsa) C(W5.a)
g5 DNS € (CppCoyHha)

Np (0) 1.050 1.063 1.009

mp (1) 1.0004 1.005 1.005

dp (3) 1.035 1.043 1.014

d3 (%) 1.019 1.023 1013

(2) 0.947 0.981 0.915

(3) 0.972 1.086 0.816

(4) 1.475 1.866 1.058

(5) 4.320 6.605 2.825

with and without this collision term in dry granular flows. &h
advantage of dry granular flows is the independence of the flui
properties and thus allows to evaluate the influence of tiis ¢
sion term in an isolated manner. It is the only remaining seur
term in the particle kinetic stress equation. Table 7 compar
dry granular simulation results for three different sintigas.
First, resolving only the number and mass balance equatior
while obtaining the particle kinetic energy in regular s
from DNS/DPS simulations. Second, for two simulations solv
ing the particle kinetic stress equation with and withoulision
term, respectively. In the first case, where the particletieren-
ergy is obtained from the DNS/DPS data, an error of 5% remain
for example for the particle number. This flow configuratien i
entirely controlled by the coalescence rate and thus tHisicol
frequency, which requires a correct value for the partiahetic
energy per Dirac. As the update is done at fixed intervals, th
collision frequency is calculated with not exact values thoe
particle kinetic energy.

Introducing the particle kinetic stress equation provides
up-to-date value of the particle kinetic energy at each timee-
ment. As can be seen in table 7 in the second column, result
however, did not improve. They exhibit even a slightly worse
performance. Considering finally, as seen in the third colaf
table 7, a collision term in the particle kinetic stress diqpun
leads to a significant improvement of the results. For exampl
the particle number deviates less than 1% from the valuércdzta
in dry DPS simulations. All other moments are in a good agree
ment either.
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CONCLUSION

A recently developed extension of the DQMOM approach
[2] based on the formalism of the joint fluid-particle PDF ap-
proach by Simonin [4] is evaluated. The great advantageisf th
extension is the possibility to write the particle momentana
particle kinetic stress transport equation accountingctmles-
cence effects. In particular a collision term in the paetiihetic
stress transport equation can be written for the here pragen
case of Homogeneous Isotropic Turbulence. Several differe
cases, considering different sets of transports equagind<ol-
lision terms (assuming molecular chaos) are compared tdises
obtained from DNS/DPS simulations. Their influence is evalu
ated and the overall performance of DQMOM is estimated. In
dry granular flows an accuracy of less than 1% error in the par-
ticle number is obtained for DQMOM taking into account the
collision term in the particle kinetic stress transportatipn. As
a correct prediction of the particle kinetic energy seembdo
crucial to a good performance, other collision models wél b
tested in the future that take into account the fluid-pagtiak
teraction. In the here presented results the collisionueagy
in DQMOM is overestimated, thus the introduction of cobisi
models that diminish the collision frequency like the ctated
collision model in [9] could lead to an improved performance
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